DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY

Size: px
Start display at page:

Download "DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY"

Transcription

1 , Volume 4, Number 1, p.14-23, 2003 DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY K.H. Yang and S.C. Wu Mechanical Engineering Department, National Sun Yat-Sen University, Kaohsiung, Taiwan (Received 27 September 2002; Accepted 9 January 2003) ABSTRACT An innovative design approach has been performed using latent heat of the Liquefied Natural Gas (LNG) during evaporation to provide cooling for 500 USRT cold storage warehouse. In compared with the conventional, mechanical cooling designs, tremendous energy savings can be experienced and is discussed in detail in the paper. 1. INTRODUCTION During the energy crisis in the 1970s, oil prices hiked to a record high of 42 USD per barrel, which imposed a lot of pressure economically on oil importing countries such as Taiwan. To diversify energy resources as a counter-measure, it was decided to import LNG from ASEAN countries such as Indonesia and Malaysia, so that most of the fossil-fueled power plants, which were burning coal and oil, would switch into natural gas (NG). Natural gas is a more environmentally friendly fuel, which contains over 92% of methane, depending on the source of product. When LNG is vaporized into NG, tremendous cooling capacity will be generated during this phase-changing process. Conventionally, this was done by pumping seawater through the open rack vaporizer (ORV), such that heat was transferred from seawater to LNG, and vaporized it into a gaseous state, for industrial and household usage. The chilled water was normally dumped into sea again. Fig. 1 shows the conventional process. LNG was pumped from the tanker A to the storage tank B. In order to maintain a steady flow condition, the boil-off gas (BOG) from the tank at point C was extracted and cooled by the cooler D and recharged into the tanker at point E to form a circulation loop. Part of the BOG at point F was re-compressed at the BOG compressor or point G, condensed and re-charged into the LNG supply loop at point J. While, part of the boil-off gas shown at point H, was incinerated at the burning tower. On the other hand, pump 1 located inside the storage tank transports LNG from the tank, through point I and J, boosted by the pump 2 to a higher pressure at point K, and vaporized at the ORV by the sea water loop shown by point M and N and supply to the customers at the gaseous state, denoted by the point L. During this process, only a few part of the LNG cold energy was recovered by re-condensing BOG. This open heat exchanger loop is not only a waste of huge cold energy or cooling capacity, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this project, an innovative design has been performed to reclaim the cold energy for a -35 o C cold warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive the refrigerant compressor working in such a low temperature. In this study, a closed loop LNG heat exchanger system will be designed to replace the mechanical, or vapor-compression refrigeration (VCR) cycle, with a technical and economical feasibility study to justify its application. 2. EVALUATION OF LNG COLD ENERGY RECLAIM POTENTIAL LNG imported to Taiwan has a chemical composition of 90.5% CH 4, 6.2% C 2 H 4, and 2.33% C 3 H 8 in molar fractions. Its thermal properties can be calculated by the Redlich-Kwang-Soave (RKS) State equation [1]. However, to meet the demand side higher pressure at the local power utilities, it is necessary to pressurize LNG from -162 o C at 100 kpa atmospheric pressure, to around 8 Mpa, or 80 atm. Therefore, a calculation model with much broader range of temperature and pressure should be adapted, such as the Peng-Robinson (PR) state equations [2]. Both calculation models have similar accuracy on light hydrocarbons, but the RKS tends to over-estimate on density calculations, so the PR model is used in this study. PR state equations: P = RT a (1) (V b) (V(V + b) + b(v b)) 14

2 where P is the pressure of LNG, kpa; T is the temperature of LNG, K; V is the volume of LNG, M 3 ; and R is the gas constant, kpa.m 3 kg -1.K -1. a b a n = i n i x n = x i b i i = i a ci α i 0.5 i x j(a ia j) R T a c = P α 0.5 i 2 c 2 c = 1+ ( ωi ωi )(1 Tri ) R T b i = P ci ci where x is the mole fraction of each substance, ω is the acentric factor, T ri = T i /T ci. The subscript c means critical state. 2 The pressurization process will change the LNG boiling point, which in turn, will change the cold energy amount that can be reclaimed. The cold energy potential can be calculated from the enthalpy change of LNG across the ORV, or: Pin 162 C Pout t E = H H (2) where the subscripts stand for the enthalpy H at different temperature and pressure P in, P out. The temperature of LNG at liquid state is around -162 o C, while the temperature of NG at gaseous state is about 20 o C in maximum. And the reclaimed energy potential is expressed in E. The calculation result of the LNG cold energy potential under various temperature and pressure was shown in Fig. 2. It is noticed that the cold energy potential decreased while LNG was pressurized. For example, at 8 Mpa, LNG would have an enthalpy of 786 kjkg -1, only amounts to 88% of its value at atmospheric pressure. Based on statistics from September 1, 1998 to August 31, 1999, the annual LNG consumption rate in Taiwan is around million metric tons, equivalent to a daily average of metric tons, or tons.h -1. Fig. 1: A schematic diagram showing the conventional LNG transporting process using ORV for evaporation 15

