Ultrathin layer chromatography using

Size: px
Start display at page:

Download "Ultrathin layer chromatography using"

Transcription

1 Ultrathin layer chromatography using electrospun nanofibers SusanV. Olesik Department of Chemistry Ohio State University International Symposium for High-Performance Thin-Layer Chromatography Basel July 6, 2011

2 Thin Layer Chromatography Ultra Thin Layer Chromatography h (UTLC) Uses thin stationary phase (~10 μm) in comparison to HPTLC (~ 200 μm) Non traditional stationary phase structures Silica Monoliths and Nanostructures Improve sensitivity while reducing analysis time and amountof of consumables required Lower sample capacity than HPTLC

3 Electrospinning Apparatus Silicon (Collector Plate) Syringe Pump High Voltage Source

4 Electrospinning Electrospinning is a process in which a polymer solution is used to make ultrafine fibers Electric field is applied to the polymer solution Charge repulsion causes formation of Taylor cone Taylor Cone

5 Electrospinning Any polymer that can be electrospun can be used as the stationary phase 2 polymer systems: Polyacrylonitrile (PAN) Initial studies SU 8 Photoresist HEAT Glassy Carbon

6 Spinnability of a Polymer The ability of a polymer solution to form uniform fibers is dependent upon many parameters: Solution properties Polymer molecular weight Viscosity Conductivity Surface tension Electric field Applied voltage Distance from tip to collector Solution flow rate Temperature Humidity

7 Effect of Concentration 75% 70% 20 µm 20 µm 50% 25% 20 µm 20 µm

8 UTLC -- Electrospun Polyacrylonitrile Fibers 10% PAN AIR PAN Al Foil Thickn ness (microns) SEM micrographs of the electrospun stationary phase used for UTLC Time (minutes)

9 Variation in Retention Factor Commercial Phase R f % Acetone (Acetone:H 2 O) E-ULTC R f 0.5 androsterone, cholesterol and cortisone. (n=5) % Acetone (Acetone:H 2 O)

10 High Efficiency Nano Sil CN PAN UTLC Steroid Analysis How? Effic ciency, N Z N 16 S w Androsterone Cholesterol Cortisone J.E. Clark and S.V. Olesik Anal. Chem. 81(10), (2009).

11 Ultra-thin layer chromatography using electrospun fibers N 16 2 Z S w CN-Modified TLC Spot Width (mm) Electrospun PAN UTLC Spot Width (mm) Androsterone Cholesterol Cortisone

12 High Efficiency 50 Electrospun 10% PAN Commercial Si 40 Nano Sil CN Silica Dist tance (m mm) N 16 Z S w Square Root of Time (sec 0.5 )

13 High Efficiency 50 Electrospun 10% PAN Commercial Si 40 Nano Sil CN Silica Dist tance (m mm) Square Root of Time (sec 0.5 )

14 E-ULTC: Polyacrylonitrile Fibers 400 nm fibrous stationary phase E-ULTC requires less time and therefore less solvent than typical TLC plates Efficiency of the separations substantially improved compared to that determined using commercial phases. Separations used minimal materials (1 ml polymer) and solvent (< 5 ml) Mat thickness impacts efficiency. Thicker mat improved efficiency J. Clark, S. Olesik, Anal. Chem. 81 (10) (2009).

15 Carbon Ultra Thin Layer Chromatography SU 8 carbon 7 cm Glassy Carbon Substrate

16 Devices Used for Carbon TLC Comparison Device Mat Thickness (μm) Avg. Fiber Diameter (nm) PAN 24 ± ± 55 UTLC 600 C 16 ± ± C 10 ± ± C 13 ± ± 70 Silica Gel 200 N/A

17 Variation in Migration Distance with Time Mig gration Distance (mm) Silica PAN UTLC 600 C glassy carbon UTLC Time (sec) 0.5

18 Migration Distance as a Function of Fiber Diameter

19 Z Lucas-Washburn Model Predicting Solvent Travel Behavior 2 f Rt cos 2 Device Mat Thickness (μm) Avg. Fiber Diameter (nm) Effective Pore Radius, R = surface tension PAN 24 ± ± ± 10 nm = solution viscosity = contact angle 600 C 16 ± ± ± 35 nm R = effective pore radius t = time 800 C 10 ± ± ± 15 nm 1000 C 13 ± ± ± 25 nm Silica m 345 ± 25 nm Gel diameter

20 S640 Study of Separation of Laser Dyes Rh590Cl Rhodamine 101 Rh610P & Rh610Cl Kiton Red P597

21 Retardation Factors of Laser Dyes Left rhodamine 610 perchlorate, rhodamine 610 chloride, kiton red Right pyrromethene 597, rhodamine 101, sulforhodamine 640 Mobile phase: 2-propanol.

22 Laser Dye Separation 250 Rh 610 P 200 S640 Intensity P Distance, mm Jonathan E. Clark, S.V. Olesik, J. Chromatogr. A, 1217 (27) (2010).

23 Efficiency Comparison Numbe er, N Plate Commercial PAN UTLC 1000 C Carbon 0 Rh610P Rh610Cl KR

24 Efficiency Comparison 8x10 4 PAN UTLC 600 C 800 C 1000 C, N Number Plate 6x10 4 4x10 4 2x S640 P597 Rh101

25 High Resolution 60 PAN UTLC Plate Laser Dye Analysis 40 Res solution S640/Rh610P S640/P597 Rh610P/P597

26 Study of Separation at of Essential Amino Acids Phenylalanine Lysine Threonine

27 Tunable Retention Migration Order: 600 C: Thr Phe Lys y 800 C: Phe Thr Lys

28 Essential Amino Acid Analysis 250 Lys 200 Inte ensity Phen Thr mm development distance 600 C Max. Sample capacity 10-5 M Distance, mm

29 Efficiency Comparison Plate Number, N Compound 600 C 800 C 1000 C Cellulose* Lysine Threonine Phenylalanine 37,500± ± ± ,000± ,400± ± ,000± ,600± ±30 N/A *S.A. Nabi, M.A. Khan, Acta Chromatogr. 13,161(2003).

