membrane bioreactor performance compared to conventional wastewater treatment

Size: px
Start display at page:

Download "membrane bioreactor performance compared to conventional wastewater treatment"

Transcription

1 Water Technologies & Solutions technical paper membrane bioreactor performance compared to conventional wastewater treatment Authors: Thomas C. Schwartz and Brent R. Herring, Woodard and Curran Incorporated Ricardo Bernal and Janet Persechino, SUEZ introduction Governor Dummer Academy (GDA) is the oldest private day and boarding school in the United States. Founded in 1763, it is located on a 350-acre campus in Byfield, Massachusetts. The wastewater treatment plant (WWTP) that served the Governor Dummer Academy campus was originally constructed in the 1960s, with upgrade work performed in the 1990s. Despite the upgrade efforts, the WWTP was unable to consistently meet the effluent quality required by the permit under which it operates. This school was faced with the major dilemma of having to increase the throughput capacity of their current conventional wastewater treatment system in order to consistently meet the required discharge quality. At the same time, the school was faced with building constraints due to the wetlands that surround the WWTP, and, therefore, could not increase the physical size of the plant. After a thorough review of the options available to the school including prefabricated package treatment units, sequencing batch reactors and moving bed bioreactors, it was decided that the submerged membrane bioreactor (MBR) system was the best alternative for this application. In August of 2000, the installation of a 380 m 3 /day (100,000 gpd) MBR system used to treat domestic wastewater was completed. The new MBR-based facility was renamed the David A. Gaouette Wastewater Treatment Facility. Steady state operations were achieved during the month of September 2000, and the facility has been successfully operating since. The MBR approach to upgrading this facility allowed the academy to actually slightly decrease the WWTP footprint by maintaining the use of the existing treatment tank and removing the former filtration system building and tankage. The MBR system has successfully increased the WWTP treatment capacity, enabling the academy to meet tough permit discharge limitations for BOD, TSS, (<10 mg/l) and Total and Fecal Coliform (<10 FCU/100 ml sample). The David A. Gaouette Wastewater Treatment Facility is now serving not only as the GDA treatment plant, but also as a showcase facility and a research site for MBR process optimization. Influent and effluent parameters are being continually examined to refine the optimum operating conditions, and permeate water samples are monitored every week to ensure that all environmental discharge limits are met. The objective of this paper is to report the first year of operation of the plant and to compare the MBR performance with the conventional plant that was previously operated at the school. the conventional process A typical treatment train for municipal and domestic wastewater treatment is generally broken into primary, secondary, and tertiary treatment levels. 1. Primary treatment is the removal of floating and settable solids through processes including screening and sedimentation. 2. Secondary treatment is typically the aerobic biological treatment process by which bacteria oxidize the organic matter in the wastewater, producing cell mass (sludge), and carbon dioxide. In suspended growth systems, the bacteria are maintained in an aeration basin and referred to as mixed liquor. Blowers supply air to the mixed liquor to supply the necessary oxygen. The Find a contact near you by visiting and clicking on Contact Us. *Trademark of SUEZ; may be registered in one or more countries SUEZ. All rights reserved. Jun-01

2 bacteria are usually separated from the purified wastewater in a clarifier. The purified water is discharged to the next step and the sludge is returned to the aeration basin for reuse and a small portion is removed for disposal (waste). 3. Tertiary, or advanced treatment, includes processes beyond secondary treatment, most often to remove specific constituents or improve the quality of the final effluent. It is most often a form of filtration. the MBR process There are two popular types of MBR processes. A submerged system consists of a microfiltration (MF) or ultrafiltration (UF) membrane with pore sizes ranging from microns. These membranes are submerged in the reaction tanks, with the permeate being drawn into the membranes using a vacuum capable pump. Tubular systems are also available. These systems will treat a side stream of the mixture in the aeration tank. This type of system requires a high amount of pumping power to keep the velocities high to prevent membrane fouling, and high pressure to force the water through the membrane. In addition, tubular systems have a larger footprint than submerged systems due to the external location of the membranes. For these reasons, the decision was made to install a submerged MBR system at Governor Dummer using a 0.4-microns pore size polyethylene hollow fiber membrane. The MBR replaces the secondary clarification. The MBR separates treated effluent from the mixed liquor solids utilizing a hollow fiber microfiltration membrane with a 0.4-microns pore size. The submerged membranes are typically placed directly into the existing aeration tank. The membranes allow the purified water to pass through the pores (permeate), while creating a complete barrier to the passage of any solid greater than 0.4-microns, which includes almost all bacteria (mixed liquor solids). The permeate is drawn through the membranes using a suction lift pump leaving the suspended biomass material in the aeration tank. Biomass (mixed liquor) is removed using a sludge pump on an as-required basis. Figure 1 gives a basic flow sheet of a typical MBR chamber. Figure 1: Typical MBR Process In a conventional wastewater treatment plant, the secondary clarifier limits the solids concentration in the aeration tank. Typical mixed liquor suspended solids (MLSS) concentrations are 1,500 mg/l to 5,000 mg/l. The larger the clarifier relative to hydraulic and solids loading of the facility, the higher the possible concentration in the aeration tank. Membranes create a solids barrier, and, therefore, are not subject to gravity settling solids limitations, as in conventional clarifiers. MBRs are limited instead by the fluid dynamics of high solids mixed liquor, the effects on the ability to get permeate through the membrane, premature fouling of the membranes, and the effect on oxygen transfer. Typical MLSS concentrations in MBR systems are 10,000 mg/l to 15,000 mg/l and have been reported to be as high as 20,000 mg/l in certain instances. Hydraulic retention times (HRT), the amount of time the wastewater spends in the system, for MBRs are typically 4-20 hours. On most domestic wastes, this is enough time to allow for the oxidation of organic material and ammonia (nitrification). The average sludge age, the time the biomass spends in the aeration tank, or sludge retention times (SRT) is days. The older sludge ages and the higher MLSS concentrations in the MBR process compared to conventional systems enable the MBR to produce significantly less sludge for disposal than conventional treatment systems. As mentioned previously, the limitations on MLSS concentration and HRT are based on the solids content of the mixed liquor and the effects on permeate flow, fouling, and oxygen transfer. In high concentrations of MLSS, the permeate flow can be limited by the physical presence of solids at or near the individual pores which restricts flow. In addition, higher MLSS concentrations have a higher propensity to foul the membranes and restrict flow of water and Page 2

