What is Bioenergy? William Robinson B9 Solutions Limited

Size: px
Start display at page:

Download "What is Bioenergy? William Robinson B9 Solutions Limited"

Transcription

1 What is Bioenergy? William Robinson B9 Solutions Limited

2 Contents Introduction Defining Bioenergy Biomass Fuels Energy Conversion Technologies Conclusion

3 Introduction William Robinson B9 employee for nearly seven years Lead Consultant Core projects are bioenergy Anaerobic digestion Landfill gas Biomass Company branches involved in other areas of renewables Onshore/Offshore wind Solar PV Tidal

4 What is Bioenergy? Bioenergy is energy derived from biomass and includes many biological materials 'Biomass' shall mean the biodegradable fraction of products, waste and residues from agriculture (including vegetal and animal substances), forestry and related industries, as well as the biodegradable fraction of industrial and municipal waste. EU Directive 2001/77/EC (RES-E) - promotion of electricity produced from renewable energy sources Utilisation of solar energy that has been bound up in biomass during the process of photosynthesis Renewable/sustainable as the fuel can be regrown

5 What is Bioenergy? Sunlight is converted into stored chemical energy i.e. glucose Utilise this chemical energy in biomass to generate other types of energy such as electricity and heat

6 Biomass Fuels

7 Energy Conversion Technology Energy Conversion Technology Steam Electricity Heat Energy Hot Air Sunlight Photosynthesis Chemical Energy Biomass Kinetic Energy Hot Water Electricity Mechanical Motion

8 Energy Conversion Technology Biomass combustion (woody materials) Biofuel combustion (biodiesel, bioethanol) Landfill Gas (methane) Anaerobic digestion Biogas (methane) Biomethane Utilisation of fuels in direct heating, combined heat and power (CHP), transportation.

9 Biomass Combustion

10 Biomass Combustion Wood Chips Wood pellets manufactured from dried sawdust European standards for wood pellet and wood chip grades Torrifaction involves heating the biomass to o C Main difference is energy content Wood Pellets Torrefied Biomass / Biocoal

11 Fuel Comparison Table Property Woodchip Wood Pellet Steam Exploded Pellet Torrefied Briquette Coal Moisture (%) 30% 8% 3% 3% 5-10% Net Calorific Value (GJ/tonne) Bulk Density (kg/m3) Energy Density (MJ/m3) 3,100 11,000 13,000 17,000 23,000 Hydroscopic Nature Wets Wets Water resistant Hydrophobic Hydrophobic Storage Behaviour -Spontaneous -Some mould, but -Resistant to mould -Stable, but Stable combustion generally good -outdoor storage untested in real -Dry matter loss -Must be stored capability untested world environment -Mould under cover -Can be stored outdoors Sulphur Content (%wt DB) <<1% <<1% <<1% <<1% <1% Ash Content (%wt) <3% <3% <3% <3% 3-10%

12 Thermal Treatments Key difference is the amount of oxygen supplied to the thermal reactor Pyrolysis absence of oxygen Gasification limited supply of oxygen Therefore, complete combustion does not take place, combustible gases (CO & H 2 ) and tars/oils are produced. Combustion involves the oxidation of the material in excess of oxygen to produce CO 2, Water & Ash

13 Thermal Treatments Biomass Full Oxygen Limited Oxygen No Air Combustion Gasification Pyrolysis Heat, Flue Gas and Ash Syn Gas & Ash and Tar Syn Gas, Oil and Char

14 Biofuels Fuels derived from biomass crops which are suitable for use in vehicle engines or heating systems Biodiesel Produced from pure plant oil, recovered vegetable oil or tallow Mainly rapeseed oil Transesterification and methanol Blended with mineral diesel up to 5% Bioethanol Produced from sugar beet and wheat Hydrolysis, fermentation and distillation Blended with petrol up to 5%

15 Landfill Gas Organic material within the landfill is broken down by bacteria Bacteria excrete gas containing methane (landfill gas) Wells are drilled and pipes inserted into the landfill to capture and extract the landfill gas Gas used to fuel a CHP

16 Combined Heat and Power (CHP)

17 Landfill Gas B9 Gas Utilisation Sites Culmore LFS 0.635MW Craigahulliar LFS 0.8MW Craigmore LFS 0.8MW Ballymacvea LFS 0.8MW Green Road LFS 0.8MW Drumanakelly LFS 0.635MW Ballydonagh LFS 0.5MW Derryclure LFS 0.8MW Kyletalesha LFS - 0.8MW North Kerry LFS 0.3MW Operational Sites In Construction

18 Anaerobic Digestion Methane: CH 4 (60%) Carbon Dioxide: CO 2 (40%)

19 Anaerobic Digestion Granville Eco-Parks (GECO) based outside Dungannon 75,000 tonnes per year capacity Feedstocks from commercial & industrial sector, and from municipal (includes CAT 2 & 3) Most advanced system in UK, combining Enhanced Anaerobic Digestion Operational from April 2014