30 6 High Resolution Amino Acid Analysis 600 C 800 C C Mixed Cellulose Resolutio on Lys/Thr Lys/Phe Thr/Phe

31 Variation of Plate Number with Development Distance Plate Height (micron) Development Lysine Threonine Phenylalanine Distance (cm)

32 Biodegradeable Polymers: Electrospun Polyvinyl l Alcohol l 190±50 nm

33 Importance of Cross-linking No crosslinking Crosslinked and soaked water Crosslinked and soaked in optimized solvent ( th (ethanol/butanol/water) l/b t l/ t )

34 Thickness of Mat with Each Additional Layer

35 selectiv vity α 2,4 2,2 2 1,8 1,6 his/cys PVA Selectivity Mobile phase:methanol/butanol/water (7:5:1, v:v:v) 1,4 1,2 phe/asp met/gln tyr/thr ala/trp arg/asp 2,4 1 2,2 2 Silica Selectivity Mobile phase:ethanol/butanol/water (5:7:0.5) sele ectivity/α 1,8 16 1,6 1,4 phe/asp try/thr 1,2 1 cys/his met/gln trp/ala arg/asp

36 Optimization of Capillary Diameter Used for Application plate heigh ht (μm) phe thr trp tyr 250 um 100 um 50 um 20 micron thick mat with 190 nm fibers

37 Optimization i of Iinjection volume d 30 ht (μm) plate heig thr trp try 2 nl 6 nl

38 Concentration Range Appropriate Using 50 micron Capillary Pla ate height (μ μm) thr trp tyr 14 mm 7 mm 4 mm 3 mm

39 Travel distance as a function of Development Time 3,5 3 2,5 (cm) Distance 2 1,5 1 0, Square Root of Time (sec 0.5 )

40 Efficiency Comparison to Commercial Phase

41 Summary E-UTLC provides Lower mobile phase use than other TLC separations Higher speed separations Improved efficiency Devices are chemically and mechanically robust Future: Much to be studied d on exactly how improved efficiency i is gain further work on improving precision of retention factors underway

42 Acknowledgments Funding: NSF- Chemistry Division; NSF-Engineering g Division, NSEC; NSF- Engineering - Fluid Dynamics Division Funding for Education Efforts: NSF-DGE, NSF-DUE, Ohio Board of Regents

Effect of Target Shapes on Distribution of Polyacrylonitrile Nanofibers Prepared by Electrospinning Process

Effect of Target Shapes on Distribution of Polyacrylonitrile Nanofibers Prepared by Electrospinning Process 109 Effect of Target Shapes on Distribution of Polyacrylonitrile Nanofibers Prepared by Electrospinning Process Bussarin Ksapabutr *, Chaowat Waikru and Manop Panapoy Department of Materials Science and

More information

Carbon Nanotube Templated- Microfabricated Thin Layer Chromatography Plates

Carbon Nanotube Templated- Microfabricated Thin Layer Chromatography Plates Carbon Nanotube Templated- Microfabricated Thin Layer Chromatography Plates David S. Jensen, 1 Supriya Kenyal, 1 Ricky Wyman, 1 Robert Davis, 1 Richard Vanfleet, 1 Andrew Dadson, 2 Michael Vail, 2 Matthew

More information

Supporting Information

Supporting Information Supporting Information In situ Active Poling of Nanofibers Network for Gigantically Enhanced Particulate Filtration Chun Xiao Li,, Shuang Yang Kuang,, Yang Hui Chen,, Zhong Lin Wang,,,#, Congju Li, and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance electronic devices based on nanofibers via crosslinking

More information

Centrifugal spinning of nanofiber webs - A parameter study of a novel spinning process

Centrifugal spinning of nanofiber webs - A parameter study of a novel spinning process Centrifugal spinning of nanofiber webs - A parameter study of a novel spinning process Jonas Engström Senior scientist at Swerea IVF. Finished his PhD in 2006 with a thesis titled Functional compolymers

More information

Electrospun Nanofibers as Separators in Li-ion in Batteries. Dr. Cagri Tekmen Elmarco Ltd., Sekido, Tama, Sekido Bld 4F, Tokyo , Japan

Electrospun Nanofibers as Separators in Li-ion in Batteries. Dr. Cagri Tekmen Elmarco Ltd., Sekido, Tama, Sekido Bld 4F, Tokyo , Japan Electrospun Nanofibers as Separators in Li-ion in Batteries Dr. Cagri Tekmen Elmarco Ltd., 3-4-1 Sekido, Tama, Sekido Bld 4F, Tokyo 206-0011, Japan 1. Introduction One-dimensional (1D) nanostructures -having

More information

WOVEN FABRIC CREATED BY NANOFIBROUS YARNS

WOVEN FABRIC CREATED BY NANOFIBROUS YARNS WOVEN FABRIC CREATED BY NANOFIBROUS YARNS Jiří Chvojka a, Martina Pokorná b, David Lukáš a a Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens, Studentska 2., 461

More information

Nanodiamond-Polymer Composite Fibers and Coatings

Nanodiamond-Polymer Composite Fibers and Coatings Nanodiamond-Polymer Composite Fibers and Coatings Yury Gogotsi et al. A.J. Drexel Nanotechnology Institute and Department of Materials Science and Engineering Drexel University, Philadelphia, Pennsylvania

More information

ELECTROSPUN NANOFIBER PROCESS CONTROL

ELECTROSPUN NANOFIBER PROCESS CONTROL CELLULOSE CHEMISTRY AND TECHNOLOGY Received April 26, 2010 ELECTROSPUN NANOFIBER PROCESS CONTROL University of Guilan, P.O. Box 3756, Rasht, Iran Fiber diameter is an important structural characteristic