3 air at the surface of the membrane rendering the air scouring ineffective at cleaning the membranes. When the solids concentration becomes too high, the flow of permeate will become restricted and require a greater vacuum to initiate flow. Because of this, the pressure differential across the membranes, or the trans-membrane pressure (TMP), is continuously monitored and used to gage the degree of fouling in a system that is operating within acceptable solids concentrations. Under normal operation, the rate of fouling of the MBR membranes is reduced by injecting the blower air directly under the membranes. The continual agitation caused by the flow of air and water over the membrane surface serves as a surface scour. In addition, the permeate pump runs for eight minutes and then is turned off for two minutes. This allows the membranes to relax, and with no vacuum on the membranes, the air scour has a greater impact. Despite this continuous cleaning, a gradual accumulation of organic substances such as glycoprotein will occur at the membrane surface. For this reason, in-situ chemical cleaning of the membranes is recommended. Cleanings consist of in situ reverse flow of a dilute (3,000 ppm, 0.3% solution) sodium hypochlorite solution through the membranes for two hours. The cleanings should occur roughly every three months to maintain operation, or any time the TMP across the membrane increases more than 30 kpa (4.4 psi) above the start-up pressure. In addition, out-of-tank cleanings will be occasionally performed by removing the membranes from the aeration tank and soaking the membranes in a dilute (5,000 ppm, 0.5% solution) sodium hypochlorite and 4% (40,000 ppm) sodium hydroxide solution for hours. This should be done when the in-situ chemical cleanings do not show significant reduction in the TMP. MBRs were developed in the late 1980s and are now being used on wastes ranging from livestock waste with influent BODs of 18,000 ppm, industrial wastes with BODs from 5,000-10,000 ppm, and domestic wastes with BOD ranges of ppm. This technology has served customers who need integration of water and wastewater management for total water management systems. These systems must be consistent in producing water with low BOD and TSS, need to minimize space usage, and need to minimize sludge disposal amounts. description of the conventional Governor Dummer Academy wastewater treatment plant The treatment plant as it was prior to the MBR upgrade was a small conventional suspended growth type treatment plant built in the early 1960s and is illustrated in Figure 2. As depicted in Figure 3, the plant consisted of the following operations and tankage: Grinder (bypassed) Influent flow measurement manhole flume insert Flow equalization tank Common-wall secondary tankage Aeration basin Secondary clarifier Chlorine contact tank (chlorine no longer used) Filtration building Filter wet well with two submersible lift pumps Two UV disinfection modules Effluent flow measurement manhole flume insert Sand drying beds Figure 2: Original Conventional Plant Figure 3: Governor Dummer Academy Conventional WWTP PFD Page 3

4 The plant was drastically undersized and provided poor performance and poor effluent quality. Frequent pump-outs of the clarifier and the aeration tank by tanker truck were necessary to keep the system functioning at even a minimal level. As part of the initial investigation into upgrade alternatives for this facility, a capacity evaluation was performed on the existing treatment units. It was determined the aeration tank was capable of treating roughly 11,000 gallons per day (gpd) (42 m 3 /day), while meeting the ammonia limit of 1.0 mg/l. The clarifier was estimated to be capable of roughly 30,000 gpd (114 m 3 /day) if improvements were made. The flow data from the preceding years demonstrated an overall yearly average flow of roughly 30,000 gpd (114 m 3 /day) with several months between 40,000 gpd (151 m 3 /day) and 60,000 gpd (227 m 3 /day), while school was in session. In addition, several continuous days had influent flows between 80,000 and 100,000 gallons per day (303 to 495 m 3 /day) with peaks during those days in excess of 140,000 gpd (530 m 3 /day). The existing system was clearly not up to the task at hand. The layout of this tankage and building is depicted in Figure 4. The site was built-out to the fullest extent possible, due to the presence of surrounding wetlands on three sides and a steep hill on the influent side of the site. The lack of space at the site made sighting conventional treatment system extremely difficult and expensive. It also would have been challenging to maintain the existing treatment system or any other temporary system during construction. Figure 4: Layout of Pre-Existing GDA WWTP It was determined that the best alternative for this facility was to retrofit it with a submerged MBR system. This allowed for the continued usage of all tankage in a reconfigured flow pattern. The reuse of tankage greatly simplified construction and the downtime necessary. description of the upgraded MBR system The MBR approach required no major new infrastructure or tankage. With the MBR, the clarifier was no longer needed and the new rating for the aeration tank was estimated to be approximately 100,000 gpd (379 m 3 /day). Further, the system was promised to produce an effluent superior to that from a tertiary sand filter. This allowed for the discontinuation of tertiary filtration at this facility and the removal of the associated building. Figure 5 illustrates the modifications to the aeration basin for the upgrade. Figure 5: Upgraded Aeration Basin with MBR Retrofit The MBR units formed the core modifications needed for the upgrade and established the envelope of work for the overall upgrade, which included the following activities: New headworks including efficient grit removal, solids grinding and screening, and proper influent flow metering Piping and general process modifications for the new configuration Page 4

5 An additional UV disinfection module and a positive flow splitting control structure to evenly divide flow to all three units operating in parallel New operations building to provide an office, laboratory, bathroom, storage room, and equipment room for the blowers, pumps, flow meter, flow splitter UV units, and other ancillary equipment New discharge flow metering Filter building removal Electrical new equipment, instrumentation, controls, relocation of electrical feed, and needed upgrades of existing services Improvements to site drainage, potable water supply, landscaping, and pavement A process flow diagram of the MBR system at Governor Dummer is shown in Figure 6. The incoming raw water first enters the system at the new headworks, which consists of a grinder with a 3.0- millimeter auger screen. The grinder breaks up any large solids. Any of the ground solids that do not pass through the fine screen are removed by the associated auger. Fine screening is important for the submerged MBR to any small fibers that could wrap around the membrane fibers and also removes any particulates that could adhere to the membranes. The chopper will automatically reverse direction if it gets jammed, and the screen is cleaned with a screw auger which deposits the solids in a catch bag. clarifier basin, now used in a reverse flow configuration as the aerated grit chamber. Heavy solids settle out of the wastewater while aeration from the blower system provides adequate turbulence to keep the more buoyant-neutral organic solids in suspension. The grit tank serves as a settling tank for the removal of grit and as an equalization tank. The tank is aerated to prevent the settling of suspended organic materials. The water flows into the aeration tank/mbr chamber via a weir between the grit tank and the aeration basin. Two racks of membrane modules were placed into the existing 97 m 3 (25,650 gallon) tank. The modules are on a dual header arrangement. Each membrane is isolated one at a time for in-situ chemical cleaning by the use of ball valves. A walkway across the top of the aeration tank was constructed for easy access to all connections on the MBR modules and piping. Figure 7 shows a picture of the walkway and connections on the MBR system. Figure 7: Connections and Walkway Figure 6: Governor Dummer Academy WWTP MBR Upgrade PFD Also in the new headworks, a Parshall flume measures the influent flowrate. From the flume, the wastewater is directed into the former secondary Aeration for the MBR is provided by two blowers, with one used for stand-by. Each membrane module has an individual connection to the aeration header located conveniently along the walkway. The air provides the necessary oxygen for the biological digestion process, and also scours the membranes to keep them from fouling. The air enters the basin from the bottom portion of the membrane cassette. There is a dissolved oxygen (DO) meter in the aeration basin to warn of low DO levels, and pressure gauges on the blower discharge lines help to indicate if the diffusers are becoming clogged. Separate lines divert a portion of the system air to the grit tank and sludge holding tank. Page 5