3 1000 LNG pressure=1atm LNG pressure=30atm LNG pressure=50atm LNG pressure=80atm 800 energy (kj/kg) LNG temperature(c) Fig. 2: Calculation result of the LNG cold energy potential under various temperature and pressure When LNG was imported from ASEAN countries, it was pumped from the tanker and stored in the 60 m-diameter storage tank at -162 o C liquid state. Pumped out at -148 o C, it was pressurized in two stages, from atmospheric pressure to 3 atm, and then to 83 atm while entering the ORV. It leaves ORV at 15 o C with a pressure drop of around 20 atm, and stays at 63 atm. Therefore, the calculation yields a total heat exchange capacity of 743Mj per ton of LNG across the ORV. Combining with the daily LNG utilization rate in our study, which is around 10,864 ton/day, then it accounts for 1932 Gcal cold energy wasted per day, or equivalent to 26,662 Refrigeration Tons (USRT) cooling capacity, enough to provide residential cooling for around 8800 families during the summer. This has been validated by an experimental investigation through measuring the sea water loop with flow rate and temperature differences entering and leaving the ORV. As shown in Fig. 3, T1 and T2 denote the measuring points of the sea water inlet and outlet temperatures at the ORV, resulting at 27.3 o C and 23.5 o C respectively. The point F denotes the sea water flow rate measuring location, resulting at ton.h -1. The accumulated heat exchange capacity is USRT. Compared with our estimation, the deviation is within 3%. Furthermore, Fig. 4 shows a statistics and prediction of the LNG import to Taiwan. Following the completion of the second phase of LNG storage extension project in 1996, the annual import rises from 150 metric tons to 450 metric tons, and expected to reach 900 metric tons at the year of The huge amount of cold energy to be reclaimed is beyond doubt and waiting to be explored. 3. SYSTEM DESIGN FOR COLD WAREHOUSE USING LNG RE- CLAIMED COLD ENERGY In order to reclaim cold energy during LNG evaporation process, it is necessary to construct a closed heat exchange (HX) loop using secondary refrigerant, as shown in Fig. 5. In addition, the ORVs are still needed as a means for adjusting the appropriate portion of heat to be reclaimed without interrupting the normal NG supply to the power utilities. In other words, either the closed-loop heat exchanger or the ORV, each will provide a certain percentage of evaporation heat needed to vaporizer LNG into NG, and can be adjusted subject to the cooling load of the warehouse. On the ORV side, residual LNG was evaporated accordingly so that NG at its outlet still maintains the normal temperature and pressure needed for the power utilities. In this project, LNG cold energy will be utilized to supply cooling to a 110 RT cold storage warehouse operating at -35 o C, another 390 RT warehouse at -20 o C, and to provide 146 RT cooling capacity for air-conditioning in preparative rooms at around 15 o C. Fig. 6 shows a flow chart of the complete warehouse system using cold energy reclaimed from LNG, named the LNGCW system, with major design parameters indicated. 16

4 Computer simulation has been performed following the first law of thermodynamics along the flow process. Heat and mass balance of the system was calculated as shown in Fig. 7 where each component, including heat exchangers, pumps, and storage tanks were connected according to the system flow chart. After an iterative design and simulation process, the system schematics has been finalized. Fig. 8 gives an outlook of the completed LNG cold warehouse architectural design. denotes the measuring point, T for temperature, F for mass flow rate of sea water Fig. 3: The schematic diagram of the full-scale experiment in measuring the LNG cold energy released by ORV through sea water 11 The Import of LNG x10 6 ton year Fig. 4: Prediction of LNG import quantity from ASEAN countries to Taiwan in next decades 17

5 Fig. 5: A schematic diagram indicating cold energy reclaimed from LNG evaporation process for cold warehouse application Fig. 6: A schematic diagram showing the LNGCW system flow 18

6 Fig. 7: An energy and mass balance simulation result of the LNGCW system Fig. 8: An outlook of the completed LNGCW architectural design 19

7 4. ECONOMIC FEASIBILITY STUDY Based on the design analysis shown above, major components were sized accordingly enabling an economic feasibility evaluation of the LNGCW systems vs. a conventional mechanical refrigeration (CMR) system. The LNGCW system necessitates 3 specially designed close-loop heat changers and storage tanks etc., introducing higher initial investment at the cost of 12.8 million USD. On the other hand, the CMR system consists of huge refrigerant compressors and condensers, etc. at a cost of around 8.3 million USD. In this way, the operation cost plays a key role in justifying economic feasibility. The CMR system suffers from operating in low evaporator temperature causing reduced refrigerant mass flow rate and smaller cooling capacity. In addition, the high compression ratio between condenser and evaporator demands higher power consumption which worsens the case. The operation power demand is around 2321 kw. On the other hand, the LNGCW system, with an inherent low evaporative temperature of -162 o C, can easily provide cooling capacity at a higher temperature of -30 o C by way of a simple heat exchanging process. The operation power demand is 379 kw, or 16% of that of the conventional CMR system. Based on the outdoor design temperature of 34 o C, the average partial cooling load (APCL) of the cold warehouse was calculated as shown in Fig. 9. It indicated that the APCL ranged from 91% during the summer and down to 76% in the winter. Assuming 330 operation days a year, the LNG consumption rate of the LNGCW system can be calculated as shown in Fig. 10, where the daily average flow rate is 11.2 ton.h -1 and reached its peak of 12.3 ton.h -1 in July. Steady state energy estimation method is used for the cooling load calculation, energy analysis and the power consumption of refrigeration system in this project. It can be calculated for different values of outdoor temperature and multiplied by the corresponding numbers of hours. This method can be accurate if the indoor temperature and internal gains are relatively constant and if the systems are to operate for a complete season as recommended by the ASHRAE Handbook [3]. The calculated power consumption and energy savings of the LNGCW system was plotted in Fig. 11, indicating a monthly energy savings of 1,050 MWh on the average. Economic assessment is performed using the life cycle cost (LCC) method by calculating the present worth during each period of time. n (1 + i) 1 Pv = A (3) n i (1 + i) where Pv is the present worth, A is the annual money saving by reduce electricity consumption, i is the effective discount rate, and n is the total number of years. average partial cooling load % month Fig. 9: Annual cooling load estimation of the cold warehouse in this study 20

