The Community Atmosphere Land Exchange (CABLE) model:

Size: px
Start display at page:

Download "The Community Atmosphere Land Exchange (CABLE) model:"

Transcription

1 The Community Atmosphere Land Exchange (CABLE) model: results from ACCESS1.3 and new simulations with CABLE Rachel Law CABLE coordinator 26 th September 2012

2 Acknowledgements Land surface modelling team: Ying-Ping Wang, Eva Kowalczyk, Lauren Stevens, Jhan Srbinovsky, Bernard Pak, Tilo Ziehn CABLE committee: Gab Abramowitz, Vanessa Haverd, Eva Kowalczyk, Jhan Srbinovsky CABLE technical support: Jhan Srbinovsky, Kai Lu, Claire Carouge, Mike Rezny ACCESS support: Martin Dix, Hailin Yan CABLE roadmap writing team: Mike Raupach, Gab Abramowitz, Andy Pitman, Vanessa Haverd, Ying-Ping Wang, Albert van Dijk, Luigi Renzullo, Imtiaz Dharssi The CABLE community. ~100 people from 33 institutions Australian Climate Change Science Program (ACCSP)

3 The CABLE land surface model Role of land surface models Provide boundary conditions at the land-air interface e.g. albedo, surface T, heat and moisture fluxes Partition rainfall into runoff and evaporation River runoff as an input to the oceans Update state variables which affect surface fluxes e.g. snow cover, soil moisture, soil T, veg. cover, Leaf Area Index CABLE includes Biophysical component o Surface radiation transfer (direct beam/ diffuse, visible, NIR and thermal, sunlit/ shaded leaves) o Canopy turbulence o Two-leaf canopy o Six soil and three snow layers Biogeochemical component Land use and land use change o Patch representation of surface heterogeneity o No vegetation competition and succession

4 CABLE components leaf root wood metabolic structural CWD deposition weathering fixation fertilizer microbial slow passive inorganic N labile P sorbed P Strongly sorbed P Occluded P N loss P loss Biophysics (original CABLE) Biogeochemistry (CASA-CNP) CABLE (current)

5 CABLE timeline 1990: First land surface model developed in CSIRO. Single soil type, constant roughness length, no explicit treatment of vegetation. 1994: Added vegetation 1995: Added 6 soil and 3 snow layers, and an empirical stomatal model 1997: Another model of Soil Canopy Atmosphere Model (SCAM) developed with an empirical photosynthesis model 1998: Two-leaf canopy model developed 2003: CSIRO Biosphere Model (CBM) developed 2006: CBM and SCAM combined to form CABLE version 1.0. Released, last update v1.4b in Sep : CASA-CNP a global biogeochemical model of C, N and P developed Main technical documentation in Kowalczyk et al., CMAR tech report, 2006; Wang et al., BG, 2010; Wang et al., JGR, 2011.

6 CABLE development since v1.4b Multi-processor offline Global offline CAWCR - Bureau of Meteorology Mk3L Land Information System WRF Mk3L ACCESS CCAM TAPM CABLE 1.4b (single-site & CCAM) UNSW CMAR-Canberra BIOS2, SLI Other university work What about version control?

7 CABLE in ACCESS CABLE v1.4b (last released update 09/08) UM changes Change number of vegetation types Change number of soil layers Keep parts of MOSES (e.g. sea-ice) Link UM and CABLE variables (pack/unpack) Allow for tiled soil and snow CABLE development Multiple vegetation types per grid-cell Code revision: canopy, screen temperature Simpler albedo for 3 hourly radiation Partitioning of runoff and glacier capping Surface energy and water balance CABLE v1.8 in ACCESS1.3

8 ACCESS land scheme configurations Canopy formulation MOSES in ACCESS1.0 one big leaf model canopy placed beside bare ground CABLE in ACCESS1.3 two leaf model (sunlit and shaded leaves) canopy placed above the ground Grid Tiles 9 surface types (5 vegetated) with 9 tiles used in each grid cell 13 surface types (10 vegetated) with up to 5 tiles used in each grid cell Soil 4 layers, no subsurface tiling 6 layers, subsurface tiling Snow 1 layer 3 layers Kowalczyk et al., The land surface model component of ACCESS: description and impact on the simulated surface climatology, submitted to AMOJ. Note: No carbon output submitted to CMIP5 from either version of ACCESS

9 Vegetation distribution MOSES CABLE Lakes & wetland Water % of grid-cell Bare ground & permanent ice % of grid-cell

10 Vegetation distribution MOSES CABLE Trees % of grid-cell Shrubs, grass, crops % of grid-cell

11 1850 vs 2005 vegetation distribution Crop distribution % of grid-cell 1850, used in coupled simulations 2005, used in atmosphere-only simulation

12 Seasonal biases (from ERA-Interim), ACCESS1.3 atmosphere-only Precipitation Screen-level temperature Regions with underestimated precipitation tend to show warm biases DJF Pattern of biases similar across ACCESS1.0 and ACCESS1.3 JJA NH land. 1.3 warmer than 1.0 for DJF, cooler than 1.0 for JJA. mm/day ºC

13 Surface albedo ACCESS1.0 ACCESS1.3 Generally lower albedo in 1.3 Canopy protrudes through snow layer Leaf optical properties not accounting for low snow-free soil albedo