6 Each module also has its own connection to the permeate line and water recycle line. There are two permeate pumps included with the system, one is used for stand-by purposes only. Each pump is equipped with a variable frequency drive (VFD) to adjust the flow based on the liquid level in the MBR tank. The flow setpoint is automatically adjusted to match the number of MBR modules in service. Each permeate pump has local inlet and discharge pressure gauges. Check valves are installed on the permeate lines. When the permeate pump shuts off, the check valves close and prevent the permeate pipes from draining, which aides in maintaining vacuum pump prime. The flow of permeate is measured using a magnetic flow meter and transmitter placed on the final discharge piping. Figure 8 gives the layout of the entire WWTP at the site. interaction, other than daily checks, is administered through the operator interface on the SCADA system. data comparison between the conventional and MBR system Table 1 summarizes the plant operational data from ten continuous months of operations prior to the MBR upgrade and the eight months of continuous operations (up to June of this year) after the MBR upgrade and startup. Table 1: Plant Performance Conventional vs. MBR Upgrade A sludge pump was installed at the center of the aeration tank to remove sludge when the MLSS of the tank accumulates over the recommended 10,000 ppm for optimal operation. The sludge is pumped to a holding tank. Due to the high sludge age, the excess sludge produced by the MBR does not settle readily. In order to thicken the sludge, a polymer is added to the sludge holding tank which causes the sludge to rise. A submersible pump placed on the bottom of the sludge tank then pumps the water that accumulates at the bottom of the sludge tank back to the aeration basin. Once a month the sludge is trucked off site. The pumps, blowers, controls, and power panels have been installed inside an operations building. This building also contains the UV disinfection, which is the last step in the process before the water is discharged. The new electrical system includes a motor control center (MCC) that provides power to the control system (contained inside the control cabinet), pumps, blowers, and the wiring to convey power to pumps, blowers, instruments, the control system, and two VFDs. The control cabinet is located inside the electrical room in the operations building, and it contains a programmable logic controller (PLC), relays to buffer high voltage output devices, and an operator interface panel, as well as switches and indicators necessary for system operation. The system is monitored by a SCADA software package where data is logged twenty-four hours a day. It is set up to run on automatic control and requires very low labor hours and maintenance. Normal operator As illustrated in Table 1, the plant performance since the upgrade is greatly improved, and is consistently well within discharge permit limitations. The conventional plant operations produced roughly 12.3 dry kilograms (27 lbs.) per day of sludge and discharged 3.6 (8 lbs.) dry kilograms per day of solids in the effluent for a total sludge production of 15.9 (35 lbs.) dry kilograms per day. This is in contrast to the MBR system which produces roughly 11.8 (26 lbs.) dry Page 6

7 kilograms per day of sludge and discharges a mere 0.27 (0.6 lbs.) dry kilograms per day of solids in the effluent for a total sludge production of 12.2 (27 lbs.) dry kilograms per day or a 22% reduction in solids production. conclusion When the oldest boarding school in the United States was faced with the problem of having to increase the throughput capacity of their wastewater treatment system without increasing the physical size of the system, and still be able to meet tough discharge regulations, they opted to install an MBR system. The MBR technology replaces the sedimentation process that was used in their conventional wastewater treatment plant. The facility includes a chopper, 3.0 mm screen, grit tank, aeration tank where the membranes are located, blowers, permeate pumps, ultraviolet disinfection lamps, data logging system and instrumentation, PLC controller, sludge pump and holding tank, and a tank to mix the clean-in-place (CIP) solution. The product water is consistently below the discharge limits containing less than 2 mg/l of suspended solids, BOD and COD, also fecal coliform units less than 10 colonies/100 ml and ammonia less than 1 mg/l. The MBR plant has produced 22% less sludge than the conventional treatment plant. After being sent through ultraviolet disinfection, the academy can safely and confidently discharge the water to a local river. Since plant start up in August 2000, one hypochlorite CIP has been performed, and the optimum mixed liquor suspended solids concentration, flux rate, air diffuser cleanings, dissolved oxygen levels, and other minor operating parameters have been established. Data is logged 24 hours a day to a SCADA system. Influent and effluent parameters are being examined and permeate water samples are monitored every week. Page 7

W O C H H O L Z R E G I O N A L W A T E R R E C L A M A T I O N F A C I L I T Y O V E R V I E W

W O C H H O L Z R E G I O N A L W A T E R R E C L A M A T I O N F A C I L I T Y O V E R V I E W Facility Overview The recently upgraded and expanded Henry N. Wochholz Regional Water Reclamation Facility (WRWRF) treats domestic wastewater generated from the Yucaipa-Calimesa service area. The WRWRF

More information

BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND. 1.0 Executive Summary

BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND. 1.0 Executive Summary BEING GOOD STEWARDS: IMPROVING EFFLUENT QUALITY ON A BARRIER ISLAND Brett T. Messner, PE, Tetra Tech, Inc., 201 E Pine St, Suite 1000, Orlando, FL 32801 Brett.Messner@tetratech.com, Ph: 239-851-1225 Fred

More information

SECTION 2.0 WASTEWATER TREATMENT PLANT AND DISPOSAL SYSTEM DESCRIPTION

SECTION 2.0 WASTEWATER TREATMENT PLANT AND DISPOSAL SYSTEM DESCRIPTION SECTION 2.0 WASTEWATER TREATMENT PLANT AND DISPOSAL SYSTEM DESCRIPTION Analytical Environmental Services 2-1 Jamul Indian Village Wastewater Treatment Plant Analytical Environmental Services 2-2 Jamul

More information

membrane bioreactors MBR vs. Conventional Activated Sludge Systems CAS

membrane bioreactors MBR vs. Conventional Activated Sludge Systems CAS membrane bioreactors MBR vs. Conventional Activated Sludge Systems CAS Features What of MBR is a Membrane technology Bioreactor? compared to conventional processes Membrane Bioreactors MBR, combine fine

More information

Evaluation of Conventional Activated Sludge Compared to Membrane Bioreactors

Evaluation of Conventional Activated Sludge Compared to Membrane Bioreactors Evaluation of Conventional Activated Sludge Compared to Membrane Bioreactors Short Course on Membrane Bioreactors 3/22/06 R. Shane Trussell, Ph.D., P.E. shane@trusselltech.com Outline Introduction Process

More information

EVW 2 Hynds Commercial Wastewater Systems April 2013

EVW 2 Hynds Commercial Wastewater Systems April 2013 Hynds Commercial Wastewater Systems High quality sewage treatment systems Fully designed by qualified engineers Small footprint EVW 2 Hynds Commercial Wastewater Systems April 2013 0800 425 433 www.hyndsenv.co.nz

More information

DEVELOPMENT OF THE. Ken Mikkelson, Ph.D. Ed Lang Lloyd Johnson, P.E. Aqua Aerobic Systems, Inc.

DEVELOPMENT OF THE. Ken Mikkelson, Ph.D. Ed Lang Lloyd Johnson, P.E. Aqua Aerobic Systems, Inc. DEVELOPMENT OF THE AquaMB PROCESS Ken Mikkelson, Ph.D. Ed Lang Lloyd Johnson, P.E. Aqua Aerobic Systems, Inc. Aqua-Aerobic Systems, Inc. 6306 N. Alpine Road Rockford, IL 61111 Copyright 2003 Aqua-Aerobic

More information

MEMBRANE BIOREACTORS FOR RO PRETREATMENT

MEMBRANE BIOREACTORS FOR RO PRETREATMENT ABSTRACT MEMBRANE BIOREACTORS FOR RO PRETREATMENT Simon Dukes, Antonia von Gottberg Koch Membrane Systems, 850 Main Street, Wilmington, MA 01887 Currently, treated municipal wastewater is typically discharged

More information

Basic Design Concepts of MBR

Basic Design Concepts of MBR Basic Design Concepts of MBR Class III & Class IV OTCO Workshop Wednesday August 15, 2007 Terry M. Gellner, P.E CT Consultants, Inc Outline Types of Membranes MBR WWTP and General Sizing Criteria Common

More information

City of Redlands Wastewater Treatment Plant. Redlands, CA LOCATION: Carollo Engineers; CH2M HILL MBR MANUFACTURER: COMMENTS:

City of Redlands Wastewater Treatment Plant. Redlands, CA LOCATION: Carollo Engineers; CH2M HILL MBR MANUFACTURER: COMMENTS: FACILITY: City of Redlands Wastewater Treatment Plant LOCATION: Redlands, CA GEO. AREA: Southern California STATUS 07/14: Operational CONSTRUCTION: ENGINEERING: Carollo Engineers; CH2M HILL MBR MANUFACTURER:

More information

Membrane BioReactor: Technology for Waste Water Reclamation

Membrane BioReactor: Technology for Waste Water Reclamation Membrane BioReactor: Technology for Waste Water Reclamation Sachin Malekar - Senior Manager, Technology & Nilesh Tantak - Executive, Technology Ion Exchange (India) Ltd. BACKGROUND Due to diminishing water

More information

THE LEELA PALACES & RESORTS PVT. LTD. AGRA

THE LEELA PALACES & RESORTS PVT. LTD. AGRA THE LEELA PALACES & RESORTS PVT. LTD. AGRA SOLAR LIGHTING WORKING ( DT. 23.10.2015) FOR COMPLIANCE OF PT. NO. 19 FROM 236TH SEAC MOM PROVISION OF 100% SOLAR LIGHTING ALONG ROAD SITE, STAIRCASES, COMMON

More information

MEMBRANE BIOREACTORS (MBR)

MEMBRANE BIOREACTORS (MBR) MEMBRANE BIOREACTORS (MBR) MEMBRANE CLASSIFICATION Microfiltration (MF) Ultrafiltration (UF) Nanofiltration (NF) Reverse Osmosis (RO) COMPARISON OF MEMBRANE FILTRATION PROCESSES CONTAMINANTS REJECTED GENERAL

More information

DISCUSSION PAPER. 1 Objective. 2 Design Flows and Loads. Capital Regional District Core Area Wastewater Management Program

DISCUSSION PAPER. 1 Objective. 2 Design Flows and Loads. Capital Regional District Core Area Wastewater Management Program DISCUSSION PAPER Capital Regional District Core Area Wastewater Management Program Macaulay/McLoughlin Point Wastewater Treatment Plant Discussion Paper Liquid Process Alternatives Evaluation 034-DP-1

More information

Wastewater Treatment. Where does wastewater go when it leaves your house?

Wastewater Treatment. Where does wastewater go when it leaves your house? Wastewater Treatment Where does wastewater go when it leaves your house? Let s s take a look The process includes: Collection of wastewater Primary Treatment Secondary Treatment Solids Handling Influent

More information

UPGRADING FOR TOTAL NITROGEN REMOVAL WITH A POROUS MEDIA IFAS SYSTEM

UPGRADING FOR TOTAL NITROGEN REMOVAL WITH A POROUS MEDIA IFAS SYSTEM UPGRADING FOR TOTAL NITROGEN REMOVAL WITH A POROUS MEDIA IFAS SYSTEM T. Masterson, J. Federico, G. Hedman, S. Duerr BETA Group, Inc. 6 Blackstone Valley Place Lincoln, Rhode Island 02865 ABSTRACT The Westerly,

More information

WASTEWATER DEPARTMENT. Bentonville Wastewater Treatment Plant Facts:

WASTEWATER DEPARTMENT. Bentonville Wastewater Treatment Plant Facts: Mission: The mission of the Bentonville Wastewater Treatment Utility and staff is to protect public health and the environment through the effective treatment of wastewater. Effective wastewater treatment

More information

POREX Tubular Membrane Filter Modules For Metal Contaminated Wastewater Treatment & Reclamation

POREX Tubular Membrane Filter Modules For Metal Contaminated Wastewater Treatment & Reclamation POREX Tubular Membrane Filter Modules For Metal Contaminated Wastewater Treatment & Reclamation Background Industrial processes can often result in waste water contaminated with heavy metals (Hg, Pb, Zn,

More information

Description. Development

Description. Development Description Aquatec Maxcon is the exclusive agent for Kubota membrane bioreactors (MBRs) modules in Australia and New Zealand. Our company designed and constructed the first commercial scale MBR in Australasia

More information

ECO Smart Aerobic Waste Water Treatment System. Optimising the re-use and recycling of waste water

ECO Smart Aerobic Waste Water Treatment System. Optimising the re-use and recycling of waste water Optimising the re-use and recycling of waste water The ECO Smart aerobic wastewater treatment system is a selfcontained wastewater treatment system that utilizes a combination of anaerobic as well as aerobic

More information

FURTHER EXPANDED FLOWS AND LOADS R3 INDUSTRIAL WWTP PROCESS ENGINEERING EVALUATION

FURTHER EXPANDED FLOWS AND LOADS R3 INDUSTRIAL WWTP PROCESS ENGINEERING EVALUATION FURTHER EXPANDED FLOWS AND LOADS R3 INDUSTRIAL WWTP PROCESS ENGINEERING EVALUATION Prepared For: HyLife Foods Neepawa, Manitoba, Canada Prepared By: Pharmer Engineering 1998 West Judith Lane Boise, ID

More information

WASTEWATER TREATMENT PLANT MASTER PLAN 6. BUSINESS CASE EVALUATION OF ALTERNATIVES

WASTEWATER TREATMENT PLANT MASTER PLAN 6. BUSINESS CASE EVALUATION OF ALTERNATIVES WASTEWATER TREATMENT PLANT MASTER PLAN 6. BUSINESS CASE EVALUATION OF ALTERNATIVES A range of potential ammonia limits were identified for alternatives evaluation, as discussed in Section 2.2.5. This chapter

More information

SIMPLE and FLEXIBLE ENERGY SAVINGS And PERFORMANCE ENHANCEMENT for OXIDATION DITCH UPGRADES

SIMPLE and FLEXIBLE ENERGY SAVINGS And PERFORMANCE ENHANCEMENT for OXIDATION DITCH UPGRADES SIMPLE and FLEXIBLE ENERGY SAVINGS And PERFORMANCE ENHANCEMENT for OXIDATION DITCH UPGRADES Oxidation ditches are very popular wastewater treatment processes for small to medium sized municipalities that

More information

We Know Water. NEOSEP Membrane Bioreactor (MBR) WATER TECHNOLOGIES

We Know Water. NEOSEP Membrane Bioreactor (MBR) WATER TECHNOLOGIES We Know Water NEOSEP Membrane Bioreactor (MBR) WATER TECHNOLOGIES Veolia s NEOSEP MBR NEOSEP combines the best attributes of hollow fiber and flat sheet membranes with the use of hybrid FibrePlate membranes

More information

IMMERSED MEMBRANE TECHNOLOGY: ELIMINATING BARRIERS TO LAND DEVELOPMENT

IMMERSED MEMBRANE TECHNOLOGY: ELIMINATING BARRIERS TO LAND DEVELOPMENT IMMERSED MEMBRANE TECHNOLOGY: ELIMINATING BARRIERS TO LAND DEVELOPMENT by James W. Hotchkies, P.Eng. General Manager - Land Development Systems, ZENON Municipal Systems Inc., 3239 Dundas Street West, Oakville,

More information

FAYOUM CITY SEWAGE TREATMENT PLANT, DEVELOPMENT STAGES, CASE STUDY

FAYOUM CITY SEWAGE TREATMENT PLANT, DEVELOPMENT STAGES, CASE STUDY FAYOUM CITY SEWAGE TREATMENT PLANT, DEVELOPMENT STAGES, CASE STUDY Ahmed El-Zayat, Environmental Engineering Group, Egypt Emaill: ahmed_el_zayat@yahoo.com Introduction This case study focuses on three