8 average LNG flow rate for LNGCW(ton/h) month Fig. 10: Annual LNG consumption rate of the LNGCW system LNGCW power saving per month(mwh) month Fig. 11: Annual operational power savings estimation of the LNGCW system 21

9 The input parameters include annual inflation rate at 1%, rediscount rate at 4%, assuming an double declining depreciation rate for 15 years of major equipment and no residual value left after that. Local power tariff was inputted at 6.5 cents per kwh. Fig. 12 indicated that the monthly average operation cost savings is about 70,000 USD. Fig. 13 furthers shows the simulation result, indicating that the payback is at around 3.5 years. This represents a promising project with both technical and economical feasibility. 5. CONCLUSIONS During its vaporization process, tremendous cooling capacity can be reclaimed. In this study, the feasibility to design and construct a refrigerated warehouse by using LNG cold energy has been demonstrated both technically and economically. The payback of the 500 USRT cold warehouse is expected to be within 3.5 years, which is now funded by the Chinese Petroleum Corporation of Taiwan for construction. saving electricity cost 1000 USD month Fig. 12: Annual operational cost savings estimation of the LNGCW system 8000 Net Present Value( 10 3 US dollars) Payback Year year Fig. 13: The life cycle cost analysis of the LNGCW system in this study 22

10 REFERENCES 1. H.T. Liu and L.X. You, Characteristics and applications of the cold heat exergy of liquefied natural gas, Energy Conversion & Management, Vol. 40, pp (1999). 2. W.C. Edmister, Applied hydrocarbon thermodynamics, Vol. 1, Gulf Publish Company (1984). 3. ASHRAE Handbook - fundamentals, Chapter 28, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, USA (2001). 23

COMPUTER SIMULATION AND EXPERIMENTAL VALIDATION OF A MODERN HOTEL ON BUILDING ENERGY CONSERVATION

COMPUTER SIMULATION AND EXPERIMENTAL VALIDATION OF A MODERN HOTEL ON BUILDING ENERGY CONSERVATION , Volume 4, Number 1, p.6-13, 23 COMPUTER SIMULATION AND EXPERIMENTAL VALIDATION OF A MODERN HOTEL ON BUILDING ENERGY CONSERVATION K.H. Yang and S.C. Wu Mechanical Engineering Department, National Sun

More information

Waste Energy Recovery Including Pressure and Thermal Energy From LNG Regasification

Waste Energy Recovery Including Pressure and Thermal Energy From LNG Regasification 1123 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Energy Conversion and Management

Energy Conversion and Management Energy Conversion and Management 50 (2009) 567 575 Contents lists available at ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman A combined power cycle utilizing

More information

Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus

Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus Lars Erik Øi 1 Irene Yuste Tirados 1 1 Department of Process, Energy and Environmental Technology, Telemark University College, Norway lars.oi@hit.no

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

Simulation Analysis of Shell Plate-Type Heat Exchanger Using Liquified Natural Gas Cold Energy for Refrigerated Warehouses

Simulation Analysis of Shell Plate-Type Heat Exchanger Using Liquified Natural Gas Cold Energy for Refrigerated Warehouses Simulation Analysis of Shell Plate-Type Heat Exchanger Using Liquified Natural Gas Cold Energy for Refrigerated Warehouses Danbee Han 1, Youngsoon Baek 2, Wooksang Cho 3, Jaerin Shin 4 1,2,3 Department

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION Exam Type: X Examiner: J.S. Wallace You may use your copy of the

More information

Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling

Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling Enhancement of LNG Propane Cycle through Waste Heat Powered Absorption Cooling A. Mortazavi 1, P. Rodgers 2, S. Al-Hashimi 2, Y. Hwang 1 and R. Radermacher 1 1 Department of Mechanical Engineering, University

More information

COMBINED HEAT AND POWER SYSTEMS IN LIQUEFIED NATURAL GAS (LNG) REGASIFICATION PROCESSES

COMBINED HEAT AND POWER SYSTEMS IN LIQUEFIED NATURAL GAS (LNG) REGASIFICATION PROCESSES http://dx.doi.org/10.7494/drill.2014.31.1.91 * * * COMBINED HEAT AND POWER SYSTEMS IN LIQUEFIED NATURAL GAS (LNG) REGASIFICATION PROCESSES 1. INTRODUCTION ing place in the neighborhood of natural gas deposits.

More information

Performance enhancement of a photovoltaic thermal (PVT) and ground-source heat pump system

Performance enhancement of a photovoltaic thermal (PVT) and ground-source heat pump system Performance enhancement of a photovoltaic thermal (PVT) and ground-source heat pump system Mohammad Abu-Rumman*, Mohammad Hamdana, Osama Ayadi Mechanical Engineering Department, The University of Jordan,

More information

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency:

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: - 2 - Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: i) regenerator ii) intercooling between compressors (6 marks) (b) Air enters a

More information

AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM

AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM AREN 2110: Thermodynamics Spring 2010 Homework 7: Due Friday, March 12, 6 PM 1. Answer the following by circling the BEST answer. 1) The boundary work associated with a constant volume process is always

More information

Utilisation of LNG Cold Energy at Maptaput LNG Receiving Terminal

Utilisation of LNG Cold Energy at Maptaput LNG Receiving Terminal Utilisation of LNG Cold Energy at Maptaput LNG Receiving Terminal Phatthi Punyasukhananda 1,2,* and Athikom Bangviwat 1,2 1 The Joint Graduate School of Energy and Environment, King Mongkut s University