20 Anaerobic Digestion Renewable Electricity & Heat Adjoining Abattoir By-Products Biogas CHP Engine Food Waste & Green Waste Enhanced Anaerobic Digestion Process Digestate organic fertiliser

21 Anaerobic Digestion

22 GECO Plant

23 GECO Plant

24 Biomethane Energy content in biogas is dictated by the concentration of methane (CH 4 ) Energy content can be improved by removing other contaminants Carbon Dioxide (CO 2 ) Water Hydrogen Sulphides (H 2 S) Particulates Goal is to increase methane concentration from 60% to 97% or above (natural gas) Fuel is termed biomethane

25 Biomethane Technologies Water Scrubbing, Pressure Swing Adsorption, Chemical Adsorption Increase calorific value and improve fuel quality Compressed to 200 bar Odorised Injected into the gas grid or transported via compressed tanker Biomethane is a good store of energy Can be used as a transport fuel or as a substitute for natural gas

26 Conclusion Bioenergy is defined by biomass fuel usage Biomass is biodegradable fraction of plants and animals Utilisation of stored chemical energy from solar energy (photosynthesis products) Bioenergy projects convert this stored chemical energy into other forms such as electricity and heat Typical conversion technologies include; Biomass combustion Biofuel combustion Landfill Gas Anaerobic Digestion

27 Contact Details William Robinson Tel: Web:

28 Biodiesel Catalyst Methanol Catalyst Mixing Purification Methanol Recovery Methyl Ester Recycled Methanol Vegetable Oils Transesterification Crude Biodiesel Neutralising Acid Neutralisation Phase Separation Reneutralisation Methanol Recovery Crude Glycerin

29 Bioethanol Biomass Handling Enzyme Production Bioethanol Biomass Pre-treatment Cellulose Hydrolysis Glucose Fermentation Ethanol Recovery Pentose Fermentation Lignin Utilisation

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 9 Buchla, Kissell, Floyd Chapter Outline Biomass Technologies 9 9-1 THE CARBON CYCLE 9-2 BIOMASS SOURCES 9-3 BIOFUELS: ETHANOL 9-4 BIOFUELS: BIODIESEL AND GREEN DIESEL 9-5 BIOFUELS

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

International Workshop on Bioenergy Policies, Technologies and Financing

International Workshop on Bioenergy Policies, Technologies and Financing International Workshop on Bioenergy Policies, Technologies and Financing Utilisation of Biomass European Technologies and Expectations Dr.-Ing. Herbert-Peter Grimm Ribeirao Preto, September 2004 Energy

More information

Policies to Promote Biogas in the EU. David Baxter. European Commission/IEA Bioenergy. JRC Institute for Energy

Policies to Promote Biogas in the EU. David Baxter. European Commission/IEA Bioenergy. JRC Institute for Energy IEA Bioenergy Task 37 Biogas Workshop, Jyvaskyla, April 28 th 2009 1 Policies to Promote Biogas in the EU David Baxter European Commission/IEA Bioenergy JRC Institute for Energy IEA Bioenergy Task 37 Biogas

More information

Energy Values and Technologies for Non woody Biomass: as a clean source of Energy

Energy Values and Technologies for Non woody Biomass: as a clean source of Energy IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 1, Issue 2 (May-June 2012), PP 10-14 Energy Values and Technologies for Non woody Biomass: as a clean source of

More information

The Next Generation of Biofuels

The Next Generation of Biofuels The Next Generation of Biofuels Ocean the final frontier What are biofuels? Why Biofuels! The Industry Pros and Cons By definition, a biofuel is a solid, liquid or gaseous fuel produced from non fossil

More information

Biomass and Biofuels. Biomass

Biomass and Biofuels. Biomass and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert

More information

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining G. Jungmeier 1, R. Van Ree 2, E. de Jong 3, H. Jørgensen 4, P. Walsh 4, M. Wellisch

More information

Biomass for Energy and Fuel

Biomass for Energy and Fuel Biomass for Energy and Fuel Reference: Donald L. Klass, Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, 1998. http://www.energy.kth.se/compedu/webcompedu/media/lectu re_notes/s1b11c2.pdf

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

NEW TECHNOLOGIES FOR WASTE PROCESSING - CONVERSION. NEWMOA Solid Waste Program Staff Workshop May 11, 2017

NEW TECHNOLOGIES FOR WASTE PROCESSING - CONVERSION. NEWMOA Solid Waste Program Staff Workshop May 11, 2017 NEW TECHNOLOGIES FOR WASTE PROCESSING - CONVERSION NEWMOA Solid Waste Program Staff Workshop May 11, 2017 Managing change ORGANICS MANAGEMENT WASTE RECOVERY GLOBAL CORPORATE SUSTAINABILITY in a resourceconstrained