More information

Nanofiber Webs from Electrospinning

Nanofiber Webs from Electrospinning Nanofiber Webs from Electrospinning Timothy H. Grafe, Kristine M. Graham Donaldson Company Inc. Minneapolis, MN, USA ABSTRACT Elecotrospun nanofibers, with fiber diameters of 0.25 microns have been used

More information

Catherine G. Reyes, Anshul Sharma and Jan P.F. Lagerwall. July 18, Complete description of experimental details

Catherine G. Reyes, Anshul Sharma and Jan P.F. Lagerwall. July 18, Complete description of experimental details Non-electronic gas sensor from electrospun mats of liquid crystal core fibers for detecting volatile organic compounds at room temperature: Supplemental Online Material Catherine G. Reyes, Anshul Sharma

More information

Rapid Prototyping of Purification Platforms

Rapid Prototyping of Purification Platforms Rapid Prototyping of Purification Platforms Tom Huang, Nathan Mosier, Michael Ladisch Department of Agricultural and Biological Engineering Weldon School of Biomedical Engineering Laboratory of Renewable

More information

Nanofibers and Nanocomposites for aerospace applications. Prof. Yuntian Zhu Dept. of Materials Science and Engineering

Nanofibers and Nanocomposites for aerospace applications. Prof. Yuntian Zhu Dept. of Materials Science and Engineering Nanofibers and Nanocomposites for aerospace applications Prof. Yuntian Zhu Dept. of Materials Science and Engineering 20µm NC STATE UNIVERSITY Nano for Safety and Environment Nanofiber Filtration: Clean

More information

Filter Media for Separation of Water from Ultra Low Sulfur Diesel

Filter Media for Separation of Water from Ultra Low Sulfur Diesel Filter Media for Separation of Water from Ultra Low Sulfur Diesel Sarfaraz Patel Multiphase Group Department of Chemical Engineering The University of Akron, Akron Ohio Outline Motivation Background Hypothesis

More information

Electrospinning and Porosity Measurements of Nylon- 6/Poly(ethylene oxide) Blended Nonwovens

Electrospinning and Porosity Measurements of Nylon- 6/Poly(ethylene oxide) Blended Nonwovens Electrospinning and Porosity Measurements of Nylon- 6/Poly(ethylene oxide) Blended Nonwovens Margaret W. Frey, Ph.D. 1 and Lei Li, Ph.D. 1 1 Department of Textiles and Apparel, Cornell University, Ithaca

More information

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning 2016 International Conference on Intelligent Manufacturing and Materials (ICIMM 2016) ISBN: 978-1-60595-363-2 The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning Yiqiang

More information

Comparison between Electrospun and Bubbfil-spun Polyether Sulfone Fibers

Comparison between Electrospun and Bubbfil-spun Polyether Sulfone Fibers ISSN 1517-7076 artigo 11564 pp.363-369, 2014 Comparison between Electrospun and Bubbfil-spun Polyether Sulfone Fibers Ya Li 1,2, Rou-xi Chen 1,2, Fu-Juan Liu 1,2 1 National Engineering Laboratory for Modern

More information

Investigation into Electrospun LaMnO 3 Nanofibres

Investigation into Electrospun LaMnO 3 Nanofibres Universities Research Journal 2011, Vol. 4, No. 4 Investigation into Electrospun LaMnO 3 Nanofibres Zin Min Myat 1, Than Than Win 2 and Yin Maung Maung 3 Abstract This paper aims to prepare nanofibres

More information

FORMATION OF PLATELET STRUCTURE CARBON NANO- AND MICRO-FIBERS BY TEMPLATE METHOD

FORMATION OF PLATELET STRUCTURE CARBON NANO- AND MICRO-FIBERS BY TEMPLATE METHOD FORMATION OF PLATELET STRUCTURE CARBON NANO- AND MICRO-FIBERS BY TEMPLATE METHOD Hidetaka Konno 1, Shin ya Sato 1, Hiroki Habazaki 1, Michio Inagaki 2 1 Graduate School of Engineering, Hokkaido University,

More information

Hydrodynamics of Drop Impact and Spray Cooling through Nanofiber Mats

Hydrodynamics of Drop Impact and Spray Cooling through Nanofiber Mats Hydrodynamics of Drop Impact and Spray Cooling through Nanofiber Mats Y. Chan Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003 F. Charbel Department of Mechanical

More information

Characterization of Boron Doped Cobalt/Zinc Acetate Composite Fibers

Characterization of Boron Doped Cobalt/Zinc Acetate Composite Fibers HACETTEPE JOURNAL OF BIOLOGY AND CHEMISTRY Hacettepe J. Biol. & Chem., 2009, 37 (3), 227-231 Research Article Characterization of Boron Doped Cobalt/Zinc Acetate Composite Fibers İbrahim Uslu 1*, Faruk

More information

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte Supplementary Information for: Novel concept of rechargeable battery using iron oxide nanorods anode and nickel hydroxide cathode in aqueous electrolyte Zhaolin Liu *, Siok Wei Tay and Xu Li Institute

More information

INFLUENCE OF THE SURFACE MORPHOLOGY AT SPECIFIC SURFACE AREA OF MICROFIBRES MADE FROM POLY (L-LACTIDE) MACAJOVÁ Eva

INFLUENCE OF THE SURFACE MORPHOLOGY AT SPECIFIC SURFACE AREA OF MICROFIBRES MADE FROM POLY (L-LACTIDE) MACAJOVÁ Eva INFLUENCE OF THE SURFACE MORPHOLOGY AT SPECIFIC SURFACE AREA OF MICROFIBRES MADE FROM POLY (L-LACTIDE) MACAJOVÁ Eva Department of Material Science, Technical University of Liberec, Liberec, Czech Republic,

More information

CNT Reinforced Nanocomposite Fiber Fabrication for Undergraduate Students

CNT Reinforced Nanocomposite Fiber Fabrication for Undergraduate Students CNT Reinforced Nanocomposite Fiber Fabrication for Undergraduate Students 1 Asmatulu, R., 1 Khan, W., and 2 Yildirim, M.B. Abatract 1 Department of Mechanical Engineering, Wichita State University 1845

More information

Preparation and Characterization of PVA/Boron Polymer Produced by an Electrospinning Technique.

