Chapter 9: Applications of the Laws of Thermodynamics

Size: px
Start display at page:

Download "Chapter 9: Applications of the Laws of Thermodynamics"

Transcription

1 Chapter 9: Applications of the Laws of hermodynamics Goals of Period 9 Section 9.1: Section 9.2: Section 9.3: o review the first law of thermodynamics o discuss heat engines and their efficiency o discuss air conditioners, refrigerators, and heat pumps and their efficiency 9.1 Conservation of Energy and the First Law of hermodynamics In Chapter 8 we applied the law of conservation of energy to thermodynamic systems: a change in internal energy of a system U equals the heat added to or subtracted from the system minus the work done by the system. Equation 9.1 describes this relationship. he law of conservation of energy tells us that the total amount of energy in this system does not change. U (Equation 9.1) U = total internal energy (thermal energy) (joules) U = the change in internal energy (joules) = heat added to or subtracted from the system (joules) = work done by the system (joules) A system moving towards equilibrium has the ability to do mechanical work. As long as the system is not in equilibrium with its environment, the entropy it has compared to the entropy it will have when it reaches equilibrium is a measure of the amount of work that can be obtained from the system as it goes to equilibrium. As shown in equation 9.1, not all of the energy can be recovered as work. In Chapter 9, we consider applications of the first law of thermodynamics to heat engines, heat pumps, refrigerators, and air conditioners. 9.2 eat Engines As mentioned previously, work can be obtained from a system as it progresses from a non-equilibrium to an equilibrium situation. eat engines and motors are examples of devices that utilize this principle. Both are used to convert other forms of energy into kinetic energy. In an engine, thermal energy at a high temperature is produced by the combustion of some sort of fuel, and then transformed into kinetic energy. In a heat engine, thermal energy from the combustion process is transferred to what is called the working substance. For example, coal may be burned to produce steam in the boiler of a steam engine; the steam is the working substance. he steam expanding in the cylinders of the steam engine moves the pistons to produce kinetic energy. 73

2 In a motor, the primary transformation process is the direct conversion of some other form of energy into kinetic energy. In an electric motor, for example, electrical energy is converted directly into kinetic energy. An electric motor will not run without voltage across its terminals, and a steam engine will not operate if the steam reaching the pistons has the same temperature as the external environment. A system will run only as long as a non-equilibrium situation exists. Figure 9.1 illustrates a heat engine that runs because the system is not in equilibrium. Figure 9.1: A eat Engine eat engines may be classified as either internal or external combustion engines. An aircraft gas turbine engine and the automobile gasoline engine are examples of internal combustion engines, engines in which the fuel is actually burned inside the engine. he steam turbine engine is an example of an external combustion engine. An external combustion engine is an engine in which the fuel is burned outside the engine in a furnace. he furnace heats water in a boiler producing steam to run the steam turbine. Ideal eat Engines and heir Efficiency Just how efficient can we hope to make a device? his question has great importance in view of our limited fuel reserves. e clearly wish to attempt to use these reserves in an efficient manner. Engineers must concern themselves with calculating efficiencies of processes that are very complex or performing an experiment in order to find the efficiency. For heat engines the second law of thermodynamics provides an absolute upper limit to the efficiency. he efficiency of an actual heat engine is the ratio of the work obtained from the engine divided by the heat energy of the system as shown in Equation

3 Eff (Equation 9.2) = work obtained from the system (joules) = heat energy of the system (joules) In an ideal situation, all of the heat energy would be converted into work. Since some energy is wasted in every process, the work obtained is the difference in the high and low heat energies, that is = - L. Equation 9.2 can be written as Eff L (Equation 9.3) In an ideal situation the heat transferred is proportional to the temperature. For an ideal heat engine, that is, one that operates with reversible processes, the maximum efficiency is given by Equation 9.4. Eff (Equation 9.4) = the high temperature (in Kelvin) of the working substance (water, steam, hot gas) reaching the piston or turbine after combustion in the engine L = the low temperature (in Kelvin) of the working substance leaving the engine. L he efficiency of even an ideal heat engine always results in a number less than one because we cannot reach absolute zero for the low temperature. Of course, no such engine exists or can exist, but it does provide an upper limit on what we can expect. (Example 9.1) hat is the efficiency of an ideal engine that uses working substances at 400 K and 300 K? Eff L = 400 K 300K = 100 K = 0.25 = 25% 400 K 400 K Steam turbines are used in electric power plants to provide the mechanical energy required to run the electric generators. ypically the steam turbines are run with an efficiency of about 50% for converting thermal energy to mechanical energy. o obtain the overall efficiency of the power plant, we must multiply this 50% by the 75

