Chapter 36: Population Growth

Size: px
Start display at page:

Download "Chapter 36: Population Growth"

Transcription

1 Chapter 36: Population Growth

2 Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum population size required for its survival

3 Growth Rate: change in population size per unit time e.g. 10% increase per year accounts for births and deaths Growth rate = Birth rate - Death rate e.g. 10% = 15% - 5% A population is stable, at equilibrium if: Birth rate = Death rate (immigration, emigration also affect population size)

4 Population Growth Patterns Unchecked population growth will be exponential population increase by the same factor over time (e.g., doubling per generation) can result in a population explosion Exponential growth will eventually resolve into one of 2 basic growth patterns

5 J-curve Carrying Capacity S-curve equilibrium)

6 J-curve Growth Occurs when populations undergo exponential growth beyond carrying capacity followed by a crash

7 S-curve Growth

8 S-curve growth (aka logistic ) population level hovers around carrying capacity due to environmental resistance typical of established species in stable ecosystems J-curve growth exponential growth beyond carrying capacity followed by crash associated w/ introduced species, loss of predator, habitats that fluctuate may be temporary & resolve to S-curve over time

9 Environmental Resistance All factors (biotic & abiotic) that limit or resist population increase Density-dependent factors: environmental resistance factors that change in response to population density usually biotic (predators, disease, food supply) provide more resistance as population expands, less as it shrinks (keeps pop. at carrying capacity) Density-independent factors: resistance that is unrelated to population density usually abiotic (changes in weather, fire, )

10 Predator/Prey Population Cycles Predators provide a form of density-dependent environmental resistance: predator numbers increase/decrease in response to prey populations 160 Snowshoe hare Hare population size (thousands) Lynx Lynx population size (thousands) keeps prey populations in check Year

11 Key Terms for Chapter 36 population, growth rate carrying capacity, critical number J-curve, S-curve growth environmental resistance

12 Chapter 37: Communities & Ecosystems 1. Biological Communities 2. Energy Flow in Ecosystems 3. The Cycling of Matter

13 1. Biological Communities

14 Communities and Niches Community: all interacting, living organisms in a given region consists of many different & diverse species, each with a unique niche or role Niche: sum of a species use of resources food, living space, environmental requirements unique for each species, but can overlap between species

15 How do Species Interact?

16 Competition Intraspecific: within same species most common type of competition members of same species share same niche important part of natural selection Interspecific: between different species less common since different species tend to have different niches occurs between species with overlapping niches e.g., plants competing for space, sunlight & water

17 Competitive Exclusion If 2 different species occupy same niche, one will outcompete and eliminate the other evolution selects for species with unique niches

18 Predator & Prey All species that don t produce their own food (e.g., photosynthesis) or feed on dead, waste material (detritus feeders) prey on other organisms: 3 basic Predator Preyrelationships: *Carnivore Herbivore Herbivore Producer (plant) Parasite Host

19 Predators have an Important Role Keep other species in balance, their removal can lead to overgrowth of prey, severely disturbing ecosystem balance. Species with essential roles for ecosystem balance are called keystone species: usually predators that prevent domination of the ecosystem by one species e.g. starfish control mussel populations otters & lobsters control urchin populations wolves control deer populations

20 Symbiotic Relationships Symbiosis: a close, prolonged association between two species Mutualism (both species benefit) e.g., plants & insects; coral & algae many species depend on such relationships for survival Commensalism (one benefits, other unharmed) e.g., barnacles on a whale, epiphytes Parasitism (one benefits, one is harmed) e.g., mistletoe, tapeworms host usually survives

21 2. Energy Flow in Ecosystems

22 What is an Ecosystem? a distinct biological community and its abiotic environment biotic = living or derived from living things living organisms and their products, remains abiotic = unrelated to living things non-living matter (water, air, minerals ) ecosystems are functional units of sustainable life

23 Examples of Ecosystems ecosystems are defined by their plant life biomass varies greatly among ecosystems biomass = dry weight of living material

24 Energy and Matter in Ecosystems Energy constantly flows through ecosystems solar energy is the ultimate source (usually) converted to chemical PE via photosynthesis passes through the food web, gradually being dissipated as heat Matter is recycled within ecosystems organic material is continually built and broken down using the same elements (requires energy!) **Earth continually gains and loses energy, while matter is essentially confined to the planet**