Preparation and Characterization of PVA/Boron Polymer Produced by an Electrospinning Technique. e-polymers 2007, no. 133 http://www.e-polymers.org ISSN 1618-7229 Preparation and Characterization of PVA/Boron Polymer Produced by an Electrospinning Technique. I. Uslu, 1 H. Daştan, 1 A. Altaş, 1 A.

More information

MICRO-FLUID THROUGH ARAMID/CELLULOSE NANOCOMPOSITE MEMBRANES AND ITS FILTRATION EFFICIENCY

MICRO-FLUID THROUGH ARAMID/CELLULOSE NANOCOMPOSITE MEMBRANES AND ITS FILTRATION EFFICIENCY THERMAL SCIENCE: Year 2018, Vol. 22, No. 4, pp. 1691-1697 1691 MICRO-FLUID THROUGH ARAMID/CELLULOSE NANOCOMPOSITE MEMBRANES AND ITS FILTRATION EFFICIENCY by Kang LIU a,qi ZOU a, Zhongwen LING a, Yuqing

More information

Automatic TLC Sampler 4

Automatic TLC Sampler 4 Automatic TLC Sampler 4 Setting New Standards in Planar Chromatography Precise, fully automatic sample application for qualitative analysis, screening, high throughput analyses quantitative analysis preparative

More information

Preparation of Polyacrylonitrile Nanofibers by Solution Blowing Process

Preparation of Polyacrylonitrile Nanofibers by Solution Blowing Process Preparation of Polyacrylonitrile Nanofibers by Solution Blowing Process Xupin Zhuang, Kaifei Jia, Bowen Cheng, Ketian Guan, Weimin Kang, Yuanlin Ren Tianjin Polytechnic University, Tianjin CHINA Correspondence

More information

Metal-Organic Frameworks for Thin-Layer Chromatographic Applications

Metal-Organic Frameworks for Thin-Layer Chromatographic Applications Supporting Information for: Metal-Organic Frameworks for Thin-Layer Chromatographic Applications Claudia Schenk, Christel Kutzscher, Franziska Drache, Stella Helten, Irena Senkovska and Stefan Kaskel*

More information

ELECTROSPINNING OF POLYACRYLONITRILE NANOFIBERS. by Sandip Basu

ELECTROSPINNING OF POLYACRYLONITRILE NANOFIBERS. by Sandip Basu ELECTROSPINNING OF POLYACRYLONITRILE NANOFIBERS by Sandip Basu Department of Textile Technology Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy to the Indian Institute

More information

Electrospinning and Polarization of PVDF Fiber Mats for Adsorption of NaCl

Electrospinning and Polarization of PVDF Fiber Mats for Adsorption of NaCl The University of Akron IdeaExchange@UAkron Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors College Electrospinning and Polarization of PVDF Fiber Mats for Adsorption of NaCl Michael

More information

New Breakthroughs in Water Purification

New Breakthroughs in Water Purification Fiber Nanofiber d 300nm Functionalized soft matter: Using plastics, instead of expensive ceramic materials Nanofiber Technology & Molecular Engineering for Environment: Application to Water Purification

More information

Nano LC at 20 nl/min Made Easy: A Splitless Pump Combined with Fingertight UHPLC Nano Column to Boost LC-MS Sensitivity in Proteomics

Nano LC at 20 nl/min Made Easy: A Splitless Pump Combined with Fingertight UHPLC Nano Column to Boost LC-MS Sensitivity in Proteomics Nano LC at 20 nl/min Made Easy: A Splitless Pump Combined with Fingertight UHPLC Nano Column to Boost LC-MS Sensitivity in Proteomics Rieux L 1., De Pra M 1., Köcher T 2., Mechtler K 2., Swart R 1 1 Thermo

More information

MORPHOLOGY CONTROLLED ELECTROSPUN POLY(VINYL PYRROLIDONE) FIBERS: EFFECTS OF ORGANIC SOLVENT AND RELATIVE HUMIDITY

MORPHOLOGY CONTROLLED ELECTROSPUN POLY(VINYL PYRROLIDONE) FIBERS: EFFECTS OF ORGANIC SOLVENT AND RELATIVE HUMIDITY Journal of Materials Science and Engineering with Advanced Technology Volume 2, Number 1, 2010, Pages 97-112 MORPHOLOGY CONTROLLED ELECTROSPUN POLY(VINYL PYRROLIDONE) FIBERS: EFFECTS OF ORGANIC SOLVENT

More information

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Aji P. Mathew and Kristiina Oksman Wood and Bionanocomposites, Division of Materials Science Luleå University of Technology,

More information

Effect of Nanofiber Morphology on PVDF Air Filter Performance

Effect of Nanofiber Morphology on PVDF Air Filter Performance The University of Akron IdeaExchange@UAkron Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors College Spring 2015 Effect of Nanofiber Morphology on PVDF Air Filter Performance Andrew

More information

Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter

Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter Supplementary Information Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter Shichao Zhang, 1,3 Hui Liu, 2,3 Xia Yin, 2 Zhaoling Li,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Surface graphited carbon scaffold enables simple

More information

Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn

Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn Date Submitted 22 December 2005, Date Accepted 15 June 2006 F. Dabirian 1, Y. Hosseini 2 and S.