4 efficiencies of the other energy conversions taking place in the chain from fuel to electricity. Modern boilers can convert about 88% of the chemical energy of the fuel to thermal energy of the working substance. Electric generators can convert up to 99% of the mechanical energy produced by the steam turbine into electricity. he overall efficiency of a device is equal to the product of the efficiencies of each energy conversion step. hus the overall efficiency is less than the least efficient process. (Example 9.2) hat is the overall efficiency of the process described in the paragraph above for generating electricity? Eff overall = Eff 1 x Eff 2 x Eff 3 = 0.50 x 0.88 x 0.99 = 0.44 = 44% In the U.S. nuclear power plants operate at a lower efficiency than 44% because the present reactors cannot, for reasons of safety, run at temperatures as high as those used with conventional boilers. For the complete cycle of conversion from the stored energy in the nuclear fuel to electrical energy, the nuclear power reactors now in use have an efficiency of about 30%. 9.3 Refrigerators, Air Conditioners, and eat Pumps Refrigerators and Air Conditioners e next consider devices that use energy to transfer thermal energy from a cold body to a hot body. A window air conditioner is an example of such a device. he air conditioner uses electrical energy to pump heat from a room and exhausts that heat into the outside air. A refrigerator pumps heat from inside the refrigerator into the room. An input of electrical energy is required to move heat from a cool environment inside the refrigerator into a warmer environment into the room. Air conditioners and refrigerators make use of expansion cooling. hen a fluid, such as freon, is compressed to a higher pressure and the fluid is allowed to expand, the result is a cooling of the fluid. Cooling occurs in the air conditioner coils when the pressure on the freon (or other liquid) is quickly reduced as the freon is allowed to expand through a small opening. As the liquid freon expands, it changes phase from a liquid to a gas. Freon s low boiling point makes it useful as the fluid in air conditioners and refrigerators. o change phase from a liquid to a gas, heat must have been added to the freon. hat heat comes from the surroundings, and the surroundings are cooled. Fans blowing across the air conditioner coils send cool air into the room. Fans on the opposite side of the air conditioner blow warm air outside the room. Refrigerators operate in a similar way, blowing cold air into the refrigerator and warm air into the room in which the refrigerator sits. An input of electrical energy is required to move heat from a cool environment inside the refrigerator into a warmer environment into the room. Most of this electrical energy is used to run the compressor; a very small amount is used by the fans. he electrical energy used by the air conditioner or refrigerator is not converted into thermal 76

5 energy except in frictional processes. Rather, the electrical energy is used to pump thermal energy from one place to another. In this case the amount of thermal energy transferred can be greater than the electrical energy required to run the device. his is not a violation of conservation of energy. he second law of thermodynamics does not say that you cannot transfer thermal energy from a cold body to a hot body; it only says that it takes energy to accomplish such a transfer. eat Pumps A window air conditioner sends cold air into the room to be cooled and pumps hot air outside. Although an air conditioner is normally used for cooling, it could be used either to cool or heat a room. Used as an air conditioner, it pumps thermal energy out of the room into the warmer air outside the house. Used as a heat pump, it pumps thermal energy from the colder air outside the house into the house. hus, a heat pump can be thought of as a window air conditioner that has been turned 180 degrees so that warm air is blown into the room and cold air is blown outside. Figure 9.2 illustrates a heat pump and Figure 9.3 illustrates an air conditioner or a refrigerator. Figure 9.2: A eat Pump Figure 9.3: An Air Conditioner or Refrigerator eating and Cooling with Geothermal Energy he heating and cooling devices described above, air conditioners and heat pumps, use electricity to move thermal energy into or out of a closed structure, such as a building. During hot weather, an air conditioner extracts heat from the air inside a building and pumps this heat outside, adding heat to the outside air. In cold weather, a heat pump extracts heat from the cooler outside air and pumps this heat inside. 77