14 Runoff: northern spring and summer ACCESS1.0 ACCESS1.3 Warmer winter/ spring temperatures in ACCESS1.3 lead to earlier snow-melt and runoff mm/day

15 Australian precipitation: DJF ACCESS1.0 ACCESS1.3 BoM Obs Atmosphere -only Coupled mm/day

16 Australian screen-level temperature ACCESS1.0 ACCESS1.3 ERA-Interim DJF Atmosphere only cases shown, coupled cases similar JJA ºC

17 Australian temperature: diurnal amplitude DJF JJA ACCESS1.0 ERA-Int ACCESS1.0 ERA-Int ACCESS1.3 BoM ACCESS1.3 BoM ºC

18 CABLE-2.0 Combines offline (global, regional, single-site) and ACCESS versions with common science code Cleaner code including interface to UM Inclusion of biogeochemistry (CASA-CNP) though not fully implemented Hydraulic redistribution (optional, default OFF) Soil water flux correction for energy balance Version control in Subversion repository hosted at NCI Trac page to facilitate community code development Release date: September 26, 2012 Multi-processor offline Mk3L ACCESS CCAM Global offline TAPM CAWCR - Bureau of Meteorology CABLE 1.4b (single-site & CCAM) Mk3L UNSW Land Informa System CMAR- BIOS2, Other universit work Soon!

19 CABLE trac page

20 CABLE-2.0 benchmarking

21 Offline benchmarks: single-sites workspace CABLE2.0_benchmark

22 Offline benchmarks: global , at 1º x 1º resolution with GSWP2 meteorological forcing Latent heat Gross Primary Productivity

23 ACCESS benchmark, atmosphere-only, 20 years Seasonal screen level temperature bias ACCESS1.3 CABLE2.0 CABLE2.0 revised optical properties Dec/Jan/Feb Jun/Jul/Aug

24 June-August surface albedo ACCESS1.3 CABLE2.0 CABLE2.0 revised optical properties

25 Rachel Law CABLE coordinator CABLE workshop, Oct , UNSW Phone: CABLE trac page: CABLE list: Thank you Thank you

The integrated ecology, biogeochemistry, and hydrology of the terrestrial biosphere an earth system model perspective

The integrated ecology, biogeochemistry, and hydrology of the terrestrial biosphere an earth system model perspective The integrated ecology, biogeochemistry, and hydrology of the terrestrial biosphere an earth system model perspective Gordon Bonan National Center for Atmospheric Research Boulder, Colorado 1 March 2011

More information

The Noah Multi-Physics Land Surface Model: Description and Performance

The Noah Multi-Physics Land Surface Model: Description and Performance The Noah Multi-Physics Land Surface Model: Description and Performance Michael Barlage Research Applications Laboratory (RAL) National Center for Atmospheric Research Crop-Climate Workshop Ames, IA 7 November

More information

An Overview of JULES. Christina Bakopoulou

An Overview of JULES. Christina Bakopoulou An Overview of JULES Christina Bakopoulou JULES, MOSES AND TRIFFID JULES (Joint UK Land Environment Simulator) is a new land surface model Joint initiative: NERC through the CEH, CLASSIC, QUEST and the

More information

Effects of Land Use On Climate and Water Resources: Application of a Land Surface Model for Land Use Management

Effects of Land Use On Climate and Water Resources: Application of a Land Surface Model for Land Use Management Effects of Land Use On Climate and Water Resources: Application of a Land Surface Model for Land Use Management Gordon Bonan, PI National Center for Atmospheric Research Boulder, Colorado Personnel Supported:

More information

A Framework for Multi-Physics Representation of the Coupled Land- Atmosphere System for Predicting Extreme Weather Events

A Framework for Multi-Physics Representation of the Coupled Land- Atmosphere System for Predicting Extreme Weather Events A Framework for Multi-Physics Representation of the Coupled Land- Atmosphere System for Predicting Extreme Weather Events Zong-Liang Yang Guo-Yue Niu, Xiaoyan Jiang http://www.geo.utexas.edu/climate Climate

More information

Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence

Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS and IAM groups

More information

Urbanizing the Community Earth System Model (CESM): Overview and Applications. Keith Oleson

Urbanizing the Community Earth System Model (CESM): Overview and Applications. Keith Oleson Urbanizing the Community Earth System Model (CESM): Overview and Applications Keith Oleson NCAR Earth System Laboratory Climate and Global Dynamics Division Terrestrial Sciences Section Collaborators:

More information

The impact of high resolution soil on surface fluxes in JULES

The impact of high resolution soil on surface fluxes in JULES The impact of high resolution soil on surface fluxes in JULES Heather Ashton, Richard Gilham, Martin Best JULES Annual Science Meeting 2016 28 th - 29 th June, Lancaster Environment Centre Outline Motivations

More information

Land Cover Change in CLM4. Dr. Peter Lawrence

Land Cover Change in CLM4. Dr. Peter Lawrence Land Cover Change in CLM4 Dr. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS group for their many contributions) Slide 1 - Title Land

More information

The Noah-MP Land Surface Model. Michael Barlage Research Applications Laboratory National Center for Atmospheric Research