More information

Cu CMP: Macro-scale Manufacturing for Nano-scale Quality Requirements

Cu CMP: Macro-scale Manufacturing for Nano-scale Quality Requirements Cu CMP: Macro-scale Manufacturing for Nano-scale Quality Requirements Jung-Hoon Chun Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Cambridge, MA 02139 April 23, 2009

More information

Electret Polyvinylidene Fluoride Nanofibers Hybridized by Polytetrafluoroethylene Nanoparticles for High-Efficiency Air Filtration

Electret Polyvinylidene Fluoride Nanofibers Hybridized by Polytetrafluoroethylene Nanoparticles for High-Efficiency Air Filtration Supporting Information Electret Polyvinylidene Fluoride Nanofibers Hybridized by Polytetrafluoroethylene Nanoparticles for High-Efficiency Air Filtration Shan Wang,,, Xinglei Zhao,,, Xia Yin,*,, Jianyong

More information

NanoSystemsEngineering: NanoNose Final Status, March 2011

NanoSystemsEngineering: NanoNose Final Status, March 2011 1 NanoSystemsEngineering: NanoNose Final Status, March 2011 The Nanonose project is based on four research projects (VCSELs, 3D nanolithography, coatings and system integration). Below, the major achievements

More information

Water Only HPLC With FID Detection

Water Only HPLC With FID Detection Water Only HPLC With FID Detection W. Dale Felix, Stephanie J. Marin Brian A. Jones Selerity Technologies, Inc. 2484 W. Custer Road Salt Lake City, UT 84104 www.selerity.com 1 Introduction Utilizing elevated

More information

Design and Properties of SuperPower`s Practical 2G HTS Conductor for Electric Power Applications Venkat Selvamanickam

Design and Properties of SuperPower`s Practical 2G HTS Conductor for Electric Power Applications Venkat Selvamanickam Design and Properties of SuperPower`s Practical 2G HTS Conductor for Electric Power Applications Venkat Selvamanickam Y.Y. Xie, X. Zhang, Y. Qiao, and D. W. Hazelton Program funding from Title III and

More information

CHARACTERISTICS OF ELASTOMERIC NANOFIBER MEMBRANES PRODUCED BY ELECTROSPINNING

CHARACTERISTICS OF ELASTOMERIC NANOFIBER MEMBRANES PRODUCED BY ELECTROSPINNING CHARACTERISTICS OF ELASTOMERIC NANOFIBER MEMBRANES PRODUCED BY ELECTROSPINNING Yoshihiro Yamashita*, Akira Tanaka* and Frank Ko** *Department of Materials Science, The University of Shiga Prefecture 5

More information

Micro-wave structured polyamide-6 nanofiber/nets membrane with. embedded poly(m-phenylene isophthalamide) staple fibers for

Micro-wave structured polyamide-6 nanofiber/nets membrane with. embedded poly(m-phenylene isophthalamide) staple fibers for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information Micro-wave structured polyamide-6 nanofiber/nets

More information

Membranes & Water Treatment

Membranes & Water Treatment Latest Membrane Technologies in Industrial Water & Wastewater treatment Ajay Jindal Larsen & Toubro Limited, Mumbai CII Water India 2011 New Delhi, February 11-12, 12, 2011 Membranes & Water Treatment

More information

THE EFFECT OF SUPPORTING MATERIAL TYPE ON THE NANOFIBER MORPHOLOGY

THE EFFECT OF SUPPORTING MATERIAL TYPE ON THE NANOFIBER MORPHOLOGY THE EFFECT OF SUPPORTING MATERIAL TYPE ON THE NANOFIBER MORPHOLOGY Baturalp YALCINKAYA a, Funda CENGİZ CALLIOGLU a a Dept. of Textile E., E.&Arch. Faculty, Süleyman Demirel University - Isparta, Turkey,

More information

Molecular Characterization of Biotherapeutics The Agilent 1260 Infi nity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection

Molecular Characterization of Biotherapeutics The Agilent 1260 Infi nity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection Molecular Characterization of Biotherapeutics The Agilent 126 Infi nity Multi-Detector Bio-SEC Solution with Advanced Light Scattering Detection Application Note Biologics and Biosimilars Authors Sonja

More information

Direct Electrospinning Writing

Direct Electrospinning Writing 2-26-2018 Biofabrication Workshop Biomaterials Lab and Center for Engineering Complex Tissues Anthony J. Melchiorri, Ph.D. Associate Director, Biomaterials Lab Rice University Hochleitner, et al. Biofabrication.

More information

FABRICATION AND PROPERTIES OF RAPID THERMALLY PROCESSED CARBON NANOFIBERS

FABRICATION AND PROPERTIES OF RAPID THERMALLY PROCESSED CARBON NANOFIBERS FABRICATION AND PROPERTIES OF RAPID THERMALLY PROCESSED CARBON NANOFIBERS NSF Summer Undergraduate Fellowship in Sensor Technologies Santiago Serrano (Electrical Engineering) - Drexel University Advisors:

More information

BÜCHI Labortechnik AG

BÜCHI Labortechnik AG BÜCHI Labortechnik AG Purification BUCHI Chromatography History 1977: BUCHI Fraction Collector 1978: 1 st preparative chromatography system 2008: automated chromatography system 2014: automated high performance

More information

Supporting Information: Gold nanorod plasmonic upconversion microlaser

Supporting Information: Gold nanorod plasmonic upconversion microlaser Supporting Information: Gold nanorod plasmonic upconversion microlaser 1 Materials Synthesis and Properties Ce Shi, Soheil Soltani, Andrea M. Armani 1.1 Nanorod synthesis First the gold nanorods (NRs)

More information

The world s first Nano Mask. Introduction to Highly Efficient Nano - Mask

The world s first Nano Mask. Introduction to Highly Efficient Nano - Mask Introduction to Highly Efficient Nano - Mask 1. Nano? Nano is a unit prefix meaning one billionth. Used primarily with the metric system, this prefix denotes a factor of 10 9 or 0.000000001. It is frequently

More information

A Belt-like superfine film fabricated by bubble-electrospinning Hao Dou 1,a, Bao-qi Zuo 1

A Belt-like superfine film fabricated by bubble-electrospinning Hao Dou 1,a, Bao-qi Zuo 1 Advanced Materials Research Online: 2013-11-21 ISSN: 1662-8985, Vol. 843, pp 82-85 doi:10.4028/www.scientific.net/amr.843.82 2014 Trans Tech Publications, Switzerland A Belt-like superfine film fabricated