25 Energy flows in/out, Matter is recycled Energy flow Chemical cycling Light energy Chemical energy Heat energy Chemical elements

26 Energy is Transferred by Feeding There are 3 major trophic (feeding) categories: 1) Producers (autotrophs) convert energy of sunlight to food energy by photosynthesis 2) Consumers require food produced by other living organisms feed on producers, or each other herbivores, carnivores, omnivores

27 3) Detritus Feeders feed on nonliving organic matter dead organisms, organic waste include the decomposers (mostly bacteria & fungi) break down organic material completely very important for recycling nutrients **Without detritus feeders, ecosystems would collapse!**

28 **There is also a detritus food chain ** Trophic Relationships Trophic levels of the Food Chain : 1 st trophic level = producers photosynthesizers (plants, phytoplankton) 2 nd trophic level = herbivores primary consumers eat producers 3 rd trophic level = carnivores secondary consumers eat herbivores 4 th trophic level = bigger carnivores tertiary consumers eat carnivores

29 Trophic level Quaternary conusumers Hawk Killer whale Tertiary consumers Terrestrial food chain Snake Mouse Secondary consumers Tuna Herring Aquatic food chain Primary consumers Grasshopper Zooplankton Producers Plant Phytoplankton

30 Energy Transfer is Inefficient Tertiary consumers Secondary consumers Primary consumers 1,000 kcal 10 kcal 100 kcal ~10% of food energy is transferred to each successive trophic level! Producers 10,000 kcal 1,000,000 kcal of sunlight

31 Where does this Food Energy go? Most is lost as heat due to respiration used to meet the energy needs of the organism Some is not consumed not all potential food is eaten Not everything is digested digestion is usually incomplete, and some material is indigestible (fiber, etc) Only ~10% is incorporated into organic molecules i.e., potential food for other organisms thus biomass decreases by ~90% at each trophic level

32 Energy & Human Food Production Trophic level Secondary consumers Human meat-eaters Primary consumers Human vegetarians Cattle Producers Corn Corn Due to inefficient food energy transfer, animal-based food production is much less efficient and more expensive than plant-based food production.

33 3. The Cycling of Matter

34 All matter in Ecosystems is Recycled We will focus on the cycling of 3 key elemental nutrients between abiotic reservoirs and organic material: Carbon Nitrogen Phosphorus

35 The Carbon Cycle CO 2 in atmosphere Photosynthesis Cellular respiration the cycling of carbon between CO 2 & organic molecules Burning of fossil fuels and wood Carbon compounds in water Detritus Higher-level Primary consumers consumers Decomposition

36 Summary of the Carbon Cycle Carbon from CO 2 in the atmosphere or water is fixed into organic molecules by photosynthesis. this is how carbon enters the food web Carbon in organic molecules eventually returns to atmosphere (or water) in molecules of CO 2 due to: respiration fires volcanic activity burning of fossil fuels* ***Increased CO 2 due to fossil fuel burning results in global warming and lowering of ocean ph***

37 The Nitrogen Nitrogen in atmosphere (N 2 ) Cycle Nitrogen fixation Nitrogen-fixing bacteria in root nodules of legumes Nitrogen-fixing soil bacteria Detritivores Decomposition Ammonium (NH 4 + ) Assimilation by plants Nitrates (NO 3 ) Denitrifying bacteria Nitrifying bacteria the cycling of nitrogen between N 2, inorganic ammonium & nitrate ions & organic molecules

38 Summary of the Nitrogen Cycle Nitrogen fixation is one of the most important processes on earth! converts nitrogen compounds in the atmosphere (mainly N 2 ) to ammonium ions (NH 4+ ) nitrifying bacteria convert NH 4+ to nitrate (NO 3- ), the most easily assimilated form of nitrogen for plants plants cannot use atmospheric nitrogen (N 2 ) directly nitrogen thus enters the food web through plants Atmospheric nitrogen is fixed by: cyanobacteria (blue-green algae) in water various soil bacteria and fungi on land

39 more on the Nitrogen Cycle Denitrification is a microbial process that produces N 2 from nitrates returns nitrogen to the atmosphere, completes the cycle Most nitrogen actually cycles between plants, consumers, & detritus feeders which metabolize organic nitrogen compounds back to NH 4 + **Human activity (synthetic fertilizers, fuel burning) results in excess fixed nitrogen entering ecosystems**