More information

6. Evaluation of Wastewater Treatment Alternatives

6. Evaluation of Wastewater Treatment Alternatives 6. Evaluation of Wastewater Treatment Alternatives The wastewater treatment selection is closely related to the effluent management strategy. After initial screening of wastewater treatment plant processes,

More information

Palmer Wastewater Treatment Plant Environmental Impacts. A summary of the impacts of this treatment alternative are listed below:

Palmer Wastewater Treatment Plant Environmental Impacts. A summary of the impacts of this treatment alternative are listed below: 6.1.3 Environmental Impacts A summary of the impacts of this treatment alternative are listed below: 1. The Matanuska River will receive treated effluent as it currently does. 2. Effluent quality would

More information

Case History: Anaerobic and Aerobic Treatment of Textile Wastes at South Carolina Textile Plants. Introduction

Case History: Anaerobic and Aerobic Treatment of Textile Wastes at South Carolina Textile Plants. Introduction Case History: Anaerobic and Aerobic Treatment of Textile Wastes at South Carolina Textile Plants Charles C. Ross, P.E. Environmental Treatment Systems, Inc. Atlanta, Georgia John S. Cox, P.E. John S. Cox

More information

Air Connection on Rack. Filtrate Connection on Rack

Air Connection on Rack. Filtrate Connection on Rack What is a membrane? Module with Flow holes Air Connection on Rack Filtrate Connection on Rack 1 module 1rack Goal is to use membranes to separate or filter solids, organisms, and molecules from the liquid

More information

Anderson Water Pollution Control Plant

Anderson Water Pollution Control Plant City of Anderson Wastewater Division Public Works Director Jeff Kiser Chief Plant Operator Plant Supervisor Operator III Operator I Phil DeBlasio Mike Hansen Tony Hinchliff Vacant Collections Supervisor

More information

TABLE OF CONTENTS. SECTION 1 INTRODUCTION 1.1 Background Purpose and Scope

TABLE OF CONTENTS. SECTION 1 INTRODUCTION 1.1 Background Purpose and Scope TABLE OF CONTENTS Page EXECUTIVE SUMMARY... ES-1 SECTION 1 INTRODUCTION 1.1 Background... 1-1 1.2 Purpose and Scope... 1-2 SECTION 2 HYDRAULIC AND PROCESS ASSESSMENT 2.1 Data Gathering and Analysis...

More information

MUNICIPALITY OF WEST ELGIN RODNEY WASTEWATER TREATMENT PLANT

MUNICIPALITY OF WEST ELGIN RODNEY WASTEWATER TREATMENT PLANT MUNICIPALITY OF WEST ELGIN RODNEY WASTEWATER TREATMENT PLANT 214 ANNUAL REPORT uary 1 to ember 31, 214 Environmental Compliance Approval # 3-871-88-949 Prepared by: Table of Contents Section 1: Overview...

More information

BIOLOGICAL WASTEWATER BASICS

BIOLOGICAL WASTEWATER BASICS BIOLOGICAL WASTEWATER BASICS PRESENTATION GOALS EXPLAIN DIFFERENT TYPES OF WASTEWATER EXPLAIN THE DIFFERENT BIOLOGICAL SYSTEMS AND HOW THEY FUNCTION. COMPARE AND CONTRAST AEROBIC AND ANAEROBIC SYSTEMS

More information

OPTIMIZATION OF AN INTERMITTENTLY AERATED AND FED SUBMERGED MEMBRANE BIOREACTOR

OPTIMIZATION OF AN INTERMITTENTLY AERATED AND FED SUBMERGED MEMBRANE BIOREACTOR OPTIMIZATION OF AN INTERMITTENTLY AERATED AND FED SUBMERGED MEMBRANE BIOREACTOR P. MELIDIS, S. NTOUGIAS, V. VASILATOU, V. DIAMANTIS and A. ALEXANDRIDIS Laboratory of Wastewater Management and Treatment

More information

Sulaibiya world s largest membrane water reuse project

Sulaibiya world s largest membrane water reuse project Water Technologies & Solutions technical paper Sulaibiya world s largest membrane water reuse project background In May 2001, a consortium including Mohammed Abdulmohsin Al-Kharafi and Sons (The Kharafi

More information

Advanced Wastewater Treatment and Disposal Systems. Wastewater Utility Operation and Management for Small Communities

Advanced Wastewater Treatment and Disposal Systems. Wastewater Utility Operation and Management for Small Communities Advanced Wastewater Treatment and Disposal Systems Wastewater Utility Operation and Management for Small Communities Preliminary Treatment Primary Treatment Secondary Treatment Tertiary Treatment Disinfection

More information

ATTACHMENT 1 GENERAL FACILITY INFORMATION. BOD5 mg/l mg/l TSS mg/l mg/l NH3-N mg/l mg/l

ATTACHMENT 1 GENERAL FACILITY INFORMATION. BOD5 mg/l mg/l TSS mg/l mg/l NH3-N mg/l mg/l ATTACHMENT 1 GENERAL FACILITY INFORMATION 1. Facility Name: 2. Type of Facility: 3. Population Served: Present: Design: 4. Flow: Average Maximum Peak 5. Water Quality: Present Design Assumed Actual Source:

More information

BIO-BATCH TM. Sequencing Batch Reactor (SBR) Water & Wastewater Treatment

BIO-BATCH TM. Sequencing Batch Reactor (SBR) Water & Wastewater Treatment BIO-BATCH Sequencing Batch Reactor (SBR) Napier-Reid s Bio-Batch SBR is an effective aerobic biological system to remove pollutants i.e. BOD, COD, Suspended Solids, Nitrogen and Phosphorous from municipal

More information

Is membrane filtration worth it?

Is membrane filtration worth it? Is membrane filtration worth it? A case study of 3 municipal MBR s in Michigan and their operational experiences. Joe Hebert - Ottawa County Public Utilities 1 Who are these MBR s? North Kent Sewer Authority,

More information

Membrane Bioreactors

Membrane Bioreactors Membrane Bioreactors Prepared By: Kiera S. Fitzgerald, P.E. TSG Technologies, Inc. 2401 NE 18 th Terr. Suite B Gainesville, Fl 32609 (352) 371-6925 x 305 June 2008 Proprietary Notice TSG Technologies,

More information

Providing Infrastructure Redundancy at the Rocky River WWTP. Timothy McCann AECOM Keith Bovard Rocky River WWTP

Providing Infrastructure Redundancy at the Rocky River WWTP. Timothy McCann AECOM Keith Bovard Rocky River WWTP Timothy McCann AECOM Keith Bovard Rocky River WWTP WWTP Infrastructure Redundancy Redundancy As NASA Would Say: A Backup Plan for the Backup Plan Nuclear Power Plant Wastewater Treatment Plant Page 3 Infrastructure

More information

Traditional Treatment

Traditional Treatment Objectives To describe 2 types of treatment options that use aerobic digestion to lower organic compounds found in domestic wastewater To describe situations where these systems may be useful Traditional

More information

HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY

HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY ABSTRACT Francis J. Brady Koch Membrane Systems, Inc.