More information

Impact of GC Parameters on The Separation Part 4: Choice of Film Thickness

Impact of GC Parameters on The Separation Part 4: Choice of Film Thickness Cd The Chrom Doctor Impact of GC Parameters on The Separation Part 4: Choice of Film Thickness Jaap de Zeeuw, Restek Corporation, Middelburg, The Netherlands. In part 1, 2 and 3 of this series we focused

More information

Fabrication of sub-100nm thick Nanoporous silica thin films

Fabrication of sub-100nm thick Nanoporous silica thin films Fabrication of sub-100nm thick Nanoporous silica thin films Abstract M. Ojha, W. Cho, J. L. Plawsky, W. N. Gill Department of chemical and biological engineering, Rensselaer Polytechnic Institute Low refractive

More information

Mobile Phase Optimization in SEC Method Development

Mobile Phase Optimization in SEC Method Development Application Note Pharma & Biopharma Mobile Phase Optimization in SEC Method Development Author Richard Hurteau Agilent Technologies, Inc., Wilgton, DE, USA Abstract Aggregation of monoclonal antibody (mab)

More information

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1 SUPPORTING INFORMATION Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle Based Lithium Ion Battery Anodes Tae Hoon Hwang, Yong Min Lee, Byung Seon Kong, Jin-Seok Seo, and Jang Wook Choi,,*

More information

Polymer optical fiber tapering using chemical solvent and polishing

Polymer optical fiber tapering using chemical solvent and polishing Polymer optical fiber tapering using chemical solvent and polishing L. S. Supian 1*, Mohd Syuhaimi Ab-Rahman 1, and Norhana Arsad 1,2 1 Department of Electrical and Electronic Engineering, Faculty of Engineering

More information

Soft silicon anodes for lithium ion batteries

Soft silicon anodes for lithium ion batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Soft silicon anodes for lithium ion batteries Qizhen

More information

Micro/Nano Mechanical Systems Lab Class#16

Micro/Nano Mechanical Systems Lab Class#16 Microsystems Laboratory Micro/Nano Mechanical Systems Lab Class#16 Liwei Lin Professor, Dept. of Mechanical Engineering Co-Director, Berkeley Sensor and Actuator Center The University of California, Berkeley,

More information

Screen Printing of Highly Loaded Silver Inks on. Plastic Substrates Using Silicon Stencils

Screen Printing of Highly Loaded Silver Inks on. Plastic Substrates Using Silicon Stencils Supporting Information Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils Woo Jin Hyun, Sooman Lim, Bok Yeop Ahn, Jennifer A. Lewis, C. Daniel Frisbie*, and Lorraine

More information

Thermoresponsive Membranes from Electrospun. Mats with Switchable Wettability for Efficient

Thermoresponsive Membranes from Electrospun. Mats with Switchable Wettability for Efficient Thermoresponsive Membranes from Electrospun Mats with Switchable Wettability for Efficient Oil/Water Separations Yan Liu, a,b Sinem Tas, b Kaihuan Zhang, b, Wiebe M. de Vos, c Jinghong Ma, a,* and G. Julius

More information

Isolation of Protein

Isolation of Protein Isolation of Protein Ultra-centrifugation http://irfanchemist.wordpress.com/2009/04/19/isolation-of-protein / Protein solutions of various masses or densities may separated based on the time it takes to

More information

ELECTROSPUN ELECTROACTIVE POLYMERS FOR AEROSPACE APPLICATIONS

ELECTROSPUN ELECTROACTIVE POLYMERS FOR AEROSPACE APPLICATIONS ELECTROSPUN ELECTROACTIVE POLYMERS FOR AEROSPACE APPLICATIONS Kristin J. Pawlowski, NASA Langley Research Center, Hampton, VA Tyler L. St.Clair*, Mary Washington College, Fredricksburg, VA Amber C. McReynolds,

More information

Synthesis and Characterization of Certain Copolyester- PVC-Nanoclay Composites Possessing Arylidene- Cyclohexanone Moiety in the Main Chain

Synthesis and Characterization of Certain Copolyester- PVC-Nanoclay Composites Possessing Arylidene- Cyclohexanone Moiety in the Main Chain Synthesis and Characterization of Certain Copolyester- PVC-Nanoclay Composites Possessing Arylidene- Cyclohexanone Moiety in the Main Chain Sathish P, Mayavathi M, Reuben Jonathan D and Roopsingh D * PG

More information

Paper type solvent filter Cartridge type solvent filter In-line filter. Uniform fiber diameter of 1 µm. Minimized deviation in particle size.

Paper type solvent filter Cartridge type solvent filter In-line filter. Uniform fiber diameter of 1 µm. Minimized deviation in particle size. Sintered Stainless Steel Fiber Filters For precision filtration of fluids Paper type solvent filter Cartridge type solvent filter In-line filter Features: Higher efficiency and precision than the filtration

More information

Electrospinning of Poly(ether sulfone) and Evaluation of the Filtration Efficiency

Electrospinning of Poly(ether sulfone) and Evaluation of the Filtration Efficiency Transaction Electrospinning of Poly(ether sulfone) and Evaluation of the Filtration Efficiency Kazuhiro Nakata 1, Seong Hun Kim 2, Yutaka Ohkoshi 3, Yasuo Gotoh 3, and Masanobu Nagura 3 1 Department of

More information

ELECTRONIC SUPPLEMENTARY INFORMATION. On-Skin Liquid Metal Inertial Sensor

ELECTRONIC SUPPLEMENTARY INFORMATION. On-Skin Liquid Metal Inertial Sensor Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2017 ELECTRONIC SUPPLEMENTARY INFORMATION On-Skin Liquid Metal Inertial Sensor Matija Varga, a,b

More information

Biodegradable Nanofibrous Filters for Air Filtration

Biodegradable Nanofibrous Filters for Air Filtration Biodegradable Nanofibrous Filters for Air Filtration Raheleh Givehchi Chenping Ni Patrick Bardo Zhongchao Tan Department of Mechanical & Mechatronics Engineering University of Waterloo Ontario, Canada