40 The Phosphorus Cycle the cycling of phosphorus between inorganic phosphate & organic molecules Geologic uplift of rocks Weathering of rocks Sedimentation Runoff Leaching Soil Rain Plant uptake of PO 4 3 Plants Consumption Decomposition

41 Summary of the Phosphorus Cycle Phosphorus originates as inorganic phosphate (PO 4 3- ) in rocks, leaches into soil & water, and is incorporated into organic compounds by plants Decomposition of dead tissue & animal wastes release inorganic phosphate back into soil to re-enter the food web via plants. **Agricultural runoff (synthetic fertilizer, animal waste), untreated sewage release an excess of phosphorus (& nitrogen) into ecosystems, causing imbalance** due to overgrowth of algae, bacteria & certain plants

42 Key Terms for Chapter 37 ecosystem, community, niche competition, predation, keystone species symbiosis: mutualism, commensalism, parasitism producer, consumer, autotroph, heterotroph herbivore, carnivore, omnivore, detritus feeder trophic levels, food web, biomass Relevant Review Questions: 1-3, 5, 7, 8, 10, 11, 13

Intro to Ecology. Chapter 18

Intro to Ecology. Chapter 18 Intro to Ecology Chapter 18 Interdependence: A Key Theme in Ecology Ecology- study of the interactions of living organisms w/ one another and w/ their physical environment (soil, water,weather) Interdependence:

More information

Principles of Ecology

Principles of Ecology Principles of Ecology Ecology Study of interactions that take place between organisms and their environments Living things are affected by nonliving and living parts of the environment Abiotic factors:

More information

Studying organisms in their environment

Studying organisms in their environment Ecosystems (Ch. 3) Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How does energy move through the

More information

Studying organisms in their environment

Studying organisms in their environment Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem? How does

More information

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 34 Nature of Ecosystems 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 34.1 The Biotic Components of Ecosystems Ecosystems Abiotic components include

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Principles of Ecology

Principles of Ecology Principles of Ecology 1 Keystone Anchors Describe ecological levels of organization in the biosphere. o Describe the levels of ecological organization (i.e., organism, population, community, ecosystem,

More information

Chapter 37 Communities and Ecosystems

Chapter 37 Communities and Ecosystems Chapter 37 Communities and Ecosystems PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction Natural

More information

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Biology

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Biology SY 2018/2019 1 st Final Term Revision Student s Name: Grade: 10A/B Subject: Biology Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Nutrient Cycling. Hydrologic (Water) Cycle. Nitrogen Cycle: Atmospheric Gases

Nutrient Cycling. Hydrologic (Water) Cycle. Nitrogen Cycle: Atmospheric Gases Nutrient Cycling Laws of Energy and Matter Conservation of Matter In any physical or chemical change, matter is neither created nor destroyed, but merely changes from one form to another Conservation of

More information

Ecology Review. Name: Date: Period:

Ecology Review. Name: Date: Period: Ecology Review Name: Date: Period: 1. Define the terms ecology and ecosystem. Ecology - The study of the interactions among organisms and their environment Ecosystem - collection of all the organisms that

More information

Ecology. Mrs. Flannery

Ecology. Mrs. Flannery Ecology Mrs. Flannery What is ECOLOGY?? Ecology is the scientific study of the interactions between organisms and their environments. Biotic factors = living components of the environment. Abiotic factors

More information

3-1 What is Ecology?! The study of the. interactions among organisms and between organisms and their environment

3-1 What is Ecology?! The study of the. interactions among organisms and between organisms and their environment Chapters 3,4 & 5 1 3-1 What is Ecology? The study of the interactions among organisms and between organisms and their environment 2 Levels of Ecological Organization 3 3-2 Energy Flow main source of energy

More information

Producers or Autotrophs: Consumers or Heterotrophs: Decomposers or Heterotrophs:

Producers or Autotrophs: Consumers or Heterotrophs: Decomposers or Heterotrophs: Name Date Period All About Ecology Answer the following questions: 1. What is Ecology? 2. What does the Biosphere contain? 3. All living things depend on two main factors for their survival. Name, describe

More information

Energy. Raw materials to make building blocks of life. From sun or chemicals. From food

Energy. Raw materials to make building blocks of life. From sun or chemicals. From food Energy From sun or chemicals Raw materials to make building blocks of life From food Sunlight is the main energy source for life on Earth Autotrophs will use energy from the sun to convert carbon dioxide

More information

Ecosystems. Physical Laws Law of Conservation of Energy - Energy can not be created or destroyed, only transformed. Chapter 55: Ecosystems. Fig. 55.