The Noah-MP Land Surface Model. Michael Barlage Research Applications Laboratory National Center for Atmospheric Research The Noah-MP Land Surface Model Michael Barlage Research Applications Laboratory National Center for Atmospheric Research 1 2 Conceptual Land Surface Processes Precipitation Transpiration Canopy Water Evaporation

More information

Representing the Integrated Water Cycle in Community Earth System Model

Representing the Integrated Water Cycle in Community Earth System Model Representing the Integrated Water Cycle in Community Earth System Model Hong-Yi Li, L. Ruby Leung, Maoyi Huang, Nathalie Voisin, Teklu Tesfa, Mohamad Hejazi, and Lu Liu Pacific Northwest National Laboratory

More information

The science of the Kyoto protocol

The science of the Kyoto protocol The science of the Kyoto protocol Vicky Pope Hadley Centre with lots of help from Climate Chemistry and Ecosystem group ECMWF seminar September 2005 Page 1 Outline Kyoto protocol Observations relevant

More information

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division Investigating Land Use Land Cover Change in CESM Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS and IAM groups for their many contributions)

More information

CLASS for MESH and IP3. Diana Verseghy Climate Research Division Environment Canada

CLASS for MESH and IP3. Diana Verseghy Climate Research Division Environment Canada CLASS for MESH and IP3 Diana Verseghy Climate Research Division Environment Canada The Canadian Land Surface Scheme (CLASS) 2 Monin-Obukhov similarity theory Canopy interception evaporation melt condensation

More information

The evaluation of coupled WRF + Noah-MP and 1-d offline Noah-MP at the FLUXNET sites over Canada

The evaluation of coupled WRF + Noah-MP and 1-d offline Noah-MP at the FLUXNET sites over Canada The evaluation of coupled WRF + Noah-MP and 1-d offline Noah-MP at the FLUXNET sites over Canada Yanping Li, Liang Chen Univ of Saskatchewan Fei Chen, NCAR Alan Barr, Environment Canada I. The calibration

More information

Land cover and land use change as climate forcing: from historical conjecture to modern theories

Land cover and land use change as climate forcing: from historical conjecture to modern theories Land cover and land use change as climate forcing: from historical conjecture to modern theories Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA World Climate Research Programme

More information

Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia

Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia Geosci. Model Dev., 7, 2121 2140, 2014 doi:10.5194/gmd-7-2121-2014 Author(s) 2014. CC Attribution 3.0 License. Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation

More information

AWRA-L and CABLE modelled Tb using CMEM

AWRA-L and CABLE modelled Tb using CMEM AWRA-L and CABLE modelled Tb using CMEM Luigi Renzullo, Ben Gouweleeuw, Albert van Dijk A water information R & D alliance between the Bureau of Meteorology and CSIRO s Water for a Healthy Country Flagship

More information

Land Ecosystems and Climate a modeling perspective

Land Ecosystems and Climate a modeling perspective Land Ecosystems and Climate a modeling perspective Samuel Levis Community Land Model Science Liaison Terrestrial Sciences Section, CGD, ESSL, NCAR 12 August 2009 Why the Land? the land surface is a critical

More information

State of CLM Update. David Lawrence and LMWG

State of CLM Update. David Lawrence and LMWG State of CLM Update David Lawrence and LMWG LMWG Andrew Slater Award The award will be given out annually for the best student or postdoc performance at the meeting. We hope that this award will help us

More information

From climate models to earth system models: the stomatal paradigm and beyond

From climate models to earth system models: the stomatal paradigm and beyond From climate models to earth system models: the stomatal paradigm and beyond Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA Academy Colloquium Stomatal conductance through

More information

geoland HALO Workshop Issue I.1.00 Observatory of Natural Carbon fluxes Jean-Christophe Calvet and the geoland / ONC Team

geoland HALO Workshop Issue I.1.00 Observatory of Natural Carbon fluxes Jean-Christophe Calvet and the geoland / ONC Team Observatory of Natural Carbon fluxes HALO Workshop Issue I.1.00 Jean-Christophe Calvet and the / ONC Team November 2004 ONC overview ONC tools ONC implementation ONC first results Conclusions November

More information

Coupling soil and canopy processes to. moisture uptake and hydraulic

Coupling soil and canopy processes to. moisture uptake and hydraulic 2008 CPPA PIs Meeting Climate Prediction Program for the Americas Coupling soil and canopy processes to nutrient dynamics: impacts of root moisture uptake and hydraulic redistribution Praveen Kumar Darren

More information

Investigating the Climate Impacts of Global Land Cover Change in the Community Climate System Model (CCSM 3.0)

Investigating the Climate Impacts of Global Land Cover Change in the Community Climate System Model (CCSM 3.0) Investigating the Climate Impacts of Global Land Cover Change in the Community Climate System Model (CCSM 3.0) Peter J. Lawrence 1 and Thomas N. Chase 2 1 National Center for Atmospheric Research, Boulder,

More information

Arctic ecosystems as key biomes in climate-carbon feedback. Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research

Arctic ecosystems as key biomes in climate-carbon feedback. Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research Arctic ecosystems as key biomes in climate-carbon feedback Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research Outline Permafrost carbon Permafrost carbon-climate feedback

More information

DOE scientific successes as part of the International LAnd Model Benchmarking (ILAMB) Project