More information

Size exclusion chromatography (SEC) with superficially porous (core-shell) particles

Size exclusion chromatography (SEC) with superficially porous (core-shell) particles Size exclusion chromatography (SEC) with superficially porous (core-shell) particles Mark R. Schure, Inc. Blue Bell, Pennsylvania Robert E. Moran, Stephanie A. Schuster, Brian M. Wagner, Conner W. McHale

More information

ELECTROSPUN NANOCOMPOSITE FIBERS MADE FROM POLY(VINYL ALCOHOL) AND CELLULOSE NANOFIBRILS

ELECTROSPUN NANOCOMPOSITE FIBERS MADE FROM POLY(VINYL ALCOHOL) AND CELLULOSE NANOFIBRILS ELECTROSPUN NANOCOMPOSITE FIBERS MADE FROM POLY(VINYL ALCOHOL) AND CELLULOSE NANOFIBRILS Eliton S. Medeiros1,2*, Luiz H. C. Mattoso2, Edson N. Ito2, William J. Orts1 1* United States Department of Agriculture,

More information

Shear Bands in Glassy Amorphous Polymers

Shear Bands in Glassy Amorphous Polymers Shear Bands in Glassy Amorphous Polymers Shear banding in tension or compression. Neck formation via shear bands (a) (b) (c) (d) Stress Image removed due to copyright restrictions. Please see Fig. 12a

More information

3D dendritic WSe 2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution

3D dendritic WSe 2 catalyst grown on carbon nanofiber mats for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 3D dendritic WSe 2 catalyst grown on carbon nanofiber

More information

CARBON NANOFIBERS PREPARATION FROM PAN NANOFIBERS BY COTTON CANDY METHOD

CARBON NANOFIBERS PREPARATION FROM PAN NANOFIBERS BY COTTON CANDY METHOD CARBON NANOFIBERS PREPARATION FROM PAN NANOFIBERS BY COTTON CANDY METHOD Akihiro Tada, OHGI TECHNOLOGICAL CREATION CO., LTD. Shiga, Japan Jitlada Boonlertsamut,Supaphorn Thumsorn, Masayuki Okoshi, Hiroyuki

More information

PulseForge TM. Curing Copper and other Thin-Film Materials. Stan Farnsworth, VP Marketing

PulseForge TM. Curing Copper and other Thin-Film Materials. Stan Farnsworth, VP Marketing PulseForge TM Curing Copper and other Thin-Film Materials at Production Speeds Stan Farnsworth, VP Marketing Oct 2009 2009 PulseForge 3100 and Pulsed Thermal Processing www.novacentrix.com 2 NovaCentrix

More information

Supporting Information

Supporting Information Supporting Information Novel Interwoven Polymer Composites via Dual- Electrospinning with Shape Memory/Self-healing Properties Jaimee M. Robertson, Hossein Birjandi Nejad, Patrick T. Mather* Syracuse Biomaterials

More information

Quick Reference Guide. Supplies for CTC GC and HPLC Autosamplers

Quick Reference Guide. Supplies for CTC GC and HPLC Autosamplers Quick Reference Guide Supplies for CTC GC and HPLC Autosamplers works with BRUKER/VARIAN CTC PERKINELMER SHIMADZU THERMO/DIONEX WATERS MORE Put innovation and quality to work on a wide range of GCs and

More information

CHAPTER 9 AFM PROFILING AND NANOLITHOGRAPHY WITH NEEDLE-TIPPED CANTILEVERS

CHAPTER 9 AFM PROFILING AND NANOLITHOGRAPHY WITH NEEDLE-TIPPED CANTILEVERS CHAPTER 9 AFM PROFILING AND NANOLITHOGRAPHY WITH NEEDLE-TIPPED CANTILEVERS Since Ag 2 Ga nanoneedles can be directly grown on (or even in place of) the tips on AFM cantilevers using the pulling technique

More information

Texas Desal 2014 Reverse Osmosis Membrane Basics How and Why Membranes Work Dan Muff - Toray

Texas Desal 2014 Reverse Osmosis Membrane Basics How and Why Membranes Work Dan Muff - Toray Texas Desal 2014 Reverse Osmosis Membrane Basics How and Why Membranes Work Dan Muff - Toray Spiral Module History 1960 s - 2012 1964 - Spiral Wound Module Patented 1969 - Global RO Module Sales $1 million

More information

Versatile Core-Sheath Biofibers using Coaxial Electrospinning

Versatile Core-Sheath Biofibers using Coaxial Electrospinning Mater. Res. Soc. Symp. Proc. Vol. 1094 2008 Materials Research Society 1094-DD06-02 Versatile Core-Sheath Biofibers using Coaxial Electrospinning Daewoo Han 1, Steven T. Boyce 2, and Andrew J. Steckl 1

More information

Release of 1-methylcyclopropene (1-MCP) from Polystyrene Fibers Functionalized with Inclusion Complex Between 1-MCP and α-cyclodextrin

Release of 1-methylcyclopropene (1-MCP) from Polystyrene Fibers Functionalized with Inclusion Complex Between 1-MCP and α-cyclodextrin Release of 1-methylcyclopropene (1-MCP) from Polystyrene Fibers Functionalized with Inclusion Complex Between 1-MCP and α-cyclodextrin H. Yoshii, H. D. Ariyanato, T.L. Neoh Food Engineering Laboratory

More information

E-TEAM. Characterisation of Polyamide 6 Nanofibres. European Masters in Textile Engineering. Özgür Ceylan. Promoter: Karen De Clerck.