More information

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria

More information

Bioenergy Optimization Program Demonstration Project Presentation Compost Matters In Manitoba March 22, 2017

Bioenergy Optimization Program Demonstration Project Presentation Compost Matters In Manitoba March 22, 2017 Bioenergy Optimization Program Demonstration Project Presentation Compost Matters In Manitoba March 22, 2017 Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer Biosystems Engineering Section Develop

More information

Carbon Footprints 1 of 18 Boardworks Ltd 2016

Carbon Footprints 1 of 18 Boardworks Ltd 2016 Carbon Footprints 1 of 18 Boardworks Ltd 2016 Carbon Footprints 2 of 18 Boardworks Ltd 2016 What is a carbon footprint? 3 of 18 Boardworks Ltd 2016 As we go about our daily lives, we unknowingly contribute

More information

REALIZING RENEWABLE ENERGY POTENTIAL

REALIZING RENEWABLE ENERGY POTENTIAL REALIZING RENEWABLE ENERGY POTENTIAL BY Patrick Hirl, PE Renewable natural gas (RNG) is a universal fuel that enhances energy supply diversity; uses municipal, agricultural and commercial organic waste;

More information

Thermo-chemical conversion of biomass a route for liquid fuels. S Dasappa Indian Institute of Science Bangalore

Thermo-chemical conversion of biomass a route for liquid fuels. S Dasappa Indian Institute of Science Bangalore Thermo-chemical conversion of biomass a route for liquid fuels S Dasappa Indian Institute of Science Bangalore 560 012 Presented at the EU-India Conference on advance Biofuels Delhi 7-8 March 2018 Conceived

More information

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc. MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES Corona, F.; Hidalgo, D.; Díez-Rodríguez, D. and Urueña, A. Francisco Corona Encinas M Sc. PART 1: THERMOCHEMICAL PROCESSES Introduction.

More information

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11 ABE 482 Environmental Engineering in Biosystems September 29 Lecture 11 Today Gasification & Pyrolysis Waste disposal balance Solid Waste Systems Solid Waste Air Limited air No air Combustion Gasification

More information

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood. Biomass Energy Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels Biomass

More information

Introduction to Bioenergy

Introduction to Bioenergy 1 Introduction to Bioenergy 1. Global Warming and Carbon Cycle Carbon Cycle Carbon cycle Carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere,

More information

2nd generation biofuels Güssing demo plant

2nd generation biofuels Güssing demo plant 2nd generation biofuels Güssing demo plant Dr. Reinhard Rauch Institute for Chemical Vienna, University of Technology Content IEA Bioenergy Task33 Thermal Gasification of Biomass Overview about research

More information

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon)

The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) The Complete Book on Biomass Based Products (Biochemicals, Biofuels, Activated Carbon) Author: NPCS Board of Consultants & Engineers Format: Hardcover ISBN: 9788178331584 Code: NI289 Pages: 417 Price:

More information

ECN Research and Development in bioenergy

ECN Research and Development in bioenergy ECN Research and Development in bioenergy June 2014, Environmental Day, Sao Paulo Tatjana Komissarova, Corporate business developer www.ecn.nl BRAZIL Brazil is nowadays the largest and BEST bioethanol

More information

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer Bioenergy Optimization Program Demonstration Project Presentation BIOCLEANTECH Forum In Ottawa ON Grid Stability, Remote Communities, and Air Quality Biopower Session on November 3, 2016 Dennis St. George,

More information

Biofuels and Biorefineries

Biofuels and Biorefineries Biofuels and Biorefineries Stella Bezergianni, Angelos Lappas, and Iacovos Vasalos Laboratory of Environmental Fuels and Hydrocarbons (LEFH) (www.cperi.certh.gr) Center of Research & Technology Hellas

More information

Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013

Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013 Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013 RENEWABLE GASES: Definitions Biogas is the raw product of the biological process of anaerobic fermentation. Typically

More information

DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR

DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR DEVELOPMENT OF BIOMASS ENERGY SYSTEMS IN ECUADOR Prepared by Salman Zafar BioEnergy Consult (Aligarh, INDIA) and Carlos Serrano Decker TECAM Ltd. (Guayaquil, ECUADOR) May 2009 What is Biomass? Any material

More information

Biomass and Biogas Conference Overview of Biomass Technology in Germany

Biomass and Biogas Conference Overview of Biomass Technology in Germany Energy Biomass and Biogas Conference Overview of Biomass Technology in Germany Dipl.-Ing. Werner Siemers, CUTEC 12 June 2012, Bangkok, Thailand Content Background Potentials and Applications Examples New