DOE scientific successes as part of the International LAnd Model Benchmarking (ILAMB) Project DOE scientific successes as part of the International LAnd Model Benchmarking (ILAMB) Project December 14, 2015 Office of Science Office of Biological and Environmental Research Outline 1. Introduction

More information

Factors affecting evaporation 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology. Several factors affect the rate of evaporation from surfaces:

Factors affecting evaporation 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology. Several factors affect the rate of evaporation from surfaces: GG22A: GEOSPHERE & HYDROSPHERE Hydrology Some definitions Evaporation conversion of a liquid to a vapour Transpiration that part of evaporation which enters the atmosphere through plants Total Evaporation

More information

JULES: introduction. Olivier Boucher, Met Office Hadley Centre. First JULES Science meeting Exeter University June 2007

JULES: introduction. Olivier Boucher, Met Office Hadley Centre. First JULES Science meeting Exeter University June 2007 JULES: introduction Olivier Boucher, Met Office Hadley Centre First JULES Science meeting Exeter University 28-29 June 2007 What is JULES? JULES (Joint UK Land Environment Simulator) is a community land

More information

The Atmosphere-Vegetation-Soil System

The Atmosphere-Vegetation-Soil System 1 The Atmosphere-Vegetation-Soil System 1.1 Introduction Whereas roughly 70% of Earth s surface is covered by oceans, the remaining 30% of land has a profound influence on processes in the atmosphere (e.g.,

More information

WRF-Hydro System: Physics Components

WRF-Hydro System: Physics Components WRF-Hydro System: Physics Components October 17-19, 2017 D. Gochis, W. Yu, K. Sampson, A. Dugger, J. McCreight,, D. Yates, L. Karsten, L. Read, A. Rafieei-Nasab National Center for Atmospheric Research

More information

The Urban Model Intercomparison project (status update 2016/03/10)

The Urban Model Intercomparison project (status update 2016/03/10) The Urban Model Intercomparison project (status update 2016/03/10) By the SOILVEG_URB subgroup Core members: Sebastian Schubert, Matthias Demuzere, Gianluca Musetti; Hendrik Wouters (coordination), Kristina

More information

USDA-NRCS, Portland, Oregon

USDA-NRCS, Portland, Oregon Hydrologic Simulation Modeling for Streamflow Forecasting and Evaluation of Land and Water Management Practices in the Sprague River, Upper Klamath Basin, Oregon, USA David Garen John Risley Jolyne Lea

More information

Assimilation of satellite observations into hydrological forecasting An Australian perspective

Assimilation of satellite observations into hydrological forecasting An Australian perspective Assimilation of satellite observations into hydrological forecasting An Australian perspective Albert van Dijk Australian National University, CSIRO Land and Water, Canberra Thanks to: Luigi Renzullo,

More information

Permafrost-climate feedbacks in CESM/CLM

Permafrost-climate feedbacks in CESM/CLM Permafrost-climate feedbacks in CESM/CLM David Lawrence Andrew Slater 2, Sean Swenson 1, Charlie Koven 3, Bill Riley 3, Zack Subin 3, Hanna Lee 1 and the CESM LMWG 1 NCAR Earth System Lab, Boulder, CO

More information

Lecture 1: Hydrologic cycle

Lecture 1: Hydrologic cycle 1-1 GEOG415 Lecture 1: Hydrologic cycle Hydrologic cycle is ultimately driven by solar radiation, which evaporates water from the ocean and lift it up in the atmosphere. Dunne & Leopold, 1978, Fig. 1-1

More information

Supplementary information. 1. Model description and experimental design. 1.1 JULES (the Joint UK Land Environment Simulator).

Supplementary information. 1. Model description and experimental design. 1.1 JULES (the Joint UK Land Environment Simulator). Supplementary information 1. Model description and experimental design 1.1 JULES (the Joint UK Land Environment Simulator). In order to make inferences about the behaviour of vegetation under conditions

More information

Summary of survey of current JULES process issues & biases. Debbie Hemming

Summary of survey of current JULES process issues & biases. Debbie Hemming Summary of survey of current JULES process issues & biases Debbie Hemming Summary of survey - current JULES process issues & biases Process issues & biases Terrestrial Carbon Cycle process evaluation workshop

More information

Representing permafrost affected ecosystems in the CLM: An example of incorporating empirical ideas into the CLM

Representing permafrost affected ecosystems in the CLM: An example of incorporating empirical ideas into the CLM Representing permafrost affected ecosystems in the CLM: An example of incorporating empirical ideas into the CLM Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research

More information

Process-based Crop Growth within the Land Surface Model JULES and Implications for Land-Atmosphere Exchange Processes

Process-based Crop Growth within the Land Surface Model JULES and Implications for Land-Atmosphere Exchange Processes Process-based Crop Growth within the Land Surface Model JULES and Implications for Land-Atmosphere Exchange Processes Catherine Van den Hoof 1,2 and Pier Luigi Vidale 1 (1) Department of Meteorology, University

More information

LARGE SCALE SOIL MOISTURE MODELLING

LARGE SCALE SOIL MOISTURE MODELLING Soil Moisture Workshop LARGE SCALE SOIL MOISTURE MODELLING Giuseppe Formetta, Vicky Bell, and Eleanor Blyth giufor@nerc.ac.uk Centre for Ecology and Hydrology, Wallingford, UK Wednesday 25 th January 2017