Ecosystems. Physical Laws Law of Conservation of Energy - Energy can not be created or destroyed, only transformed. Chapter 55: Ecosystems. Fig. 55. Chapter 55: Ecosystems 1 Ecosystems consist of the living organisms in a community as well as the abiotic factors Microecosystem Two important considerations: Energy Flow Chemical cycling Fig. 55.1 2 Physical

More information

Chapter 13 Principles of Ecology DAY ONE

Chapter 13 Principles of Ecology DAY ONE Chapter 13 Principles of Ecology DAY ONE What is Ecology? It is the scientific study of interactions among organisms and between organisms and their environment, or surroundings. The Nonliving Environment

More information

4/13/2015. The Biosphere

4/13/2015. The Biosphere The Biosphere Ecology- the scientific study of interactions among organisms and between organisms and their environment. The word ecology was first used in 1866 by Ernst Haeckel. Biosphere- contains the

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships Ecologists study environments at different

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

LEARNING OUTCOME B1. Biomes. Biomes. Factors Creating Biomes 26/10/2011. Section Biomes. Factors Creating Biomes

LEARNING OUTCOME B1. Biomes. Biomes. Factors Creating Biomes 26/10/2011. Section Biomes. Factors Creating Biomes Section 1.1 - Biomes LEARNING OUTCOME B1 Key Terms abiotic adaptation biome biotic climate climatograph Science 10 Biology Biomes Biomes are the largest division of the largest division of the biosphere.

More information

Food Chains, Food Webs, and the Transfer of Energy

Food Chains, Food Webs, and the Transfer of Energy Food Chains, Food Webs, and the Transfer of Energy What is Ecology? Ecology is the scientific study of interactions between different organisms and between organisms and their environment or surroundings

More information

Chapter 37 Communities and Ecosystems

Chapter 37 Communities and Ecosystems Chapter 37 Communities and Ecosystems PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction Natural

More information

So... Chapter 3. Ecosystems are the most complex level of biological organization:

So... Chapter 3. Ecosystems are the most complex level of biological organization: So... Principles of Ecology Chapter 3 We can't solve problems by using the same kind of thinking we used when we created them. ~Albert Einstein Ecological Concepts Ecology: Study of how organisms interact

More information

Ecology is the study of the interactions among living things, and between living things and their surroundings.

Ecology is the study of the interactions among living things, and between living things and their surroundings. Ecologists study environments at different levels of organization. Ecology is the study of the interactions among living things, and between living things and their surroundings. An organism is an individual

More information

ECOLOGY. The study of how organisms fit into their environment and interact with it and each other.

ECOLOGY. The study of how organisms fit into their environment and interact with it and each other. ECOLOGY The study of how organisms fit into their environment and interact with it and each other. CYCLING OF MATTER habitat: the place where a particular population lives Population: A group of one species

More information

Biology Ecology Unit Chapter 2 Study Guide

Biology Ecology Unit Chapter 2 Study Guide Name: Date: Block: Biology Ecology Unit Chapter 2 Study Guide 1. Directions: Use each of the terms below just once to complete the passage. Ecology Biotic factors Nonliving Environments Atmosphere Humans

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Bio 112 Ecology: Final Practice Exam Multiple Choice

Bio 112 Ecology: Final Practice Exam Multiple Choice Final Exam Topics: 1) Basic Ecological Principles a) Biomes, ecosystems, communities and populations i) Biomes: know the major ones and where they occur ii) Ecosystem: communities and physical environment

More information

Unit 6: Ecosystems Module 15: Ecological Principles

Unit 6: Ecosystems Module 15: Ecological Principles Unit 6: Ecosystems Module 15: Ecological Principles NC Essential Standard: 2.1 Analyze the interdependence of living organisms within their environments Did you know The water you poop in today is the

More information

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers Ecosystem Ecology 1. Overview of material and energy flows in ecosystems 2. Primary production 3. Secondary production and trophic efficiency 4. Ecological Pyramids Trophic levels energy flow through ecosystems

More information

Ecosystems & Energy Chapter 5

Ecosystems & Energy Chapter 5 Ecosystems & Energy Chapter 5 Energy Exchange in Ecosystems Cells Cells - minute compartments in a living organism which carry out processes of life Surrounded by lipid membrane controlling flow of materials

More information

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date Chapter 3 Summary The Biosphere 3 1 What Is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their environment. Earth s organisms live in the biosphere.