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Biomass to Energy

More information

SOME CHALLENGES OF BIOMASS

SOME CHALLENGES OF BIOMASS SOME CHALLENGES OF BIOMASS Energy density, moisture Handling characteristics Shelf life and hazards Composition (inorganics) Digestibility and enzyme conversion rates/efficiencies Economics of process

More information

AASHE 2011 Conference & Expo Creating Sustainable Campuses & Communities

AASHE 2011 Conference & Expo Creating Sustainable Campuses & Communities An Overview of Biomass Energy Technologies for Campuses AASHE 2011 Conference & Expo Creating Sustainable Campuses & Communities Pittsburgh, PA Kamalesh Doshi, Senior Program Director Biomass Energy Resource

More information

Research priorities for large scale heating and industrial processes

Research priorities for large scale heating and industrial processes Biomass Technology Panel Second Annual Conference of the European Technology Platform on Renewable Heating and Cooling 5-6 May 2011, Budapest, Hungary Research priorities for large scale heating and industrial

More information

Efficiency analysis for the production of modern energy carriers from renewable resources and wastes

Efficiency analysis for the production of modern energy carriers from renewable resources and wastes Ecosystems and Sustainable Development VI 239 Efficiency analysis for the production of modern energy carriers from renewable resources and wastes K. J. Ptasinski Department of Chemical Engineering, Eindhoven

More information

In the UK, the most common disposal method is landfill. Incineration, anaerobic digestion and other disposal methods are also used.

In the UK, the most common disposal method is landfill. Incineration, anaerobic digestion and other disposal methods are also used. In the UK, the most common disposal method is landfill. Incineration, anaerobic digestion and other disposal methods are also used. Landfill Each year approximately 111 million tonnes, or 57%, of all UK

More information

green energy to the power3

green energy to the power3 green energy to the power3 Three exhibitions in parallel, 30-31 january, Parc Expo Rennes ReGen Europe Biogaz Europe Bois Energie waste to energy biogas-biomethane wood heating networks 1-4 Coming to Rennes

More information

Renewable Energy from the Bio Supply Chain

Renewable Energy from the Bio Supply Chain Renewable Energy from the Bio Supply Chain Dr Jeremy Tomkinson September 2011 The UK s National Centre for Biorenewable Energy, Fuels and Materials An Independent not for profit company Mission The NNFCC

More information

Opportunity for NC. January 25, Alex Hobbs, PhD, PE NC Solar Center. ncsu Advancing Renewable Energy for a Sustainable Economy

Opportunity for NC. January 25, Alex Hobbs, PhD, PE NC Solar Center. ncsu Advancing Renewable Energy for a Sustainable Economy Biomass & CHP Opportunity for NC Energy Policy Council January 25, 2010 Alex Hobbs, PhD, PE NC Solar Center www.ncsc.ncsu.edu ncsu NC REPS Definition of Biomass The NCUC decided not to expand the definition

More information

Biomass Conversion Technologies

Biomass Conversion Technologies Biomass Conversion Technologies Prashanth R. Buchireddy, Ph.D. University of Louisiana at Lafayette. 16 th August 2018 Jackson, MS Potential to produce 732 Billion Kwh (Appx. 20% of U.S. Power Consumption)

More information

Production and Utilization of Green Hydrogen. Mathias Mostertz GAFOE Meeting, April 27, 2013

Production and Utilization of Green Hydrogen. Mathias Mostertz GAFOE Meeting, April 27, 2013 Production and Utilization of Green Hydrogen Mathias Mostertz GAFOE Meeting, April 27, 2013 Agenda 1. The Linde Group General Overview Clean Energy Technology Biomass Program 2. Utilization of Green Hydrogen

More information

Optimal design of a future hydrogen supply chain using a multi-timescale, spatially-distributed model

Optimal design of a future hydrogen supply chain using a multi-timescale, spatially-distributed model Optimal design of a future hydrogen supply chain using a multi-timescale, spatially-distributed model Sheila Samsatli, Nouri Samsatli, Nilay Shah Birmingham 16-18 December Energy Systems Engineering Development

More information

Chapter page 1

Chapter page 1 Chapter 04-04 page 1 04-04: Odd biomass fractions Properties and processes Introduction There are mainly five different processes to choose from to produce useful energy from any type of biomass. Three

More information

Energy Generation from Recovered Wood for Greenhouse Gas Reduction

Energy Generation from Recovered Wood for Greenhouse Gas Reduction Energy Generation from Recovered Wood for Greenhouse Gas Reduction Gerfried Jungmeier Joint Workshop COST Action E31 and IEA Bioenergy Task 38 Greenhouse Gas Aspects of Biomass Cascading Reuse, Recycling

More information

Introduction. Klean Industries is committed to providing commercially viable, environmentally sound waste recycling technologies and systems.