More information

Projection of the Impact of Climate Change on the Surface Energy and Water Balance in the Seyhan River Basin Turkey

Projection of the Impact of Climate Change on the Surface Energy and Water Balance in the Seyhan River Basin Turkey Projection of the Impact of Climate Change on the Surface Energy and Water Balance in the Seyhan River Basin Turkey Kenji TANAKA 1, Yoichi FUJIHARA 2 and Toshiharu KOJIRI 3 1 WRRC, DPRI, Kyoto University,

More information

Anticipating Future Climate Change Impacts on California mountain hydrology

Anticipating Future Climate Change Impacts on California mountain hydrology Anticipating Future Climate Change Impacts on California mountain hydrology 1928 2000 Photos from USGS Ed Maurer California Water and Environmental Modeling Forum March 1, 2006 California as a Global Warming

More information

BAEN 673 / February 18, 2016 Hydrologic Processes

BAEN 673 / February 18, 2016 Hydrologic Processes BAEN 673 / February 18, 2016 Hydrologic Processes Assignment: HW#7 Next class lecture in AEPM 104 Today s topics SWAT exercise #2 The SWAT model review paper Hydrologic processes The Hydrologic Processes

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2831 Reduced streamflow in water-stressed climates consistent with CO 2 effects on vegetation Anna M. Ukkola 1,2*, I. Colin Prentice 1,3, Trevor F. Keenan

More information

Much of the material in this class has built up to assess evaporation of landscapes. Here we discuss concepts and data. The field of evaporation has

Much of the material in this class has built up to assess evaporation of landscapes. Here we discuss concepts and data. The field of evaporation has Much of the material in this class has built up to assess evaporation of landscapes. Here we discuss concepts and data. The field of evaporation has grown and advanced a lot over the past few decades 1

More information

The EC-Earth modelling challenges

The EC-Earth modelling challenges The EC-Earth modelling challenges Bart van den Hurk (KNMI) & EC-Earth & ECMWF teams (Emanuel Dutra, Ben Smith, Rein Haarsma, Wilco Hazeleger, Gianpaolo Balsamo, Michiel vd Molen) Why? National weather

More information

Land-surface processes in NWP: Vegetation and carbon

Land-surface processes in NWP: Vegetation and carbon Land-surface processes in NWP: Vegetation and carbon Souhail Boussetta & the land surface team souhail.boussetta@ecmwf.int Room 014 Slide 1 1 Outlines Vegetation Role of vegetation in NWP Tiled approach

More information

The Noah-MP Land Surface Model

The Noah-MP Land Surface Model The Noah-MP Land Surface Model Michael Barlage Research Applications Laboratory National Center for Atmospheric Research 1 Land Surface Models: Summary Land surface models have long been used as stand-alone

More information

Introduction to Climate Science

Introduction to Climate Science Introduction to Climate Science Vegetation and the Carbon Cycle Mike Unsworth Atmospheric Science Outline: Global carbon budget : role of vegetation How does weather and climate affect vegetation? How

More information

Impact of fire on the carbon cycle of Australian savannas

Impact of fire on the carbon cycle of Australian savannas Impact of fire on the carbon cycle of Australian savannas Jason Beringer,, Lindsay Hutley, Amanda Lynch, Klaus Gorgen,, Nigel Tapper, Steve Seims,, et al. Overview North Australian Savannas Research questions

More information

Coupling Transport and Transformation Model with Land Surface Scheme SABAE- HW: Application to the Canadian Prairies

Coupling Transport and Transformation Model with Land Surface Scheme SABAE- HW: Application to the Canadian Prairies HW-1 Coupling Transport and Transformation Model with Land Surface Scheme SABAE- HW: Application to the Canadian Prairies Allan D. Woodbury, Alireza Hejazi Department of Civil Engineering University of

More information

Hydrologic cycle, runoff process

Hydrologic cycle, runoff process Hydrologic cycle, runoff process Motivation of hydrological modelling What happens at the catchment and in the stream when it rains? How does the increased/decreased runoff affect (not only) the landowners

More information

Proceedings and Outputs of GEWEX International Symposium on Global Land-surface Evaporation and Climate

Proceedings and Outputs of GEWEX International Symposium on Global Land-surface Evaporation and Climate Proceedings and Outputs of GEWEX International Symposium on Global Land-surface Evaporation and Climate 13-14 July, Centre for Ecology and Hydrology (CEH), Wallingford, UK Summary For humankind to effectively

More information

LMWG Development Activities

LMWG Development Activities LMWG Development Activities Hydrology: resolve upper-soil moisture variability issue Snow: SCF, SBF, snow age, vertically resolved heating Urban model Fine mesh high resolution land and downscaling Integration

More information

Lesson 3.1. Canada's Biomes. As you go down the list, the terms include more and more biotic and abiotic factors. 3.1 Canada's Biomes.