More information

Study of Performance Improvement of Air Conditioning using Various Heat Recovery Techniques

Study of Performance Improvement of Air Conditioning using Various Heat Recovery Techniques Study of Performance Improvement of Air Conditioning using Various Heat Recovery Techniques Poonpong Swatdepan *, Umphisak Teeboonma and Chawalit Thinvongpituk Department of Mechanical Engineering, Faculty

More information

Problems in chapter 9 CB Thermodynamics

Problems in chapter 9 CB Thermodynamics Problems in chapter 9 CB Thermodynamics 9-82 Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet

More information

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant International Journal of Engineering and Technology Volume 3 No. 1, January, 2013 Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant Wordu, A. A, Peterside, B Department

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

DETERMINING THE MAXIMUM LNG PRODUCTION RATE BY PROCESS SIMULATION MODELLING OF LOW TEMPERATURE NATURAL GAS SEPARATION UNIT

DETERMINING THE MAXIMUM LNG PRODUCTION RATE BY PROCESS SIMULATION MODELLING OF LOW TEMPERATURE NATURAL GAS SEPARATION UNIT DETERMINING THE MAXIMUM LNG PRODUCTION RATE BY PROCESS SIMULATION MODELLING OF LOW TEMPERATURE NATURAL GAS SEPARATION UNIT Ewa Ciesielczyk, Oil and Gas Institute, Kraków, Poland Jan Rudnicki, Branch of

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

Chapter 5: Thermodynamic Processes and Cycles

Chapter 5: Thermodynamic Processes and Cycles Chapter 5: Thermodynamic Processes and Cycles 5-6) This problem examines the Rankine heat engine introduced in Figure 5-5. Saturated steam at T = 250 C enters the turbine and the condenser operates at

More information

LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS

LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical

More information

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India Thermodynamic Analysis of Combined ORC-VCR System Using Low Grade Thermal Energy K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar-263145, India 2 Department

More information

ANALYSIS AND EXPERIMENTAL INVESTIGATION OF THE NTCH BUILDING ON ENERGY CONSERVATION DESIGNS

ANALYSIS AND EXPERIMENTAL INVESTIGATION OF THE NTCH BUILDING ON ENERGY CONSERVATION DESIGNS , Volume 2, Number 1, p.7-14, 2001 ANALYSIS AND EXPERIMENTAL INVESTIGATION OF THE NTCH BUILDING ON ENERGY CONSERVATION DESIGNS K.H. Yang and J.N. Lee Mechanical Engineering Department, National Sun Yat-Sen

More information

Experimental investigation of solar-driven double ejector refrigeration system

Experimental investigation of solar-driven double ejector refrigeration system Experimental investigation of solar-driven double ejector refrigeration system Jedsada Visedmanee a *, Anan Pongtornkulpanich a, Sakda Somkun a and Ananchai U-kaew b a Thermal Energy Research Unit, School

More information

Scientific Journal Impact Factor: (ISRA), Impact Factor: [Son, 3(10): October, 2014] ISSN:

Scientific Journal Impact Factor: (ISRA), Impact Factor: [Son, 3(10): October, 2014] ISSN: IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Performance Characteristics of the R404A Indirect Refrigeration System Using CO2 as a Secondary Refrigerant Jung-In Yoon*, Kwang-Hwan

More information

Large scale hydrogen liquefaction in combination with LNG re-gasification

Large scale hydrogen liquefaction in combination with LNG re-gasification Large scale hydrogen liquefaction in combination with LNG re-gasification Andres Kuendig a, Karl Loehlein a, Gert Jan Kramer b, Joep Huijsmans c a Linde Kryotechnik AG, Daettlikonerstrasse 5, 8422 Pfungen,

More information

Design of onshore LNG regasification plant

Design of onshore LNG regasification plant Design of onshore LNG regasification plant Parsa Mozaffari, Dijan Supramono Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia E-mail: parsamozaffari@yahoo.com

More information

MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE

MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE Colak L.* and Bahadir T. *Author for correspondence Department of Mechanical Engineering,

More information

Alexander Rattner MEAM-402 HW 2

Alexander Rattner MEAM-402 HW 2 Preface This document provides a brief analysis of the University of Pennsylvania s steam usage in its campus buildings. The thermodynamic material properties employed in these calculations were computed

More information

ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE

ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1649-1654 1649 ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE by Fang WANG, Xiao-Wei FAN, Jie CHEN, and Zhi-Wei LIAN School of

More information

A new re-liquefaction system of MRS-F (Methane Refrigeration System Full re-liquefaction) for LNG Carriers

A new re-liquefaction system of MRS-F (Methane Refrigeration System Full re-liquefaction) for LNG Carriers A new re-liquefaction system of MRS-F (Methane Refrigeration System Full re-liquefaction) for LNG Carriers DongKyu Choi *, Hyunjun Shin DAEWOO SHIPBUILDING AND MARINE ENGINEERING Co., Ltd. Dual fuel slow-speed

More information

Recovery of Waste Heat in Diesel Engine Coolant for Air Conditioning

Recovery of Waste Heat in Diesel Engine Coolant for Air Conditioning International Symposium on Energy Science and Chemical Engineering (ISESCE 2015) Recovery of Waste Heat in Diesel Engine Coolant for Air Conditioning Hanzhi Wang1,2,a, Huashan Li1,2,b, Lingbao Wang1,2,c