Introduction. Klean Industries is committed to providing commercially viable, environmentally sound waste recycling technologies and systems. Klean Industries is committed to providing commercially viable, environmentally sound waste recycling technologies and systems. Introduction WHAT IS THE KLEAN INDUSTRIES RENEWABLE ENERGY DUE DILIGENCE

More information

Integrating Renewable Fuel Heating Systems

Integrating Renewable Fuel Heating Systems Integrating Renewable Fuel Heating Systems An Overview of Wood Heating Systems Better Buildings by Design 2009 February 12th, 2009 Adam Sherman, Program Manager Biomass Energy Resource Center Biomass Energy

More information

Biomass to Fuels/Char Pathways

Biomass to Fuels/Char Pathways Biomass to Fuels/Char Pathways Status, Capacity and Challenges Dr. Alan Del Paggio Vice President, CRI Catalyst Company National Academies of Science, Engineering and Medicine BECCS Webinar 16 October

More information

Biomass Part I: Resources and uses. William H. Green Sustainable Energy MIT November 16, 2010

Biomass Part I: Resources and uses. William H. Green Sustainable Energy MIT November 16, 2010 Biomass Part I: Resources and uses William H. Green Sustainable Energy MIT November 16, 2010 Sustainable Energy: Big Picture People want electricity, transport, heat Now use: coal oil gas Major Challenges:

More information

NATIONAL RENEWABLE ENERGY CENTRE Biomass Department Activities. David Sanchez EURICLIMA project 13th March 2013, Santiago de Chile

NATIONAL RENEWABLE ENERGY CENTRE Biomass Department Activities. David Sanchez EURICLIMA project 13th March 2013, Santiago de Chile NATIONAL RENEWABLE ENERGY CENTRE Biomass Department Activities David Sanchez dsanchez@cener.com EURICLIMA project 13th March 2013, Santiago de Chile Content 1. Introduction: CENER 2. Resources and facilities:

More information

6. Good Practice Example: Biogas in Germany

6. Good Practice Example: Biogas in Germany 6. Good Practice Example: Biogas in Germany Key words Energy, Power, Renewables, Biogas, Organic waste, Landfill. Name and location Using biogas as an energy resource for small power plants in Germany

More information

USDA Western Regional Research Center Albany, California

USDA Western Regional Research Center Albany, California USDA Western Regional Research Center Albany, California Albany ~380 people ~50 in Biofuels/ & Bioproducts Known for biotechnology especially crop biotech. !"#$%&'()*+,&'-$+.#/'01+"%/' Renewable Fuel Standard-2

More information

Pyrolysis and Gasification

Pyrolysis and Gasification Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;

More information

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d.

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d. Biomass for future biorefineries Anne-Belinda Bjerre, senior scientist, ph.d. Anne-Belinda Bjerre (Thomsen) Senior research scienist, B.Sc. Chem. Eng. Ph.d. in biotechnology 25 years of expertise within

More information

DONG Energy Group. Goal - Turning from Fossil fuel to renewable energy 2020: 50/ : 15/85

DONG Energy Group. Goal - Turning from Fossil fuel to renewable energy 2020: 50/ : 15/85 Kalundborg Large Scale Demonstration Plant DONG Energy Group 2 DONG Energy Group Goal - Turning from Fossil fuel to renewable energy Today: 85/15 2020: 50/50 2050: 15/85 How? Wind Biomass = Biogas / Ethanol

More information

Biofuels. Letizia Bua

Biofuels. Letizia Bua Biofuels Letizia Bua Biofuels What is a biofuel? What the European Community says about it? How we can produce it? (Technology options) eni and renewable energy 2 What is a biofuel? interesting! Life cycle

More information

Prospects and Planning of Producing Energy from Biomass and Waste for Clean India. Dr.M.K.Mohanty M.Tech(IIT,KGP),PhD(IITD)

Prospects and Planning of Producing Energy from Biomass and Waste for Clean India. Dr.M.K.Mohanty M.Tech(IIT,KGP),PhD(IITD) Prospects and Planning of Producing Energy from Biomass and Waste for Clean India Dr.M.K.Mohanty M.Tech(IIT,KGP),PhD(IITD) Energy scenario Contents Biomass and Potential of biomass Conversion technologies

More information

This is a draft revision of the briefing, and any comments are welcome please them to Becky Slater on

This is a draft revision of the briefing, and any comments are welcome please  them to Becky Slater on January 2009 Briefing Pyrolysis, gasification and plasma This is a draft revision of the briefing, and any comments are welcome please email them to Becky Slater on becky.slater@foe.co.uk. Introduction

More information

Introduction: Thermal treatment

Introduction: Thermal treatment Thermal Treatment 2 Introduction: Thermal treatment Technologies using high temperatures to treat waste (or RDF) Commonly involves thermal combustion (oxidation) Reduces waste to ash (MSW c. 30% of input)