More information

1.) What is Ecology? Living world is like a household with an economy every organism plays a role

1.) What is Ecology? Living world is like a household with an economy every organism plays a role Living Environment 1.) What is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings Word was coined in 1866 by a German

More information

Energy. Ecosystem. 2. Energy Transfers. 1. Energy Production. Food Chains. 2. Energy Transfers 9/13/2015. Capacity or ability to do work

Energy. Ecosystem. 2. Energy Transfers. 1. Energy Production. Food Chains. 2. Energy Transfers 9/13/2015. Capacity or ability to do work Ecosystem Energy 1 2 An ecosystem is a self-supporting unit. There are 4 processes that continually take place. 1. Energy Production 4. Recycling Capacity or ability to do work Flows through ecosystems

More information

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem.

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem. Ecosystems Studying Organisms In Their Environment organism population community ecosystem biosphere 1 Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

What does each part of the equation mean? q=cm T

What does each part of the equation mean? q=cm T Assignment #10 Energy Pyramids LO: I can define trophic levels and explain the energy flow. I can apply those ideas to food webs EQ: Where does all the energy from the sun go? (4-5 sentences) LEVEL ZERO

More information

7.2 Communities & Ecosystems. Living Organisms Interacting with Each Other & Their Environments

7.2 Communities & Ecosystems. Living Organisms Interacting with Each Other & Their Environments 7.2 Communities & Ecosystems Living Organisms Interacting with Each Other & Their Environments Main Ideas 1. Organisms both cooperate and compete to increase the chances of survival and reproduction.

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

Population Density Emigration Immigration. Population Crash Predation Symbiosis. Exponential Growth Commensalism Mutualism

Population Density Emigration Immigration. Population Crash Predation Symbiosis. Exponential Growth Commensalism Mutualism Population Density Emigration Immigration Population Crash Predation Symbiosis Exponential Growth Commensalism Mutualism Carrying Capacity Parasitism Logistic Growth Competition Decomposer Limiting Factor

More information

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. Chapter 18 What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. What is Biodiversity? Biodiversity is the sum

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move

More information

Guided Notes Unit 3B: Matter and Energy

Guided Notes Unit 3B: Matter and Energy Name: Date: Block: Chapter 13: Principles of Ecology I. Concept 13.3: Energy in Ecosystems II. a. Review Vocabulary b. Autotrophs Guided Notes Unit 3B: Matter and Energy i. Producers: convert the light

More information

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Name Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Overview: An ecosystem is: All of the organisms living on Earth need to carry out life processes such as

More information

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted COMMUNITIES & ECOSYSTEMS Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted COMMUNITIES & ECOSYSTEMS Ecosystem = groups of organisms living together

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

2.1 Energy Flow in Ecosystems Student Notes

2.1 Energy Flow in Ecosystems Student Notes 2.1 Energy Flow in Ecosystems Student Notes General Information Biomass is Biomass is also sometimes used to measure the mass of organic materials that are used to produce biofuels such as biogas. Biomass

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

Ecology is the study of interactions among organisms and between organisms and their physical environment

Ecology is the study of interactions among organisms and between organisms and their physical environment Chapter 3 and 4 Study Guide Ecology is the study of interactions among organisms and between organisms and their physical environment This includes both biotic and abiotic factors- biotic factors are living

More information

Relationships in Ecosystems

Relationships in Ecosystems Unit 2 Relationships in Ecosystems WARM-UP Questions 1. What do you think the basic needs of life are? 2. What is the environment? 3. How do you define life what are 4 things all living organisms have

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

Chapter 12 & 13. Interactions of life The Nonliving Environment

Chapter 12 & 13. Interactions of life The Nonliving Environment Chapter 12 & 13 Interactions of life The Nonliving Environment BIOSPHERE Biosphere - the part of the Earth that supports life. This includes the top portion of Earth s crust, all the waters that cover