More information

Comparison of Different Gas Turbine Inlet Air Cooling Methods

Comparison of Different Gas Turbine Inlet Air Cooling Methods Comparison of Different Gas Turbine Inlet Air Cooling Methods Ana Paula P. dos Santos, Claudia R. Andrade and Edson L. Zaparoli Abstract Gas turbine air inlet cooling is a useful method for increasing

More information

Comparison of Different Gas Turbine Inlet Air Cooling Methods

Comparison of Different Gas Turbine Inlet Air Cooling Methods Comparison of Different Gas Turbine Inlet Air Cooling Methods Ana Paula P. dos Santos, Claudia R. Andrade and Edson L. Zaparoli International Science Index, Aerospace and Mechanical Engineering waset.org/publication/2686

More information

Green FSRU for the future

Green FSRU for the future Green FSRU for the future Presentation at GREEN4SEA Athens April 6 th 2016 Dr. John Kokarakis Vice President Technology & Business Development, Africa, S. Europe Hellenic, Black Sea & Middle East Zone

More information

PARAMETRIC STUDY OF GAS TURBINE CYCLE COUPLED WITH VAPOR COMPRESSION REFRIGERATION CYCLE FOR INTAKE AIR COOLING

PARAMETRIC STUDY OF GAS TURBINE CYCLE COUPLED WITH VAPOR COMPRESSION REFRIGERATION CYCLE FOR INTAKE AIR COOLING International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 9, September 2018, pp. 248 261, Article ID: IJMET_09_09_029 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=9

More information

Heat pumps. WP5 Education and Economic Promotion

Heat pumps. WP5 Education and Economic Promotion WP5 Education and Economic Promotion Heat pumps Educational product: New lecture material for training modules dealing with knowledge and skills how to apply suitable methods of energy efficient refurbishment

More information

Fresh air pre-cooling and energy recovery by using indirect evaporative cooling in hot and humid region a case study in Hong Kong

Fresh air pre-cooling and energy recovery by using indirect evaporative cooling in hot and humid region a case study in Hong Kong Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (2014 ) 126 130 The 6 th International Conference on Applied Energy ICAE2014 Fresh air pre-cooling and energy recovery by using

More information

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES Sakari Kaijaluoto 1, Markus Hurskainen 1,* and Pasi Vainikka 2 1 VTT Technical Research Centre of Finland, Koivurannantie

More information

Parametric Study of a Double Effect Absorption Refrigeration System

Parametric Study of a Double Effect Absorption Refrigeration System Parametric Study of a Double Effect Absorption Refrigeration System 1 Abbas Alpaslan KOCER, 2 Murat OZTURK 1 Uluborlu Selahattin Karasoy Vocational School, Suleyman Demirel University, 32260, Isparta Turkey,

More information

Critical exergy analysis of counterflow reversibly used cooling towers

Critical exergy analysis of counterflow reversibly used cooling towers Critical exergy analysis of counterflow reversibly used cooling towers Jiasheng Wu 1, Guoqiang Zhang 1,*, Quan Zhang 1, Jin Zhou 1 1 College of Civil Engineering, Hunan University, Changsha, China * Corresponding

More information

Gregory W. Stevens and Ronald K. Ishii, Alternative Energy Systems Consulting, Inc.

Gregory W. Stevens and Ronald K. Ishii, Alternative Energy Systems Consulting, Inc. A Study of Optimizing the System Integration of Combined Heat and Power (CHP) with Absorption Cooling for Cold Storage Applications: Design Considerations, Modeling and Life Cycle Costing Gregory W. Stevens

More information

Sustaining thermal power plant production in low water supply regions using cooling towers

Sustaining thermal power plant production in low water supply regions using cooling towers Energy and Sustainability V 679 Sustaining thermal power plant production in low water supply regions using cooling towers H. H. Al-Kayiem 1 & M. A. W. Theeb 2 1 Mechanical Engineering Department, Universiti

More information

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (2014 ) 899 903 The 6 th International Conference on Applied Energy ICAE2014 A novel CO 2 -capturing natural gas combined cycle

More information

GEOTHERMAL SPACE COOLING

GEOTHERMAL SPACE COOLING GEOTHERMAL SPACE COOLING 6th African Rift Geothermal Conference ARGeo-C6 Short Course 1 Project Management for Geothermal Development Þorleikur Jóhannesson (Presenter: Yngvi Guðmundsson) Compressor driven

More information

Supersonic Nozzle Flow in the Two-Phase Ejector as Water Refrigeration System by Using Waste Heat

Supersonic Nozzle Flow in the Two-Phase Ejector as Water Refrigeration System by Using Waste Heat HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Supersonic Nozzle Flow in the Two-Phase Ejector as Water Refrigeration System by Using

More information

Efficiency enhancement of the ocean thermal energy conversion system with a vapor vapor ejector

Efficiency enhancement of the ocean thermal energy conversion system with a vapor vapor ejector Special Issue Article Efficiency enhancement of the ocean thermal energy conversion system with a vapor vapor ejector Advances in Mechanical Engineering 1 10 Ó The Author(s) 2015 DOI: 10.1177/1687814015571036

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

A DUAL LOOP ORGANIC RANKINE CYCLE UTILIZING BOIL-OFF GAS IN LNG TANKS AND EXHAUST OF MARINE ENGINE. * Corresponding Author ABSTRACT 1.