6 A geothermal heating and cooling system operates in a similar manner but pumps heat into and out of ground water rather than air. In moderate climates, ground water at least 10 feet below the Earth s surface remains at a constant temperature of about 55 O F (13 O C) year round. During summer, fans blowing across coils of this cool water can help cool a room. During winter, heat pumped from this 55 O F water can help warm a room. o extract heat from ground water, the ground water itself can be pumped to the surface, heat extracted from the water, and the water returned underground. Alternatively, fluid can be circulated through a system of vertical pipes buried underground. he fluid absorbs heat as it circulates through the underground pipes. A heat pump extracts heat from the fluid and pumps the heat into a room. he fluid is then returned through the pipes into the ground to again absorb heat. o cool a room using this method, a heat pump removes heat from inside a room and transfers that heat to the fluid. he fluid is pumped underground it is chilled to 55 O F. he cool fluid is returned to the surface it absorbs heat. he process is similar to that of a window air conditioner with the waste heat transferred from a room into a fluid pumped underground instead of to outside air. Coefficient of Performance A measure of how well heat pumps, air conditioners or refrigerators perform is called the coefficient of performance of the device. For example, the coefficient of performance of a heat pump is the ratio of the amount of thermal energy transferred from outside the house, which is at a low temperature, to inside the house, which is at a higher temperature. he coefficient of performance in this case is the ratio of the heat transferred to the house to the work required to transfer it. (Equation 9.5) COP for heat pumps COP = coefficient of performance = heat transferred into the home (joules) = work required to transfer the heat (joules) (Example 9.3) hat is the coefficient of performance of a heat pump that requires 2,500 joules of energy to pump 7,500 joules extracted from outside air into a house? COP = 7,500 J = 3 2,500 J If you have an ideal heat pump, you follow what was done for the maximum efficiency of the heat engine because and L are proportional to and C. Equation 9.5 can be written as 78

7 COP (Equation 9.6) for heat pumps COP = coefficient of performance = heat transferred into the home (joules) = work required to transfer the heat (joules) = the high temperature (in Kelvin) = the low temperature (in Kelvin) L C e know that efficiencies must be less than one, since some energy always goes into friction. owever, the coefficient of performance ratio may be greater than one. his is because the coefficient of performance is the inverse of the efficiency of the device as seen by comparing Equations 9.3 and 9.6. For actual devices the coefficient of performance is usually between two and six. For air conditioners and refrigerators the coefficient of performance is COP L for air conditioners and refrigerators (Equation 9.7) COP = coefficient of performance L = heat taken out of the refrigerator or the home (joules) = work required to transfer the heat (joules) If you have an ideal refrigerator or air conditioner, the coefficient of performance is (Equation 9.8) COP COP = coefficient of performance L = heat taken out of the refrigerator or the home (joules) = work required to transfer the heat (joules) = the high temperature (in Kelvin) = the low temperature (in Kelvin) L L C C for air conditioners and refrigerators his ratio is the heat transferred from inside the refrigerator or inside the house L divided by the work, = C. 79

8 Period 9 Summary 9.1: he first law of thermodynamics: the change in internal energy of a system equals the heat added to the system minus the work done by the system. U = As systems move toward equilibrium, they can give off energy or do work or do both. ork can be obtained from a system as it moves from a non-equilibrium situation to an equilibrium situation. 9.2 eat engines do work using the non-equilibrium situation between differences in temperature. eat engines convert thermal energy into mechanical energy. he efficiency of an ideal heat engine = Eff = - L with measured in Kelvin hermal energy flows from warmer environments to cooler environments. 9.3 eat pumps, refrigerators, and air conditioners use energy to move heat from cooler environments to warmer environments. eat can be moved to and from outside air. Using geothermal energy, heat is moved to and from underground water or fluid flowing through underground pipes. Geothermal heating and cooling makes use of the year-round constant underground temperature of 55 O F. he efficiency of heat transfer is measured by the coefficient of performance. eat pump COP = / = heat transferred from a lower temperature environment to a higher temperature environment and = work required to transfer the energy Air Conditioner or refrigerator COP = L / L = heat transferred from a lower temperature environment to a higher temperature environment. = work required to transfer the energy 80

Remember... Kinetic energy is the energy an object has because of its motion.