More information

Ecological Levels of Organization

Ecological Levels of Organization This occurs when soil is permanently frozen These biomes have very little precipitation We live in this biome example This consists of all living and nonliving factors This consists of all populations

More information

Reinforcement Unit 5 Resource Book

Reinforcement Unit 5 Resource Book 13.1 ECOLOGISTS STUDY RELATIONSHIPS KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. Ecology is the study of interactions among living things, and between living

More information

1. Energy to do work 2. Raw material to build/repair things (nutrients)

1. Energy to do work 2. Raw material to build/repair things (nutrients) 1. Energy to do work 2. Raw material to build/repair things (nutrients) Living things are built from water Nutrients: carbon, hydrogen, nitrogen, and oxygen 3. Essential nutrients are cycled through environment

More information

Keystone Biology Remediation B4: Ecology

Keystone Biology Remediation B4: Ecology Keystone Biology Remediation B4: Ecology Assessment Anchors: to describe the levels of ecological organization (i.e. organism, population, community, ecosystem, biome, biosphere) (B.4.1.1) to describe

More information

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology is a science of relationships WHAT DO YOU MEAN BY ENVIRONMENT?

More information

Unit 6: Ecosystems Module 15: Ecological Principles

Unit 6: Ecosystems Module 15: Ecological Principles Unit 6: Ecosystems Module 15: Ecological Principles NC Essential Standard: 2.1 Analyze the interdependence of living organisms within their environments Did you know The water you poop in today is the

More information

Classifying our Biotic Environment (Trophic Levels) Ecology. Ecology is study how things interact with other and else in the.

Classifying our Biotic Environment (Trophic Levels) Ecology. Ecology is study how things interact with other and else in the. Ecology Ecology is study how things interact with other and else in the. Ecologists focus their attention on in order to organize their studies. Ecosystems can be very large or very small. For example:

More information

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration?

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Warm Up What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Check your answers: What process do plants use to make sugar? photosynthesis What is chemosynthesis? Organisms

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline. Ecology and Ecosystems

BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline. Ecology and Ecosystems BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline Ecology and Ecosystems I. What is ecology? A. Derived from the Greek: 1. oikos house 2. logos study of 3. study of the house in which

More information

Bio 112 Ecology: Final Study Guide

Bio 112 Ecology: Final Study Guide Bio 112 Ecology: Final Study Guide Below is an outline of the topics and concepts covered on the final exam. This packet also includes a practice test, along with answers to questions 1-44. You may submit

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

Ecology Unit Notes: b. = Individual of a single species in. c. = more than one living in the same area.

Ecology Unit Notes: b. = Individual of a single species in. c. = more than one living in the same area. Ecology Unit Notes: Name: Period: Daily Question: Explain an example of how something non-living affects the ecosystem. Then explain an example of how something living affects the ecosystem. Overview of

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions! What limits the production in ecosystems?! How do nutrients move through the ecosystem?!

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within

More information

Lesson Overview. What is Ecology? Lesson Overview. 3.1 What Is Ecology?

Lesson Overview. What is Ecology? Lesson Overview. 3.1 What Is Ecology? Lesson Overview 3.1 What Is Ecology? Studying Our Living Planet The biosphere consists of all life on Earth and all parts of the Earth in which life exists, including land, water, and the atmosphere. The

More information

A consumer that eats secondary consumers is a tertiary, or third level, consumer. Snakes and hawks are often the tertiary consumers in a food chain.

A consumer that eats secondary consumers is a tertiary, or third level, consumer. Snakes and hawks are often the tertiary consumers in a food chain. Your muscles use energy to help you move, and your nervous system uses energy to help you understand the world around you. But how does your body obtain and use this energy? Animals, including humans,

More information

Ecology the scientific study of interactions between different organisms and between organisms and their environment or surroundings

Ecology the scientific study of interactions between different organisms and between organisms and their environment or surroundings Ecology the scientific study of interactions between different organisms and between organisms and their environment or surroundings Biotic living factors that influence an ecosystem Abiotic non-living

More information

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Cycle Carbon is essential in proteins, fats, and carbohydrates, which make up all organisms Carbon cycle