More information

Production from Organic Residues. Biogas

Production from Organic Residues. Biogas Biogas Production from Organic Residues Biogas Maxx 910 West End Ave, 10025 New York, NY www.biogasmaxx.com Contact: Leodegario Lopez, M.Eng. Rottaler Modell Network Tel: +1 917 2677936 Email: leo@biogasmaxx.com

More information

Bio-energy in the FP7

Bio-energy in the FP7 Bio-energy in the FP7 National Contact Point Andrzej Sławiński andrzej.slawinski@kpk.gov.pl UE Framework Programmes 60 50,52 50 40 30 20 13,12 14,96 19,11 10 3,27 5,36 6,6 0 1984-1987 1987-1991 1990-1994

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Introduction

More information

WHY WASTE TO ENERGY (WTE)?

WHY WASTE TO ENERGY (WTE)? WASTE TO ENERGY TECHNOLOGIES Missouri Waste Control Coalition Laura Drescher Monday, July 13 th, 2015 WHY WASTE TO ENERGY (WTE)? Heightened interest in green energy with President Obama calling for 80%

More information

EUROPEAN COMMISSION DIRECTORATE-GENERAL ENERGY

EUROPEAN COMMISSION DIRECTORATE-GENERAL ENERGY Ref. Ares(2013)2551793-01/07/2013 EUROPEAN COMMISSION DIRECTORATE-GENERAL ENERGY Renewables, Research and Innovation, Energy Efficiency New Energy Technologies, Innovation and Clean Coal Brussels, 27 th

More information

Overview of Renewable Energy Technologies: Transforming Our Energy Economy

Overview of Renewable Energy Technologies: Transforming Our Energy Economy Overview of Renewable Energy Technologies: Transforming Our Energy Economy Robert M. Margolis National Renewable Energy Laboratory 32 nd Annual IAEE International Conference San Francisco, CA June 22,

More information

Biomethane production via anaerobic digestion and biomass gasification

Biomethane production via anaerobic digestion and biomass gasification Available online at www.sciencedirect.com ScienceDirect Energy Procedia 105 (2017 ) 1172 1177 The 8 th International Conference on Applied Energy ICAE2016 Biomethane production via anaerobic digestion

More information

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER Biomass is a source of renewable energy which is biological material derived from living or recently living organisms such as wood, waste and alcohol fuels.

More information

Rotary Club Suva Presentation Thursday 28 October 2010 Tanoa Plaza, Suva Renewable Energy Explained

Rotary Club Suva Presentation Thursday 28 October 2010 Tanoa Plaza, Suva Renewable Energy Explained Rotary Club Suva Presentation Thursday 28 October 2010 Tanoa Plaza, Suva Renewable Energy Explained Dr. Anirudh Singh Head of Renewable Energy Programme USP, Suva, Fiji Renewable energy explained - outline

More information

Module 3b. Bioenergy end-use and applications

Module 3b. Bioenergy end-use and applications Module 3b Bioenergy end-use and applications Outline Solids, gas, liquids Electricity, heat, power, CHP Prime movers Small scale rural and urban usage Modern industrial usage slide 2/24 1 Biofuels Solid

More information

Niklas Berglin, Innventia

Niklas Berglin, Innventia New 2G process for ethanol from wood Niklas Berglin, Innventia 1 2 3 Energy density is a key issue for biofuels Chips 0.8 Wood pellets 3 Torrefied wood & Lignin powder 5 Ethanol 6 Slash 0.4 Our focus 4

More information

Process Modeling and Life Cycle Assessment of Biomass Conversion

Process Modeling and Life Cycle Assessment of Biomass Conversion Process Modeling and Life Cycle Assessment of Biomass Conversion Dr. Wen Zhou Department of Chemical Engineering Michigan Tech October 12, 2017 Conversion Pathways Hemicellulose-Cellulosic Substrate Comparison

More information

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d.

Biomass for future biorefineries. Anne-Belinda Bjerre, senior scientist, ph.d. Biomass for future biorefineries Anne-Belinda Bjerre, senior scientist, ph.d. Anne-Belinda Bjerre (Thomsen) Senior research scienist, B.Sc. Chem. Eng. Ph.d. in biotechnology 25 years of expertise within

More information

Organica is a registered trademark of the Keter Group Energy Division.