More information

The Application of Low Energy MBR in Landfill Leachate Treatment

The Application of Low Energy MBR in Landfill Leachate Treatment The Application of Low Energy MBR in Landfill Leachate Treatment Antony Robinson, Wehrle Environmental Abstract Cross-flow Membrane Bioreactor (MBR) is a leachate treatment technology that has seen widespread

More information

Membrane Bio-Reactors (MBRs) The Future of Wastewater Technology, Science and Economy Aspects

Membrane Bio-Reactors (MBRs) The Future of Wastewater Technology, Science and Economy Aspects Membrane Bio-Reactors (MBRs) The Future of Wastewater Technology, Science and Economy Aspects Glen T. Daigger, Ph.D., P.E., DEE, NAE Senior Vice President and Chief Technology Officer CH2M HILL Presented

More information

Aqua-Aerobic MBR Topics

Aqua-Aerobic MBR Topics Aqua-Aerobic MBR Topics Aqua-Aerobic Systems KMS Partnership Traditional MBR Approach Aqua-Aerobic Time-managed Biological Approach Bioreactor Operation & Membrane Integration Traditional Membrane Issues

More information

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ENHANCING THE PERFORMANCE OF OXIDATION DITCHES Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ABSTRACT Oxidation ditches are very popular wastewater treatment

More information

MEMBRANE BIOREACTOR NIHAR DOCTOR. Director

MEMBRANE BIOREACTOR NIHAR DOCTOR. Director TM MEMBRANE BIOREACTOR NIHAR DOCTOR Director en-vısı n Enviro Technologies Pvt. Ltd. (Pollution Control Consultants & Engineers) Shree Ram Complex, 2 nd Floor, Above Bank Of India, Near Kargil Chowk, Surat

More information

NC-PC Industry Day Pretreatment 101. Industrial Waste Impacts on POTW Treatment Processes. Dawn Padgett Operations Manager Charlotte Water

NC-PC Industry Day Pretreatment 101. Industrial Waste Impacts on POTW Treatment Processes. Dawn Padgett Operations Manager Charlotte Water NC-PC Industry Day Pretreatment 101 Industrial Waste Impacts on POTW Treatment Processes Dawn Padgett Operations Manager Charlotte Water NC-PC Industry Day Definitions BOD Amount of oxygen consumed by

More information

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION The City of London operates five Wastewater Treatment Plants namely: Adelaide, Greenway, Oxford, Pottersburg

More information

Lowering The Total Cost Of Operation

Lowering The Total Cost Of Operation Lowering The Total Cost Of Operation The system removes more solids than conventional clarification, so filters can run longer between backwash cycles. Fewer backwash cycles means less backwash water,

More information

Zero Liquid Discharge Project Extends Potable Water Supplies

Zero Liquid Discharge Project Extends Potable Water Supplies http://dx.doi.org/10.5991/opf.2014.40.0078 Ryan R. Popko, PE, and Phillip J. Locke, PE, are with McKim & Creed (www.mckimcreed.com), Clearwater, Fla. Fred J. Greiner is with the city of Palm Coast, Fla.

More information

MEMBRANE BIO-REACTOR. Prashanth N 1 1. INTRODUCION

MEMBRANE BIO-REACTOR. Prashanth N 1 1. INTRODUCION International Journal of Latest Trends in Engineering and Technology Vol.(7)Issue(3), pp. 296 301 DOI: http://dx.doi.org/10.21172/1.73.540 e ISSN:2278 621X MEMBRANE BIO-REACTOR Prashanth N 1 ABSTRACT:

More information

Turbo4bio System For the Treatment of Sewage & Organic Effluents

Turbo4bio System For the Treatment of Sewage & Organic Effluents Turbo4bio System For the Treatment of Sewage & Organic Effluents Dr.Hans. H.Badreddine President Turbo4bio Page 1 Executive Summary The Turbo4bio system has been patented in the UK and Europe by Hans Bioshaft

More information

Trident. Package Water Treatment System

Trident. Package Water Treatment System Trident Package Treatment System The Trident Package Treatment System When Microfloc products first introduced the Trident technology, it represented a significant advancement in water and wastewater treatment

More information

Reclaimed Waste Water for Power Plant Cooling Tower Water & Boiler Feed Make-up. Richard Coniglio, Business Product Manager

Reclaimed Waste Water for Power Plant Cooling Tower Water & Boiler Feed Make-up. Richard Coniglio, Business Product Manager Reclaimed Waste Water for Power Plant Cooling Tower Water & Boiler Feed Make-up Richard Coniglio, Business Product Manager 70% Covered with Water 3% is Fresh Water 1% of the Fresh Water is only accessible.

More information

Altoona Westerly Wastewater Treatment Facility BNR Conversion with Wet Weather Accommodation

Altoona Westerly Wastewater Treatment Facility BNR Conversion with Wet Weather Accommodation Pennsylvania Water Environment Federation PennTEC Annual Technical Conference June 4, 2013 Altoona Westerly Wastewater Treatment Facility BNR Conversion with Wet Weather Accommodation Presented by: Jim

More information

by M k h GROVER Degremont

by M k h GROVER Degremont Innovative Technologies for Urban Waste Water Treatment by M k h GROVER Mukesh Degremont 4th March2013 Sewage a complex waste water URBAN WASTE WATER - SEWAGE Source of Foul odour Infectious Diseases Surface

More information

Koch Membrane Systems, Inc. Matias Amor Regional Sales Manager. WEX Casablanca Nov 2014

Koch Membrane Systems, Inc. Matias Amor Regional Sales Manager. WEX Casablanca Nov 2014 Koch Membrane Systems, Inc. Matias Amor Regional Sales Manager WEX Casablanca Nov 2014 Koch Industries Transforming Daily Life TM Roots in refining industry Global presence in nearly 60 countries About

More information

The Municipality of North Grenville

The Municipality of North Grenville A solution is required to increase the peak flow capacity of the Kemptville WPCP, a conventional activated sludge process, within a small footprint while maintaining good effluent quality. Location: Kemptville

More information

No-Holds-Barred Match: RBC vs. MBR

No-Holds-Barred Match: RBC vs. MBR No-Holds-Barred Match: RBC vs. MBR Northeast Onsite Wastewater Short Course & Exhibition April 6 th, 2016 Erin K. Moore, PE Services provided in NY as T&B Engineering, PC Overview Evaluation target Historic

More information

SECTION 9.0 SEWPCC SECOND PRIORITY CONTROL ALTERNATIVES

SECTION 9.0 SEWPCC SECOND PRIORITY CONTROL ALTERNATIVES SECTION 9.0 SEWPCC SECOND PRIORITY CONTROL ALTERNATIVES 9.1 ALTERNATIVES CONSIDERED FOR SEWPCC 9.1.1 Preamble Table 9.1 below indicates the target ammonia concentrations for the Second Priority Levels

More information

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Growing global demand for clean water and increasing environmental concerns make membrane filtration the technology of choice

More information

Review of WEFTEC 2016 Challenge & Overview of 2017 Event. Malcolm Fabiyi, PhD, MBA Spencer Snowling, PhD. P.Eng

Review of WEFTEC 2016 Challenge & Overview of 2017 Event. Malcolm Fabiyi, PhD, MBA Spencer Snowling, PhD. P.Eng Review of WEFTEC 2016 Challenge & Overview of 2017 Event Malcolm Fabiyi, PhD, MBA Spencer Snowling, PhD. P.Eng Agenda Review 2016 Challenge Provide overview of updates to 2017 event Frequency WEFTEC Scores

More information

Assuming 100 gallons per capita per day, and 3 people per REU, design flows for the development are proposed to be:

Assuming 100 gallons per capita per day, and 3 people per REU, design flows for the development are proposed to be: Andelina Farms Wastewater Treatment Plant Preliminary Basis of Design May 2018 Andelina Farms is a proposed Planned Unit Development in Saline Township located along US-12 just west of the City of Saline.