More information

Ecological Organization Intro to Enviro Expo Part 1

Ecological Organization Intro to Enviro Expo Part 1 Ecological Organization Intro to Enviro Expo Part 1 Key Concepts From way back in Biology: interactions within and among populations nutrient cycling with energy flow through ecosystems; the effects of

More information

Chapter 3 The Biosphere. Section Objectives:

Chapter 3 The Biosphere. Section Objectives: Chapter 3 The Biosphere Section Objectives: Distinguish between the biotic and abiotic factors in the environment. Compare the different levels of biological organization and living relationships important

More information

List the 5 levels of environmental organization, in order, from the lowest level to the highest level.

List the 5 levels of environmental organization, in order, from the lowest level to the highest level. ECOLOGY REVIEW 1 List the 5 levels of environmental organization, in order, from the lowest level to the highest level. 1 List the 5 levels of environmental organization, in order, the lowest level to

More information

SC20F Ecology Unit Review Name:

SC20F Ecology Unit Review Name: SC20F Ecology Unit Review Name: 1. Define the following terms. Give an example where appropriate: a. Ecosystem An area consisting of living organisms and their physical environment b. Habitat - the place

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Ch. 55 Warm-Up 1. Draw an energy pyramid and label the following trophic levels: Primary producer Primary consumer Secondary consumer Tertiary consumer 2. What is an example of an organism at each level

More information

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Life Depends on the Sun Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Guide 34 Ecosystem Ecology: Energy Flow and Nutrient Cycles p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Overview: Ecosystems, Energy, and Matter An ecosystem consists

More information

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS:

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS: CHAPTER 2 BLM 1-19 The Carbon Cycle Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-20 The Carbon Cycle Concept Map Goal Use this page to make a concept map about the carbon cycle. What

More information

Ecology the study of the interactions between organisms and the living and nonliving components of the environment

Ecology the study of the interactions between organisms and the living and nonliving components of the environment Ecology the study of the interactions between organisms and the living and nonliving components of the environment 5/23/14 1 1. Levels of Ecological organization A. Biosphere- Earth, atmosphere and all

More information

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work?

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work? Nutrient Cycles in Ecosystems Textbook pages 68 91 Section 2. 2 Summary Before You Read Like other organisms, your body relies on nutrients to stay healthy. Based on your current understanding, create

More information

Ecosystems Full of Matter, Energy, and Entropy

Ecosystems Full of Matter, Energy, and Entropy Living Environment Ecosystems Ecosystems Full of Matter, Energy, and Entropy 2017-07-18 www.njctl.org Table of Contents: Ecosystems Full of Matter, Energy, and Entropy Click on a topic to go to that section

More information

Do Now. Take out your activity you completed on Friday when I wasn t here!

Do Now. Take out your activity you completed on Friday when I wasn t here! Do Now Take out your activity you completed on Friday when I wasn t here! Biogeochemical Cycles 37.18-37.23 Objectives Identify and describe the flow of nutrients in each biogeochemical cycle Explain the

More information

What is Ecology? Abiotic (non-living) Biotic (living)

What is Ecology? Abiotic (non-living) Biotic (living) ECOLOGY What is Ecology? The scientific study of interactions among organisms and between organisms and their environment, or surroundings Factors involved in ecology Abiotic (non-living) Biotic (living)

More information

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D.

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D. Ecosystem Ecology for Wildlife Scientists Don White, Jr., Ph.D. Key Concepts: An ecosystem is an association of organisms and their environment Every ecosystem is an open system, in that it has inputs

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Chapter 55: Ecosystems You Must Know: How energy flows through the ecosystem (food chains and food webs) The difference between gross primary productivity and net primary productivity. The carbon and nitrogen

More information

Ecology: The Flow of Matter and Energy In An Ecosystem. - the scientific of between and their, focusing on transfer

Ecology: The Flow of Matter and Energy In An Ecosystem. - the scientific of between and their, focusing on transfer Ecology: The Flow of Matter and Energy In An Ecosystem PS 12: Matter cycles and energy flows through living and nonliving components in ecosystems. The transfer of matter and energy is important for maintaining

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk Ecosystem Ecosystems Chapter 47 An association of organisms and their physical environment, interconnected by ongoing flow of energy and a cycling of materials Simple Ecosystem Model energy input from

More information