Lesson 3.1. Canada's Biomes. As you go down the list, the terms include more and more biotic and abiotic factors. 3.1 Canada's Biomes. Lesson 3.1 Canada's Biomes Jun 4 7:26 PM As you go down the list, the terms include more and more biotic and abiotic factors. May 17 2:04 PM 1 Biome a large geographic area with a similar climate Biosphere

More information

Inputs. Outputs. Component/store. Section of a system where material or energy is held. Something that enters the system (material or energy)

Inputs. Outputs. Component/store. Section of a system where material or energy is held. Something that enters the system (material or energy) .. Inputs Something that enters the system (material or energy) Outputs Something that leaves the system (material or energy) Component/store Section of a system where material or energy is held Transfer/flow

More information

International LAnd Model Benchmarking (ILAMB) Project

International LAnd Model Benchmarking (ILAMB) Project International LAnd Model Benchmarking (ILAMB) Project Jim Randerson, Forrest Hoffman, Bill Riley, Dave Lawrence, Mingquan Mu, Charlie Koven, Gretchen Keppel-Aleks, Nate Collier International LAnd Model

More information

Land Surface Modeling and Dry Deposition

Land Surface Modeling and Dry Deposition Land Surface Modeling and Dry Deposition Jonathan Pleim* Atmospheric Sciences Modeling Division NOAA - Air Resources Laboratory Research Triangle Park, NC * On assignment to the National Exposure Research

More information

Scientific basis for network evaluation and planning. Oleg Anisimov State Hydrological Institute St.Petersburg, Russia

Scientific basis for network evaluation and planning. Oleg Anisimov State Hydrological Institute St.Petersburg, Russia Scientific basis for network evaluation and planning Oleg Anisimov State Hydrological Institute St.Petersburg, Russia Presentation overview Climatic and environmental changes in the Russian Arctic. Spatial

More information

Improving Hydrological Representation in the Community Noah Land Surface Model for Intra- seasonal to Interannual Prediction Studies

Improving Hydrological Representation in the Community Noah Land Surface Model for Intra- seasonal to Interannual Prediction Studies Improving Hydrological Representation in the Community Noah Land Surface Model for Intra- seasonal to Interannual Prediction Studies Zong-Liang Yang PI: Co-I: G.-Y. Niu,, F. Chen, D. Gochis Collaborator:

More information

Lecture 11: Global Warming. Human Acticities. Natural Climate Changes. Global Warming: Natural or Man-Made CO 2 CH 4

Lecture 11: Global Warming. Human Acticities. Natural Climate Changes. Global Warming: Natural or Man-Made CO 2 CH 4 Lecture 11: Global Warming Human Acticities CO 2 CH 4 The initial appearance of human species: last 100,000 to 200,000 years Development of the first civilization: the last 10,000 years What is the sensitivity

More information

WRF-Hydro Modeling System: Physics Components

WRF-Hydro Modeling System: Physics Components WRF-Hydro Modeling System: Physics Components D. Gochis, W. Yu, D. Yates, K. Sampson, A. Dugger, J. McCreight, M. Barlage, A. RafieeiNasab, L. Karsten, L. Read, L. Pan, Y. Zhang, M. McAllister, J. Mills,

More information

Anthropogenic influence on multi-decadal changes in reconstructed global EvapoTranspiration (ET)

Anthropogenic influence on multi-decadal changes in reconstructed global EvapoTranspiration (ET) Anthropogenic influence on multi-decadal changes in reconstructed global EvapoTranspiration (ET) Hervé Douville, A. Ribes, B. Decharme, R. Alkama and J. Sheffield CNRM-GAME/GMGEC/VDR herve.douville@meteo.fr

More information

Monitoring, Assessment, Prediction and Meteorological service of Agricultural Drought in China

Monitoring, Assessment, Prediction and Meteorological service of Agricultural Drought in China Monitoring, Assessment, Prediction and Meteorological service of Agricultural Drought in China Wang Shili China Meteorological Administration January, 2005, Kobe Content Characteristics of agrometerological

More information

Water in the Columbia, Effects of Climate Change and Glacial Recession

Water in the Columbia, Effects of Climate Change and Glacial Recession Water in the Columbia, Effects of Climate Change and Glacial Recession John Pomeroy, Centre for Hydrology University of Saskatchewan, Saskatoon @Coldwater Centre, Biogeoscience Institute, University of

More information

Recent developments at Météo-France for converting IFS soil variables for the ISBA scheme

Recent developments at Météo-France for converting IFS soil variables for the ISBA scheme Recent developments at Météo-France for converting IFS soil variables for the ISBA scheme J. Ferreira, F. Bouyssel, J.-F. Mahfouf Météo-France/CNRM March 16, 2009 Need to run the Météo-France models (ALADIN,

More information

Major Feedbacks originating from Northern Eurasia that are of global change concern

Major Feedbacks originating from Northern Eurasia that are of global change concern Major Feedbacks originating from Northern Eurasia that are of global change concern Guy P. Brasseur National Center for Atmospheric Research Boulder, CO Regions of Strong Influences on the Global Earth

More information

The Effects of White Roofs on Urban Temperature in a Global Climate. Model

The Effects of White Roofs on Urban Temperature in a Global Climate. Model The Effects of White Roofs on Urban Temperature in a Global Climate Model * K. W. Oleson, * G. B. Bonan, J. Feddema * National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder,

More information

Physically-based Distributed Hydrologic Modeling

Physically-based Distributed Hydrologic Modeling Physically-based Distributed Hydrologic Modeling Goal of Phys.-based Distrib. Hydrologic Modeling To date we have learned about: Key forcings at land surface (precipitation/net radiation) Physical processes

More information

How could we possibly change the Hydrologic Cycle on an Island as big as Vancouver Island?