A DUAL LOOP ORGANIC RANKINE CYCLE UTILIZING BOIL-OFF GAS IN LNG TANKS AND EXHAUST OF MARINE ENGINE. * Corresponding Author ABSTRACT 1. Paper ID: 144, Page 1 A DUAL LOOP ORGANIC RANKINE CYCLE UTILIZING BOIL-OFF GAS IN LNG TANKS AND EXHAUST OF MARINE ENGINE Taehong Sung 1, Sang Youl Yoon 2*, Kyung Chun Kim 3* 1,3 School of Mechanical Engineering,

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

A discussion of"heat pumps as a source of heat energy for desalination of seawater"

A discussion ofheat pumps as a source of heat energy for desalination of seawater DESALINATION ELSEVIER Desalination 169 (004) 161-165 www.elsevier.com/locate/desal A discussion of"heat pumps as a source of heat energy for desalination of seawater" Jinzeng Chen, Suyi Huang* Energy and

More information

Energy Mix Opportunity of Vapor Absorption Refrigeration System Integrated With Solar Collectors: A Case Study of Hotel Shangri-La

Energy Mix Opportunity of Vapor Absorption Refrigeration System Integrated With Solar Collectors: A Case Study of Hotel Shangri-La Proceedings of IOE Graduate Conference, 2016 pp. 349 354 Energy Mix Opportunity of Vapor Absorption Refrigeration System Integrated With Solar Collectors: Prashant Raj Neupane 1, Laxman Poudel 1 1 Department

More information

INTEGRATION OF A NEW CCGT PLANT AND AN EXISTING LNG TERMINAL AT BARCELONA PORT Abstract ID Number: 155

INTEGRATION OF A NEW CCGT PLANT AND AN EXISTING LNG TERMINAL AT BARCELONA PORT Abstract ID Number: 155 INTEGRATION OF A NEW CCGT PLANT AND AN EXISTING LNG TERMINAL AT BARCELONA PORT Abstract ID Number: 155 Authors: Rafael Peiró Ripoll, Foster Wheeler Iberia, S.A., Spain Joaquín Gil Abad, Foster Wheeler

More information

Center for Environmental Energy Engineering Department of Mechanical Engineering University of Maryland College Park, MD

Center for Environmental Energy Engineering Department of Mechanical Engineering University of Maryland College Park, MD System Drop-In and Soft Optimization Tests of R-40A Alternative Refrigerants in Split System Heat Pump Jan. 204 Abdullah Alabdulkarem, Radia Eldeeb, Yunho Hwang, Vikrant Aute, Reinhard Radermacher Center

More information

Energy Saving Report. Frigi-Tech Oil Additive. Application. In HKU Central Plant. Chiller No. 3

Energy Saving Report. Frigi-Tech Oil Additive. Application. In HKU Central Plant. Chiller No. 3 Energy Saving Report Of Frigi-Tech Oil Additive Application In HKU Central Plant Chiller No. 3 Prepared By: Evaluated and Endorsed By: December 2003 Eric P L Leung Sales Manager Electrical and Mechanical

More information

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine

More information

The Part-Load Efficiency Benefit of Oil-Free, High- Speed, Direct-Drive Centrifugal Compressors

The Part-Load Efficiency Benefit of Oil-Free, High- Speed, Direct-Drive Centrifugal Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2010 The Part-Load Efficiency Benefit of Oil-Free, High- Speed, Direct-Drive Centrifugal

More information

Development of a New High efficiency Dual cycle Natural Gas Liquefaction Process

Development of a New High efficiency Dual cycle Natural Gas Liquefaction Process Gastech 2017 Conference Development of a New High efficiency Dual cycle Natural Gas Liquefaction Process Chang LIN, Hong WANG, Gailing BAI, Di WU China Huanqiu Contracting & Engineering Corporation Limited.

More information

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas H.M. Chang 1, J.H. Park 1, K.S. Cha 2, S. Lee 2 and K.H. Choe 2 1 Hong Ik University, Seoul, Korea 121-791 2 Korea Gas Corporation,

More information

Review Questions for the FE Examination

Review Questions for the FE Examination 110 THE FIRST LAW OF THERMODYNAMICS [CHAP. 4 4.1FE Review Questions for the FE Examination Select a correct statement of the first law if kinetic and potential energy changes are negligible. (A) Heat transfer

More information

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Chapter 10 POWER CYCLES. Department of Mechanical Engineering Chapter 10 VAPOR AND COMBINED POWER CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Analyze vapor power cycles in which h the working fluid is alternately

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics. Design Project. Production of Acetone

Fluid Mechanics, Heat Transfer, and Thermodynamics. Design Project. Production of Acetone Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project Production of Acetone We are investigating the feasibility of constructing a new, grass-roots, 15,000 metric tons/year, acetone plant.

More information

Cryogenic Carbon Capture

Cryogenic Carbon Capture Cryogenic Carbon Capture Sustainable Energy Solutions Sustainable Energy Solutions Sustainable Energy Solutions (SES) was founded in 2008 in response to a growing need for solutions to sustainability problems

More information

The efficiency of the heat pump water heater, during DHW tapping cycle

The efficiency of the heat pump water heater, during DHW tapping cycle The efficiency of the heat pump water heater, during DHW tapping cycle Arkadiusz Gużda 1,*, and Norbert Szmolke 1 1 Opole University of Technology, Department of Environmental Engineering, 76 Prószkowska

More information

Eng Thermodynamics I: Sample Final Exam Questions 1

Eng Thermodynamics I: Sample Final Exam Questions 1 Eng3901 - Thermodynamics I: Sample Final Exam Questions 1 The final exam in Eng3901 - Thermodynamics I consists of four questions: (1) 1st Law analysis of a steam power cycle, or a vapour compression refrigeration