Organica is a registered trademark of the Keter Group Energy Division. Organica is a registered trademark of the Keter Group Energy Division. Every Day is Earth Day. 04 05 Without energy there is no life... but today s growing use of energy represents the greatest threat

More information

Sustainable Waste Diversion Technologies to promote a circular economy

Sustainable Waste Diversion Technologies to promote a circular economy NY Federation Conference May 2018 Richard Schofield Project Development Manager Sustainable Waste Diversion Technologies to promote a circular economy Enerkem at a glance Biofuels and renewable chemicals

More information

Thermal Treatment. For more information, contact us: E :

Thermal Treatment. For more information, contact us:   E : Thermal treatment is the release of energy from waste. This results in a change to the chemical structure of the waste and this change is not reversible 1. The most common thermal treatment is incineration.

More information

Insides of sucessful bioenergy projects Biomass Biofuels and Biogas. Planning, Production, Application and Economics

Insides of sucessful bioenergy projects Biomass Biofuels and Biogas. Planning, Production, Application and Economics Insides of sucessful bioenergy projects Biomass Biofuels and Biogas. Planning, Production, Application and Economics 03.07.2018 SANA Malhoa Hotel Lissabon Dr. Jan Adolph DABEC Bioenergy Consulting Bioenergy

More information

RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT

RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT COMPETE Conference and Policy Debate on Biofuels Sustainability Schemes, 16th to 18th June 2008 Arusha, Tanzania Faith Odongo Senior Renewable

More information

FACT SHEET 8: BIOMASS

FACT SHEET 8: BIOMASS FACT SHEET 8: BIOMASS What is Biomass? Biomass is the name given to any material which is recently derived from plants that use sunlight to grow. That is plant and animal material such as wood from forests,

More information

UNIT 5. Biomass energy

UNIT 5. Biomass energy UNIT 5 1 Biomass energy SYLLABUS 5.1 Types of Biomass Energy Sources 5.2 Energy content in biomass of different types 5.3 Types of Biomass conversion processes 5.4 Biogas production 2 WHAT IS BIOMASS?

More information

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Singfoong Cheah Daniel Carpenter Calvin Feik Shealyn Malone National Renewable Energy Laboratory Golden,

More information

Pressurised gasification of coal and biomass for the production of H 2 -rich gas

Pressurised gasification of coal and biomass for the production of H 2 -rich gas Department of Energy & Pressurised gasification of coal and biomass for the production of -rich gas J. Fermoso, B. Arias, M.G. Plaza, C. Pevida, M.D. Casal, C.F. Martín, F. Rubiera, J.J. Pis Instituto

More information

Greenhouse Gas Emissions and Renewable Energy in Alberta

Greenhouse Gas Emissions and Renewable Energy in Alberta Greenhouse Gas Emissions and Renewable Energy in Alberta Why are Greenhouse Gas Emissions Important? Over the last century, modern industry and lifestyles have rapidly increased amounts of greenhouse gas

More information

OIL PALM BIOMASS UTILISATION - SIME DARBY S EXPERIENCE

OIL PALM BIOMASS UTILISATION - SIME DARBY S EXPERIENCE OIL PALM BIOMASS UTILISATION - SIME DARBY S EXPERIENCE Contents Introduction Oil palm biomass Biomass availability Selection of feedstock Feedstock value Biomass utilisation Composting Sugar extraction

More information

Debnath Pal Process Director Peter Brennan Project Director. Advanced Thermal Treatment; Technology Challenges Dr. Ben Herbert R&D Manager

Debnath Pal Process Director Peter Brennan Project Director. Advanced Thermal Treatment; Technology Challenges Dr. Ben Herbert R&D Manager Debnath Pal Process Director Peter Brennan Project Director Advanced Thermal Treatment; Technology Challenges Dr. Ben Herbert R&D Manager SCI Energy from Waste: Advanced Thermal Technologies Lancaster

More information

Research Activities in the Field of Second Generation Biofuels

Research Activities in the Field of Second Generation Biofuels Research Activities in the Field of Second Generation Biofuels Hermann Hofbauer Transport Fuels: Crucial factor and driver towards sustainable mobility R&Dprojects, research institutions and funding programs

More information

Biomass and Energy A Perspective from Municipal Solid Waste (MSW)

Biomass and Energy A Perspective from Municipal Solid Waste (MSW) Biomass and Energy A Perspective from Municipal Solid Waste (MSW) Agamuthu P. and Fauziah S.H. Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

More information

MATERIAL RECYCLING AND BIOLOGICAL WASTE TREATMENT FOR BIOGAS AND NUTRIENT RECOVERY Important parts in a CO2 smart and circular economy

MATERIAL RECYCLING AND BIOLOGICAL WASTE TREATMENT FOR BIOGAS AND NUTRIENT RECOVERY Important parts in a CO2 smart and circular economy MATERIAL RECYCLING AND BIOLOGICAL WASTE TREATMENT FOR BIOGAS AND NUTRIENT RECOVERY Important parts in a CO2 smart and circular economy PROFESSOR TORLEIF BRAMRYD Material recovery Waste avoidance Waste