E-TEAM. Characterisation of Polyamide 6 Nanofibres. European Masters in Textile Engineering. Özgür Ceylan. Promoter: Karen De Clerck. Association of Universities for Textiles E-TEAM European Masters in Textile Engineering Characterisation of Polyamide 6 Nanofibres Özgür Ceylan Promoter: Karen De Clerck Ghent University Academic year:

More information

Supporting Information for. Co-Fabrication of Electromagnets and Microfluidic Systems. in Poly(dimethylsiloxane)

Supporting Information for. Co-Fabrication of Electromagnets and Microfluidic Systems. in Poly(dimethylsiloxane) Supporting Information for Co-Fabrication of Electromagnets and Microfluidic Systems in Poly(dimethylsiloxane) Adam C. Siegel, Sergey Shevkoplyas, Douglas B. Weibel, Derek Bruzewicz, Andres Martinez, and

More information

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Other Polymer Techniques Embossing Low cost High throughput Structures as small as 25 nm Injection molding Features

More information

Filtration Properties of Electrospinning Nanofibers

Filtration Properties of Electrospinning Nanofibers Filtration Properties of Electrospinning Nanofibers Xiao-Hong Qin, Shan-Yuan Wang Textile College, Donghua University, 1882 Yan an Road, Shanghai 200051, China Received 13 September 2005; accepted 4 March

More information

Electrochemical Behaviors of PAN/Ag-based Carbon Nanofibers by Electrospinning

Electrochemical Behaviors of PAN/Ag-based Carbon Nanofibers by Electrospinning Electrochemical Behaviors of PAN/Ag-based CNFs Bull. Korean Chem. Soc. 2008, Vol. 29, No. 4 777 Electrochemical Behaviors of PAN/Ag-based Carbon Nanofibers by Electrospinning Soo-Jin Park * and Se-Hyuk

More information

MACHEREY-NAGEL. CHROMABOND Flash cartridges. Chromatography. Solutions for preparative purifications. n Resolution n Quality n Safety.

MACHEREY-NAGEL. CHROMABOND Flash cartridges. Chromatography. Solutions for preparative purifications. n Resolution n Quality n Safety. MACHEREY-NAGEL CHROMABOND Flash cartridges Chromatography Solutions for preparative purifications n Resolution n Quality n Safety Table of contents MACHEREY-NAGEL products for flash chromatography Contents

More information

Photolithography I ( Part 2 )

Photolithography I ( Part 2 ) 1 Photolithography I ( Part 2 ) Chapter 13 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow.

During solution evaporation, there are two major competing evaporation-driven effects, coffee ring effect and Marangoni flow. Abstract Evaporation driven particle packing has been investigated to reveal interesting patterns at micrometer to millimeter scale. While the microscopic structures of these patterns are well characterized,

More information

ElectrospinningPolyacrylonitriletoMakeCarbonNanofibersforEnergyConversionApplications

ElectrospinningPolyacrylonitriletoMakeCarbonNanofibersforEnergyConversionApplications Global Journal of Researches in Engineering: A Electrical and Electronics Engineering Volume 17 Issue 4 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White Experiences of PLD Technology for LIB Separators PICODEON Oy Neal White 1 Outline Introduction to Picodeon Ceramic coating rationale Separator overview Why PLD for LIB separators Current status of Picodeon

More information

Plastic Coated Silica/Silica (Low OH) FIBER CROSS SECTION Polyimide and Acrylate Coated. Nylon and Tefzel Coated

Plastic Coated Silica/Silica (Low OH) FIBER CROSS SECTION Polyimide and Acrylate Coated. Nylon and Tefzel Coated DESCRIPTION When looking for a high quality fiber with superior transmission and a numerical aperture (N.A.) of 0.22 for efficient light coupling, the is the fiber of choice. The Anhydroguide fiber is

More information

Nguyen Thuy Ba Linh 1, Kap-Ho Lee 2 and Byong-Taek Lee 1; *

Nguyen Thuy Ba Linh 1, Kap-Ho Lee 2 and Byong-Taek Lee 1; * Materials Transactions, Vol. 52, No. 7 (2011) pp. 1452 to 1456 #2011 The Japan Institute of Metals A Novel Photoactive Nano-Filtration Module Composed of a TiO 2 Loaded PVA Nano-Fibrous Membrane on Sponge

More information

FABRICATION OF MICROFLUIDIC CHANNELS USING MICROFIBERS FOR APPLICATIONS IN BIOTECHNOLOGY

FABRICATION OF MICROFLUIDIC CHANNELS USING MICROFIBERS FOR APPLICATIONS IN BIOTECHNOLOGY FABRICATION OF MICROFLUIDIC CHANNELS USING MICROFIBERS FOR APPLICATIONS IN BIOTECHNOLOGY Tom Huang, 1,5 Woo-Jin Chang, 2 Demir Akin, 2 Rafael Gomez, 2 Rashid Bashir, 2,3 Nathan Mosier, 4 and Michael R.

More information

The Effect of Aloe vera Extract Variation in Electrospun Polyvinyl Alcohol (PVA)-Aloe vera-based Nanofiber Membrane

The Effect of Aloe vera Extract Variation in Electrospun Polyvinyl Alcohol (PVA)-Aloe vera-based Nanofiber Membrane Journal of Physics: Conference Series PAPER OPEN ACCESS The Effect of Aloe vera Extract Variation in Electrospun Polyvinyl Alcohol (PVA)-Aloe vera-based Nanofiber Membrane To cite this article: D Hikmawati

More information

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes Zheng Liang, Guangyuan Zheng, Chong Liu, Nian Liu, Weiyang Li, Kai Yan, Hongbin Yao, Po-Chun Hsu, Steven Chu, and Yi Cui *,, Department

More information

Separator Membranes Produced from Polymers by Electrospinning for Applications in Electrical Double Layer Capacitors

Separator Membranes Produced from Polymers by Electrospinning for Applications in Electrical Double Layer Capacitors Separator Membranes Produced from Polymers by Electrospinning for Applications in Electrical Double Layer Capacitors Summer Undergraduate Fellowship in Sensor Technologies Matt Biggers (Biomedical Engineering)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell Zhitao Zhang 1, Kunping Guo 2, Yiming Li 1, Xueyi Li 1, Guozhen Guan 1, Houpu Li 1, Yongfeng Luo 1, Fangyuan Zhao 1,

More information