More information

Recycling of Food Processing Wastewater to Potable Water Standards

Recycling of Food Processing Wastewater to Potable Water Standards Recycling of Food Processing Wastewater to Potable Water Standards The issues surrounding wastewater recycling in the food and drinks sector are generally well known. Over the past ten years a UK owned

More information

HUBER Vacuum Rotation Membrane VRM Bioreactor

HUBER Vacuum Rotation Membrane VRM Bioreactor HUBER Vacuum Rotation Membrane VRM Bioreactor VRM The rotating plate membrane for clean water applications. The future-oriented solution designed for the ever increasing requirements in wastewater treatment

More information

MUNICIPALITY OF WEST ELGIN WEST LORNE WASTEWATER TREATMENT PLANT

MUNICIPALITY OF WEST ELGIN WEST LORNE WASTEWATER TREATMENT PLANT MUNICIPALITY OF WEST ELGIN WEST LORNE WASTEWATER TREATMENT PLANT 214 ANNUAL REPORT uary 1 to ember 31, 214 Environmental Compliance Approval # 3-442-9-938 Prepared by: Table of Contents Section 1: Overview...

More information

Need-to-Know Criteria Wastewater Treatment Operator Class II

Need-to-Know Criteria Wastewater Treatment Operator Class II 2017 Need-to-Know Criteria Wastewater Treatment Operator Class II A Need-to-Know Guide when preparing for the ABC Wastewater Treatment Operator Class II Certification Exam Before You Dive In What is ABC

More information

MBR MRI BIO-CEL. Ultra-Effective, Ultra-Filtration. MRI Bio-Cel MBR. Meurer Research, Inc Joyce Drive (303) FAX (303)

MBR MRI BIO-CEL. Ultra-Effective, Ultra-Filtration. MRI Bio-Cel MBR. Meurer Research, Inc Joyce Drive (303) FAX (303) Meurer Research, Inc. 6270 Joyce Drive Golden, Colorado 80403 (303) 279-8373 FAX (303) 279-8429 Visit www.meurerresearch.com for more information. 2009 Meurer Research, Inc. All rights reserved. Bio-Cel

More information

Compact Waste Water Treatment MBR /MBBR Technology

Compact Waste Water Treatment MBR /MBBR Technology Compact Waste Water Treatment MBR /MBBR Technology 1 Minimal Operation and Maintenance Costs and use of Chemicals 2 Recycle and Reuse water for Irrigation and Recreation 3 Save Water, Energy, Money and

More information

Low Pressure Membrane Filtration System Operations

Low Pressure Membrane Filtration System Operations Low Pressure Membrane Filtration System Operations Nick Lucas MISCO Water New Mexico PWO Seminar Agenda Membrane Basics Comparison to Conventional Treatment Systems Drivers & Applications Operations Discussion

More information

City of Leadwood Wastewater System Engineering Report

City of Leadwood Wastewater System Engineering Report City of Leadwood Wastewater System Engineering Report DRAFT H2O C Engneering www.h2oc.com 877-22-WATER Background The purpose of this report is to describe the City of Leadwood s wastewater system (System

More information

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION

CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION CITY OF LONDON ENVIRONMENTAL & ENGINEERING SERVICES WASTEWATER TREATMENT OPERATIONS DIVISION The City of London operates six Wastewater Treatment Plants namely: Greenway, Pottersburg, Vauxhall, Adelaide,

More information

6.2.1 Intermediate Pumping Overview

6.2.1 Intermediate Pumping Overview 6.2.1 Intermediate Pumping Overview The intermediate pumps are the feed pumps to the MBR system. The pumps take flow from the primary effluent channel and pump it to the channel in front of the fine screens.

More information

Fremont Water Pollution Control Center Plant Expansion for Nutrient Removal and Wet Weather Flow Treatment

Fremont Water Pollution Control Center Plant Expansion for Nutrient Removal and Wet Weather Flow Treatment OWEA 2013 Annual Conference June 19, 2013 Fremont Water Pollution Control Center Plant Expansion for Nutrient Removal and Wet Weather Flow Treatment Jeff Lamson, Superintendent, WPCC Robert Hrusovsky,

More information

Packaged Wastewater Treatment Systems for Individual Homes and Small Communities. Mark Gross Orenco Systems, Inc. Sutherlin, OR USA.

Packaged Wastewater Treatment Systems for Individual Homes and Small Communities. Mark Gross Orenco Systems, Inc. Sutherlin, OR USA. Packaged Wastewater Treatment Systems for Individual Homes and Small Communities Mark Gross Orenco Systems, Inc. Sutherlin, OR USA Abstract Packaged or pre-engineered wastewater treatment systems are required

More information

Sanitary and Environmental Engineering I (4 th Year Civil)

Sanitary and Environmental Engineering I (4 th Year Civil) Sanitary and Environmental Engineering I (4 th Year Civil) Prepared by Dr.Khaled Zaher Assistant Professor, Public Works Engineering Department, Faculty of Engineering, Cairo University Wastewater Flow

More information

REHABILITATION OF THE ROCKAWAY BEACH MISSOURI WASTEWATER TREATMENT PLANT TURNING AROUND A CHRONICALLY FAILED SYSTEM

REHABILITATION OF THE ROCKAWAY BEACH MISSOURI WASTEWATER TREATMENT PLANT TURNING AROUND A CHRONICALLY FAILED SYSTEM REHABILITATION OF THE ROCKAWAY BEACH MISSOURI WASTEWATER TREATMENT PLANT TURNING AROUND A CHRONICALLY FAILED SYSTEM THE PROBLEMS POOR EFFLUENT QUALITY BOD 5 87 MG/L TSS 105 MG/L E.COLI - > 2420 MPN TOTAL

More information

CAUSTIC RECOVERY USING MEMBRANE FILTRATION

CAUSTIC RECOVERY USING MEMBRANE FILTRATION ASME 2009 Citrus Engineering Conference CEC2009 March 19, 2009, Lake Alfred, Florida, USA CAUSTIC RECOVERY USING MEMBRANE FILTRATION CEC2009-5507 Mike Grigus Process Engineering Manager, GEA Filtration

More information

Containerized Ultrafiltration (UF) Water Treatment Plant

Containerized Ultrafiltration (UF) Water Treatment Plant Containerized Ultrafiltration (UF) Water Treatment Plant Small UF System Containerized UF Water Treatment Plant This UF containerized water treatment plant can be used to treat water from a variety of

More information

Post-Aerobic Digester with Bioaugmentation Pilot Study City of Meridian, ID WWTP PNCWA 2010

Post-Aerobic Digester with Bioaugmentation Pilot Study City of Meridian, ID WWTP PNCWA 2010 Post-Aerobic Digester with Bioaugmentation Pilot Study City of Meridian, ID WWTP by: William Leaf Adrienne Menniti Bruce Johnson CH2M HILL, Inc. Clint Dolsby Tracy Crane City of Meridian October 26, 21