More information

Mikko Hupa Åbo Akademi Turku, Finland

Mikko Hupa Åbo Akademi Turku, Finland Åbo Akademi Chemical Engineering Department Course The Forest based Biorefinery Chemical and Engineering Challenges and Opportunities May 3-7, 2010 Thermal conversion of biomass Mikko Hupa Åbo Akademi

More information

Global Warming. Department of Chemical Engineering

Global Warming. Department of Chemical Engineering Global Warming How Can Biofuels Help? Clint Williford Department of Chemical Engineering Introduction ti Greenhouse emissions Reducing growth of GHG emissions Biofuels Why and why now? What they are? How

More information

Sugar Industry Restructuring by Implementing Biorefinery Technology

Sugar Industry Restructuring by Implementing Biorefinery Technology Sugar Industry Restructuring by Implementing Biorefinery Technology Dr. Maurizio Cocchi THE BIOREFINERY CONCEPT Biorefinery approach Integration of biomass conversion processes and technologies to produce

More information

New Jersey Bioenergy Potential

New Jersey Bioenergy Potential New Jersey Bioenergy Potential Agriculture Training Seminar December 15, 2009 Rutgers EcoComplex Margaret Brennan-Tonetta Director, Economic Development Rutgers New Jersey Agricultural Experiment 2007

More information

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches Thermal Conversion of Animal Manure to Biofuel Samy Sadaka, Ph.D., P.E., P. Eng. Assistant Professor - Extension Engineer University of Arkansas Division of Agriculture - Cooperative Extension Service

More information

INDUSTRIAL BIOENERGY SYSTEMS: STATE OF THE ART AND PERSPECTIVES

INDUSTRIAL BIOENERGY SYSTEMS: STATE OF THE ART AND PERSPECTIVES INDUSTRIAL BIOENERGY SYSTEMS: STATE OF THE ART AND PERSPECTIVES Dr Jean-Bernard Michel Professor, University of Applied Sciences Western Switzerland, Head, Industrial Bioenergy Systems unit www.sib.heig-vd.ch

More information

Biomass technologies

Biomass technologies Biomass technologies Micro Generation Workshop Presentation Alan Draper What is it? Biological material derived from living, or recently living organisms In the context of energy this often means plant

More information

Overview of renewable energy

Overview of renewable energy Overview of renewable energy Outline What is renewable energy? Renewable energy sources Renewable energy technologies: - Characteristics - Uses What is renewable energy? Energy that doesn t run out! Energy

More information

Future U.S. Biofuels and Biomass Demand Uncertainty Reigns. Wally Tyner

Future U.S. Biofuels and Biomass Demand Uncertainty Reigns. Wally Tyner Agricultural Outlook Forum Presented: February 24-25, 2011 U.S. Department of Agriculture Future U.S. Biofuels and Biomass Demand Uncertainty Reigns Wally Tyner Future U.S. Biofuels and Biomass Demand

More information

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing Chapter 13 Thermal Conversion Technologies Fundamentals of Thermal Processing Thermal processing is the conversion of solid wastes into gaseous, liquid and solid conversion products with the concurrent

More information

Hydro power in Madison County

Hydro power in Madison County Hydro power in Madison County Phil Hofmeyer, Ph.D. Assistant Professor of Renewable Energy Instructor, Renewable Energy Training Center Morrisville State College hofmeypv@morrisville.edu Overview What

More information

Nagore Sabio, Paul Dodds UCL Energy Institute. International Energy Workshop (IEW) 2016 University College Cork, 1-3 June 2016

Nagore Sabio, Paul Dodds UCL Energy Institute. International Energy Workshop (IEW) 2016 University College Cork, 1-3 June 2016 Evaluating the impact of bioenergy emission accounting methodology in energy system decarbonisation pathways to 2050 using a scenario approach: A case study of UK Nagore Sabio, Paul Dodds UCL Energy Institute

More information

Highlights of the Conference Nicolae Scarlat

Highlights of the Conference Nicolae Scarlat Highlights of the Conference Nicolae Scarlat Technical Programme Chairman European Commission, Joint Research Centre, Directorate for Energy, Transport and Climate, ITALY 2 SCIENTIFIC OPENING: APPLICATIONS

More information

Where will our energy come from? Ch. 16. All from the Sun

Where will our energy come from? Ch. 16. All from the Sun Where will our energy come from? Ch. 16 All from the Sun A problem: Dependence on imported oil Cost to the economy: 350 billion dollars per year (2011 prices) Transferred to foreign (hostile) oil producers,

More information

Biomass Energy Alternatives

Biomass Energy Alternatives Biomass Energy Alternatives The production and application of pyrolysis oils in the forest products industry Presented by: Colin McKerracher DynaMotive Energy Systems 2006 Forum on Energy: Immediate Solutions,

More information