How could we possibly change the Hydrologic Cycle on an Island as big as Vancouver Island? How could we possibly change the Hydrologic Cycle on an Island as big as Vancouver Island? Do you think for a moment that humans altering the Hydrologic Cycle would also change the Weather? Precipitation

More information

Zhe Zhang 1, Yanping Li 1, Michael Barlage 2, Fei Chen 2. University of Saskatchewan 2. National Center for Atmospheric Research

Zhe Zhang 1, Yanping Li 1, Michael Barlage 2, Fei Chen 2. University of Saskatchewan 2. National Center for Atmospheric Research Zhe Zhang 1, Yanping Li 1, Michael Barlage 2, Fei Chen 2 1 University of Saskatchewan 2 National Center for Atmospheric Research Wetlands in Prairie Pothole Region Large area in the center of North America

More information

SCIE 4104E - Environmental Systems Science. Tarendra Lakhankar NOAA-CREST Center, The City University of New York

SCIE 4104E - Environmental Systems Science. Tarendra Lakhankar NOAA-CREST Center, The City University of New York SCIE 4104E - Environmental Systems Science Tarendra Lakhankar NOAA-CREST Center, The City University of New York About Class This course focuses on Earth as a system and explores the interdependent relationships

More information

Water Science and the Environment

Water Science and the Environment Water Science and the Environment HWRS 201 Dr. Zreda Mr. Ghasemian Fall 2015 Surface Evaporation: Overview Evaporation is a process that transfers energy from the Earth s surface to the atmosphere. Some

More information

Heat mitigation through landscape and urban design

Heat mitigation through landscape and urban design Heat mitigation through landscape and urban design Using observations and microclimate modeling to find the best strategy SCN Green Infrastructure (GI) Workgroup Meeting April 1, 2014 Ariane Middel, PhD

More information

20 Global Climate Change

20 Global Climate Change 20 Global Climate Change Overview of Chapter 20 Introduction to Climate Change Causes of Global Climate Change Effects of Climate Change Melting Ice and Rising Sea Level Changes in Precipitation Patterns

More information

Unit 11.2: Recycling Matter

Unit 11.2: Recycling Matter Unit 11.2: Recycling Matter Lesson Objectives Define biogeochemical cycles. Describe the water cycle and its processes. Give an overview of the carbon cycle. Outline the steps of the nitrogen cycle. Vocabulary

More information

Focus on the Biota: Metabolism, Ecosystems and Biodiversity

Focus on the Biota: Metabolism, Ecosystems and Biodiversity Chapter 9 Major environmental issues associated with Global Change on short-time scales Focus on the Biota: Metabolism, Ecosystems and Biodiversity Global Warming Stratospheric Ozone Depletion Deforestation

More information

Hydrologic change in the Upper Heihe Basin of the Northeast Tibetan Plateau

Hydrologic change in the Upper Heihe Basin of the Northeast Tibetan Plateau G-WADI, Beijing, 26 OCT 2016 Hydrologic change in the Upper Heihe Basin of the Northeast Tibetan Plateau Dawen YANG Professor of hydrology & water resources Department of Hydraulic Engineering Tsinghua

More information

Development of a 2007-Based Air Quality Modeling Platform

Development of a 2007-Based Air Quality Modeling Platform Development of a 2007-Based Air Quality Modeling Platform US EPA Office of Air Quality Planning and Standards Heather Simon, Sharon Phillips, Norm Possiel 1 NEI Other EI Data Regulatory Modeling Platform

More information

The Science of Climate Change

The Science of Climate Change The Science of Climate Change http://data.giss.nasa.gov/gistemp/ Glaciers are retreating worldwide, including Colorado Arapahoe Glacier, 1917 Arapahoe Glacier, 2004 Sea Level is Rising End of summer ice

More information

Uncertainty in hydrologic impacts of climate change: A California case study

Uncertainty in hydrologic impacts of climate change: A California case study Uncertainty in hydrologic impacts of climate change: A California case study Ed Maurer Civil Engineering Dept. Santa Clara University Photos from USGS Motivating Questions What are potential impacts of

More information

NGSS correlations to Student Climate Data Learning Sequences.

NGSS correlations to Student Climate Data Learning Sequences. NGSS correlations to Student Climate Data Learning Sequences. How thoroughly the standard is addressed depends on the level of inquiry used with students. Student Climate Data & NGSS: High School Biomass

More information

Chapter 3 Ecosystem Ecology. Reading Questions

Chapter 3 Ecosystem Ecology. Reading Questions APES Name 22 Module 7 Chapter 3 Ecosystem Ecology Monday Tuesday Wednesday Thursday Friday 17 Module 6 The Movement of Energy 18 Ecosystem Field Walk 19 Module 7 The 23 Module 8 Responses to Disturbances

More information

Effects of Land Cover Change on the Energy and Water Balance of the Mississippi River Basin

Effects of Land Cover Change on the Energy and Water Balance of the Mississippi River Basin 640 JOURNAL OF HYDROMETEOROLOGY VOLUME 5 Effects of Land Cover Change on the Energy and Water Balance of the Mississippi River Basin TRACY E. TWINE Center for Sustainability and the Global Environment,

More information

The Impact of Climate Change on a Humid, Equatorial Catchment in Uganda.