More information

Reduce energy costs and create environmentally friendly hot water all year round

Reduce energy costs and create environmentally friendly hot water all year round RENEWABLES HOT WATER HEAT PUMPS Reduce energy costs and create environmentally friendly hot water all year round Intelligent German engineering that uses air as an energy source for generating hot water

More information

THERMAL ENERGY ANALYSIS OF SOLAR POWERED VAPOUR ABSORPTION COOLING SYSTEM

THERMAL ENERGY ANALYSIS OF SOLAR POWERED VAPOUR ABSORPTION COOLING SYSTEM International Journal of Mechanical Engineering (IJME) ISSN(P): 2319-2240 ; ISSN(E): 2319-2259 Vol. 5, Issue 1, Dec-Jan 2016, 131-142 IASET THERMAL ENERGY ANALYSIS OF SOLAR POWERED VAPOUR ABSORPTION COOLING

More information

Modeling and simulation of a reclaimed water source heat pump system based on TRANSYS 1

Modeling and simulation of a reclaimed water source heat pump system based on TRANSYS 1 Acta Technica 62, No. 3B/2017, 237 248 c 2017 Institute of Thermomechanics CAS, v.v.i. Modeling and simulation of a reclaimed water source heat pump system based on TRANSYS 1 Zhao Yuqing 2, Liu Qingqing

More information

PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT

PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1673-1677 1673 PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT by Xian-Ping ZHANG a,b, Xin-Li WEI b, Xiao-Wei FAN c*, Fu-Jun

More information

LNG REGASIFICATION PLANTS: CRYOGENIC ORC TO ENHANCE THE EFFICIENCY OF LNG TERMINALS

LNG REGASIFICATION PLANTS: CRYOGENIC ORC TO ENHANCE THE EFFICIENCY OF LNG TERMINALS REGASIFICATION PLANTS: CRYOGENIC ORC TO ENHANCE THE EFFICIENCY OF LNG TERMINALS LNG Anton Marco Fantolini LNG Technology Projects MGR Salvatore De Rinaldis Innovation Dpt. Luca Davide Inglese LNG Dpt.

More information

*Corresponding authors. Tel.: x415, address: (N. Zhu)

*Corresponding authors. Tel.: x415,  address: (N. Zhu) Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu *, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building

More information

NUMERICAL APPROACH TO A LOW PRESSURE GAS-INJECTION SCROLL COMPRESSOR

NUMERICAL APPROACH TO A LOW PRESSURE GAS-INJECTION SCROLL COMPRESSOR THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1383-1388 1383 Introduction NUMERICAL APPROACH TO A LOW PRESSURE GAS-INJECTION SCROLL COMPRESSOR by Guang-Hui ZHOU, Hai-Jun LI *, Lei LIU, Deng-Ke ZHAO,

More information

Analysis of Solar Thermal Cooling System Using TRANSOL

Analysis of Solar Thermal Cooling System Using TRANSOL RESEARCH ARTICLE New Frontier in Energy, Engineering, Environment & Science ( NFEEES-2018 ) Feb - 2018 Analysis of Solar Thermal Cooling System Using TRANSOL Khagendra Kumar Upman*, Deepak Goyal, Dhawal

More information

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives Chapter 0 VAPOR AND COMBINED POWER CYCLES In Chap. 9 we discussed gas power cycles for which the working fluid remains a gas throughout the entire cycle. In this chapter, we consider vapor power cycles

More information

Wang, E., Yu, Z., Collings, P., Zhang, H., Yang, F., and Bei, C. (2016) Thermodynamic analysis of a dual-loop organic Rankine cycle (ORC) for waste heat recovery of a petrol engine. In: Heat Powered Cycles

More information

EXTRA CREDIT OPPORTUNITY: Due end of day, Thursday, Dec. 14

EXTRA CREDIT OPPORTUNITY: Due end of day, Thursday, Dec. 14 EXRA CREDI OPPORUNIY: Due end of day, hursday, Dec. 4 his extra credit set of questions is an opportunity to improve your test scores (including an insurance policy for your final exam grade). here are

More information

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives Chapter 0 VAPOR AND COMBINED POWER CYCLES In Chap. 9 we discussed gas power cycles for which the working fluid remains a gas throughout the entire cycle. In this chapter, we consider vapor power cycles

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

Chapter 9: Vapor Power Systems

Chapter 9: Vapor Power Systems Chapter 9: Vapor Power Systems Table of Contents Introduction... 2 Analyzing the Rankine Cycle... 4 Rankine Cycle Performance Parameters... 5 Ideal Rankine Cycle... 6 Example... 7 Rankine Cycle Including

More information

Application of Near-Optimal Tower Control and Free Cooling on the Condenser Water Side for Optimization of Central Cooling Systems

Application of Near-Optimal Tower Control and Free Cooling on the Condenser Water Side for Optimization of Central Cooling Systems Purdue University Purdue e-pubs International High Performance Buildings Conference School of Mechanical Engineering 2014 Application of Near-Optimal Tower Control and Free Cooling on the Condenser Water

More information

Improvement of the Performance for an Absorption Refrigerating System with. Lithium bromide-water as Refrigerant by Increasing Absorption Pressure 1

Improvement of the Performance for an Absorption Refrigerating System with. Lithium bromide-water as Refrigerant by Increasing Absorption Pressure 1 Improvement of the Performance for an Absorption Refrigerating System with Lithium bromide-water as Refrigerant by Increasing Absorption Pressure 1 Guozhen Xie Guogang Sheng Guang Li Shuyuan Pan Professor

More information

Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222)

Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222) Benha University Thermodynamics II Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222) Time: Three Hours (attempt all questions) (assume any missing data) Question1

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

(52) U.S. Cl. 60/643

(52) U.S. Cl. 60/643 (19) United States 11111 111111 111111 11111 11111 ii!121 111c111159181!!!1111 EH 11111 111111 1111 I111 1111 (12) Patent Application Publication (10) Pub. No.: US 2003/0005698 Al Keller (43) Pub. Date:

More information

The Separation and Liquefaction of Oxygenated CBM Yang Kejian and Zhang Wu

The Separation and Liquefaction of Oxygenated CBM Yang Kejian and Zhang Wu The Separation and Liquefaction of Oxygenated CBM Yang Kejian and Zhang Wu Abstract CBM, or Coal Bed Methane, with air released during coal mining production has been a long time issue. It has not been

More information

THERMAL STORAGE AIR CONDITIONING FOR TROPICAL COUNTRIES ISSUES AND OPTIONS

THERMAL STORAGE AIR CONDITIONING FOR TROPICAL COUNTRIES ISSUES AND OPTIONS 4 th International Conference on Mechanical Engineering, December 26-28, 21, Dhaka, Bangladesh/pp. III 51-56 THERMAL AIR CONDITIONING FOR TROPICAL COUNTRIES ISSUES AND OPTIONS Ahmadul Ameen* and Saiful

More information

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares.

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares. HYSYS WORKBOOK 2013 By: Eng. Ahmed Deyab Fares eng.a.deab@gmail.com adeyab@adeyab.com Mobile: 002-01227549943 - Email: adeyab@adeyab.com 1 Flash Separation We have a stream containing 15% ethane, 20% propane,

More information

Introduction to Condensate Recovery

Introduction to Condensate Recovery Introduction to Condensate Recovery Introduction to Condensate Recovery Steam is usually generated for one of two reasons: To produce electrical power, for example in power stations or co-generation plants.

More information

Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery

Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery Y. Chen, Almaz Bitew Workie, Per Lundqvist Div. of Applied Thermodynamics and Refrigeration, Department

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester ws15 Reg. No. : Question Paper Code : 27425 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Marine Engineering MV 6201 MARINE ENGINEERING THERMODYNAMICS (Regulations

More information

ANALYSIS OF EXERGY OF MOIST AIR AND ENERGY SAVING POTENTIAL IN HVAC BY EVAPORATIVE COOLING OR ENERGY RECOVERY

ANALYSIS OF EXERGY OF MOIST AIR AND ENERGY SAVING POTENTIAL IN HVAC BY EVAPORATIVE COOLING OR ENERGY RECOVERY , Volume 2, Number 4, p.113-117, 2001 ANALYSIS OF EXERGY OF MOIST AIR AND ENERGY SAVING POTENTIAL IN HVAC BY EVAPORATIVE COOLING OR ENERGY RECOVERY C.Q. Ren, G.F. Tang, N.P. Li, G.F. Zhang and J. Yang

More information

Separations and Reaction Engineering Spring Design Project. Production of Acetone

Separations and Reaction Engineering Spring Design Project. Production of Acetone Process Objective Function Separations and Reaction Engineering Spring 2000 Design Project Production of Acetone We would like to complete our investigation of the economic feasibility of producing 15,000

More information

II. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING

II. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING Mathematical Modeling and Analysis of Absorption Refrigeration System Using Waste Heat of Diesel Genset Yashvir Singh 1*, Deepak Kumar 2, Ajay Kumar 3, Amneesh Singla 4 1,2,3,4 Mechanical Engineering,

More information

Chapter 6: Stationary Combustion Systems

Chapter 6: Stationary Combustion Systems Chapter 6: Stationary Combustion Systems Figure 6-1. Schematic of components of coal-fired electric plant, with conversion of coal to electricity via boiler, turbine, and generator US Energy Sources 2004

More information

Comparative Efficiency of Geothermal Vapor-Turbine Cycles

Comparative Efficiency of Geothermal Vapor-Turbine Cycles Proceedings World Geothermal Congress 2005 ntalya, Turkey, 24-29 pril 2005 Comparative Efficiency of Geothermal Vapor-Turbine Cycles M. Boyarskiy, O. Povarov,. Nikolskiy,. Shipkov NUK Stock Company, 9.Krasnokazarmennaya

More information

Research on a Magnetic Refrigeration Cycle for Hydrogen Liquefaction

Research on a Magnetic Refrigeration Cycle for Hydrogen Liquefaction Research on a Magnetic Refrigeration Cycle for Hydrogen Liquefaction T. Utaki 1, K. Kamiya 2, T. Nakagawa 1, T. A. Yamamoto 1 and T. Numazawa 2 1 Graduate school of Engineering, Osaka University Osaka,

More information

What is District Energy

What is District Energy A Special Review of District Energy & Integrated Distributed Energy presented to prepared by October 2010 SECTION ONE What is District Energy Technology? What is District Energy Technology? District Energy

More information

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA Paper Number: NAWTEC18-3563 ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE

More information

A Investigation of the Performance of Two-Stage Compression Refrigeration/Heat pump System with Dual-cylinder Rolling Piston Compressor

A Investigation of the Performance of Two-Stage Compression Refrigeration/Heat pump System with Dual-cylinder Rolling Piston Compressor Paper O.2.1.2-1 - A Investigation of the Performance of Two-Stage Compression Refrigeration/Heat pump System with Dual-cylinder Rolling Piston Compressor Xu Shuxue, Ma Guoyuan, Liu Qi School of Environmental

More information