More information

CORPORATION THE EXPERIENCED LEADER IN SEQUENCING BATCH REACTOR TECHNOLOGY

CORPORATION THE EXPERIENCED LEADER IN SEQUENCING BATCH REACTOR TECHNOLOGY ISAM SEQUENCING BATCH REACTOR PROCESS TRUST FLUIDYNE S EXPERIENCE The Fluidyne ISAM Sequencing Batch Reactor (SBR) system incorporates the latest and most innovative technology and over two decades of

More information

COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL

COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL COMPARISON OF SBR AND CONTINUOUS FLOW ACTIVATED SLUDGE FOR NUTRIENT REMOVAL Alvin C. Firmin CDM Jefferson Mill, 670 North Commercial Street Suite 201 Manchester, New Hampshire 03101 ABSTRACT Sequencing

More information

PERMIT TO OPERATE SILVER CLOUD CT., MONTEREY, CA TELEPHONE (831) FAX (831)

PERMIT TO OPERATE SILVER CLOUD CT., MONTEREY, CA TELEPHONE (831) FAX (831) FFR MONTEREY BAY UNIFIED AIR POLLUTION CONTROL DISTRICT PERMIT TO OPERATE 24580 SILVER CLOUD CT., MONTEREY, CA 93940 TELEPHONE (831) 647-9411 FAX (831) 647-8501 15018 OPERATION UNDER THIS PERMIT MUST BE

More information

ANAEROBIC MEMBRANE BIOREACTOR (ANMBR) SUCCESSFULLY TREATING HIGH-STRENGTH FOOD PROCESSING WASTEWATER FOR SEVEN YEARS. Abstract

ANAEROBIC MEMBRANE BIOREACTOR (ANMBR) SUCCESSFULLY TREATING HIGH-STRENGTH FOOD PROCESSING WASTEWATER FOR SEVEN YEARS. Abstract ANAEROBIC MEMBRANE BIOREACTOR (ANMBR) SUCCESSFULLY TREATING HIGH-STRENGTH FOOD PROCESSING WASTEWATER FOR SEVEN YEARS Shannon R. Grant, ADI Systems Inc., 370 Wilsey Road, Fredericton, NB, Canada E3B 6E9

More information

TABLE OF CONTENTS SCHEDULE 18 (TECHNICAL REQUIREMENTS) DBFO AGREEMENT SECTION 2 - WATER AND WASTEWATER SYSTEMS EXECUTION VERSION

TABLE OF CONTENTS SCHEDULE 18 (TECHNICAL REQUIREMENTS) DBFO AGREEMENT SECTION 2 - WATER AND WASTEWATER SYSTEMS EXECUTION VERSION TABLE OF CONTENTS 2. Description of Water and Wastewater Systems... 2 2.1 General... 2 2.2 Existing Facilities Reference and Record Documents... 2 2.3 Existing Infrastructure Location and Legal Description...

More information

AquaPASS. Aqua MixAir System. Phase Separator. System Features and Advantages. Anaerobic. Staged Aeration. Pre-Anoxic.

AquaPASS. Aqua MixAir System. Phase Separator. System Features and Advantages. Anaerobic. Staged Aeration. Pre-Anoxic. PHASED ACTIVATED SLUDGE SYSTEM PHASED ACTIVATED SLUDGE SYSTEM Aqua-Aerobic Systems has led the industry in time-managed, biological technology since 1984. In 2004, Aqua-Aerobic applied its expertise in

More information

Attachment N o F Control & Monitoring

Attachment N o F Control & Monitoring Attachment N o F Control & Monitoring Attachment F1: Treatment, Abatement and Control Systems Air There is no treatment or abatement systems required for the minor air emission points or the potential

More information

Reclamation of Sand Filter Backwash Effluent using HYDRAcap LD Capillary UF Membrane Technology

Reclamation of Sand Filter Backwash Effluent using HYDRAcap LD Capillary UF Membrane Technology Reclamation of Sand Filter Backwash Effluent using HYDRAcap LD Capillary UF Membrane Technology By Mark Wilf, Ph. D., Graeme Pearce Ph. D., of Hydranautics, Oceanside, CA, and Julie Allam MSc., Javier

More information

City of Andover, Kansas Energy Assessment-Wastewater Treatment Plant

City of Andover, Kansas Energy Assessment-Wastewater Treatment Plant City of Andover, Kansas Energy Assessment-Wastewater Treatment Plant April 7, 2014 Prepared by Jerry Blain, P.E., Project Associate Environmental Finance Center Funding for this Energy Assessment was provided

More information

Dr Martin Peter *, Joachim Scholz & Victor Ferre. Contents

Dr Martin Peter *, Joachim Scholz & Victor Ferre. Contents Feedback from a metal processing industry MBR Plant in its 3rd Year of Operation:- An Analysis of the Flux, Effluent Quality and Membrane Lifetime Data to date Authors: Dr Martin Peter *, Joachim Scholz

More information

Need-to-Know Criteria Wastewater Treatment Operator Class I

Need-to-Know Criteria Wastewater Treatment Operator Class I 2017 Need-to-Know Criteria Wastewater Treatment Operator Class I A Need-to-Know Guide when preparing for the ABC Wastewater Treatment Operator Class I Certification Exam Before You Dive In What is ABC

More information

Wastewater Treatment Processes

Wastewater Treatment Processes Wastewater Treatment Processes CEL212 Environmental Engineering (2 nd Semester 2010-2011) Dr. Arun Kumar (arunku@civil.iitd.ac.in) Department of Civil Engineering Indian Institute of Technology (Delhi)

More information

CLR Process. Vertical Loop Configuration

CLR Process. Vertical Loop Configuration CLR Process Vertical Loop Configuration Vertical Configuration System Flexibility Parallel Operation Raw wastewater and return activated sludge are introduced at a single point in each standard CLR basin.

More information

Energy Use Impacts of Flow Conveyance Alternatives for Membrane Bioreactor (MBR) Facilities

Energy Use Impacts of Flow Conveyance Alternatives for Membrane Bioreactor (MBR) Facilities Energy Use Impacts of Flow Conveyance Alternatives for Membrane Bioreactor (MBR) Facilities Thor Young 1* and Kristi Perri 1 1 GHD Inc., Bowie, Maryland * Email: thor.young@ghd.com ABSTRACT Flow conveyance

More information

ADI MEMBRANE BIOREACTOR (MBR) AEROBIC WASTEWATER TREATMENT SOLUTION

ADI MEMBRANE BIOREACTOR (MBR) AEROBIC WASTEWATER TREATMENT SOLUTION REACTION TANKS ADI MEMBRANE BIOREACTOR (MBR) AEROBIC WASTEWATER TREATMENT SOLUTION THE TECHNOLOGY The ADI membrane bioreactor (MBR) is an aerobic activated sludge treatment system that improves treatment

More information

AMPC Wastewater Management Fact Sheet Series Page 1

AMPC Wastewater Management Fact Sheet Series Page 1 Nitrogen removal Nitrogen present in meat processing wastewater are termed a nutrient, since they are essential elements for life. They largely derive from proteins dissolved into wastewater from meat

More information

AMPC Wastewater Management Fact Sheet Series Page 1

AMPC Wastewater Management Fact Sheet Series Page 1 Nitrogen removal Nitrogen present in meat processing wastewater are termed a nutrient, since they are essential elements for life. They largely derive from proteins dissolved into wastewater from meat

More information