The Impact of Climate Change on a Humid, Equatorial Catchment in Uganda. The Impact of Climate Change on a Humid, Equatorial Catchment in Uganda. Lucinda Mileham, Dr Richard Taylor, Dr Martin Todd Department of Geography University College London Changing Climate Africa has

More information

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany martin.heimann@bgc-jena.mpg.de 1 Northern Eurasia: winter: enhanced warming in arctic, more precip summer: general warming in center,

More information

Improvement of surface layer forecasts by modifying the hydrological cycle in NOAH LSM used in GRAPES_Meso model

Improvement of surface layer forecasts by modifying the hydrological cycle in NOAH LSM used in GRAPES_Meso model Improvement of surface layer forecasts by modifying the hydrological cycle in NOAH LSM used in GRAPES_Meso model Dr. Dehui CHEN and Dr. Lili WANG National Meteorological Center, China Meteorological Administration,

More information

Next-Generation Ecosystem Experiments (NGEE Arctic)

Next-Generation Ecosystem Experiments (NGEE Arctic) Next-Generation Ecosystem Experiments (NGEE Arctic) Stan D. Wullschleger Environmental Sciences Division Oak Ridge National Laboratory Subsurface Biogeochemical Research PI Meeting April 28, 2011 High-Resolution

More information

Anticipated Responses of Agroecosystems

Anticipated Responses of Agroecosystems Anticipated Responses of Agroecosystems Effects of enhanced CO 2 on crop growth Plants grow through the well-known process of photosynthesis, utilizing the energy of sunlight to convert water from the

More information

Atul Jain University of Illinois, Urbana, IL 61801, USA

Atul Jain University of Illinois, Urbana, IL 61801, USA Brian O Neill, NCAR 2010 LCLUC Spring Science Team Meeting Bethesda, MD April 20-22, 2010 Land-Use Change and Associated Changes in Biogeochemical and Biophysical Processes in Monsoon Asian Region (MAR)

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

GEOG 402. Forests and Clearings

GEOG 402. Forests and Clearings GEOG 402 Forests and Clearings Microclimate DEFORESTATION What difference does it make when forest is cleared? Forests differ from cleared land in two hydrologically-significant ways. Forests promote:

More information

Physically-based distributed modelling of river runoff under changing climate conditions

Physically-based distributed modelling of river runoff under changing climate conditions 156 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Physically-based distributed modelling of river runoff

More information

南京信息工程大学. Lei Chen, Meigen Zhang, Hong Liao. Nanjing, China May, (Chen et al., 2018JGR)

南京信息工程大学. Lei Chen, Meigen Zhang, Hong Liao. Nanjing, China May, (Chen et al., 2018JGR) Nanjing, China May, 2018 南京信息工程大学 Modeling impacts of urbanization and urban heat island mitigation on boundary layer meteorology and air quality in Beijing under different weather conditions Lei Chen,

More information

Hydrology of Prairie Droughts

Hydrology of Prairie Droughts C:\ Program Files\ CRHM\ QdroD QdfoD Qdro Qdfo SunMax global CalcHr Qsi calcsun hru_t hru_rh hru_ea hru_u hru_p hru_rain hru_snow hru_sunact hru_tmax hru_tmin hru_tmean hru_eamean hru_umean hru_rhmean

More information

Physically-based distributed modelling of river runoff under changing climate conditions

Physically-based distributed modelling of river runoff under changing climate conditions doi:10.5194/piahs-368-156-2015 156 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Physically-based distributed

More information

Water can have three states

Water can have three states Water Cycle Goals 1. Know the states of water and how / why they change from one state to another 2. Describe the Water Cycle using specific and precise vocabulary when describing each part of the Water

More information

Extensions of TerrSysMP-CO 2 to resolve dynamic processes induced by tall vegetation

Extensions of TerrSysMP-CO 2 to resolve dynamic processes induced by tall vegetation Extensions of TerrSysMP-CO 2 to resolve dynamic processes induced by tall vegetation Markus Übel and Andreas Bott Meteorological Institute, University of Bonn TerrSysMP-CO 2 model domain General Meeting,

More information

Projection of the Impact of Climate Change on the Surface Energy and Water Balance in the Seyhan River Basin Turkey

Projection of the Impact of Climate Change on the Surface Energy and Water Balance in the Seyhan River Basin Turkey Projection of the Impact of Climate Change on the Surface Energy and Water Balance in the Seyhan River Basin Turkey Kenji TANAKA 1, Yoichi FUJIHARA 2 and Toshiharu KOJIRI 3 1 WRRC, DPRI, Kyoto University,

More information

mpact of the soil-vegetation model on CLM simulations

mpact of the soil-vegetation model on CLM simulations mpact of the soil-vegetation model on CLM simulations C.Meißner, G. Schädler, C. Kottmeier, M. Haller Universität / Forschungszentrum Karlsruhe Motivation rformance of long term simulations with CLM on

More information