Remember... Kinetic energy is the energy an object has because of its motion. Remember... Kinetic energy is the energy an object has because of its motion. A thermal photo Thermal energy is the total energy of the thermal (or kinetic) motion of all the particles that make up an

More information

Chapter 6 THE SECOND LAW OF THERMODYNAMICS

Chapter 6 THE SECOND LAW OF THERMODYNAMICS Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 6 THE SECOND LAW OF THERMODYNAMICS Copyright The McGraw-Hill Companies, Inc. Permission

More information

Heat Engines and Refrigerators

Heat Engines and Refrigerators Heat Engines and Refrigerators In this chapter, we combine and apply all that we have learned in chapters 18, 19, & 20 to analyze some practical devices that can only be understood through Thermodynamics.

More information

Bifluid Geothermal System New Generation

Bifluid Geothermal System New Generation Bifluid Geothermal System New Generation The Geothermal Energy - from the Greek roots geo, meaning earth, and thermos, meaning heat - ie the thermal energy stored in the underground of our planet, and

More information

Exergy in Processes. Flows and Destruction of Exergy

Exergy in Processes. Flows and Destruction of Exergy Exergy in Processes Flows and Destruction of Exergy Exergy of Different Forms of Energy Chemical Energy Heat Energy Pressurised Gas Electricity Kinetic Energy Oxidation of Methane ΔH = -890.1 kj/mol ΔS

More information

Carnot s thought experiment showed that the Carnot limit was the maximum efficiency possible for ALL reversible heat engines.

Carnot s thought experiment showed that the Carnot limit was the maximum efficiency possible for ALL reversible heat engines. GEOS 24705 / ENST 24705 Problem set #8 Due: Tues. Apr. 28 Problem 1: Heat engines and heat pumps A heat engine is a device that moves heat down a temperature gradient (from hot to cold) and extracts some

More information

Chapter 18 Renewable Energy

Chapter 18 Renewable Energy Chapter 18 Renewable Energy MULTIPLE CHOICE 1. Habitat loss, soil erosion, and air pollution are disadvantages of which renewable energy source? a. solar c. biomass fuel b. wind d. moving water C DIF:

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Sustainable Energy 10/7/2010

Sustainable Energy 10/7/2010 Toolbox 8: Thermodynamics and Efficiency alculations Sustainable Energy 10/7/2010 Sustainable Energy - Fall 2010 - Thermodynamics First law: conservation of heat plus work eat () and work (W) are forms

More information

Air Cycle Refrigeration Systems Nagendra M CBM Engineer, Hindusthan Zink.Ltd The specific objectives of the lesson This lesson discusses various gas cycle refrigeration systems based on air, namely: 1.

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second Law of Thermodynamics In this chapter we consider a more abstract approach to heat engine, refrigerator and heat pump cycles, in an attempt to determine if they are feasible, and to obtain the

More information

The first law of thermodynamics can be stated in terms of the heat energy transferred into the system,

The first law of thermodynamics can be stated in terms of the heat energy transferred into the system, Module 2, Lesson 2 Heat Pumps and Refrigerators Objective: By the end of this lesson you will be able describe the difference between a heat engine and a heat pump/refrigerator and be able to differentiate

More information

Geothermal Comfort Systems

Geothermal Comfort Systems Frequently Asked Questions Q: How efficient are geothermal heat pump systems? A: Actual efficiencies will depend on a number of factors, but generally speaking a geothermal heat pump can be three to five

More information

16.3 Electric generators and transformers

16.3 Electric generators and transformers ElEctromagnEts and InductIon Chapter 16 16.3 Electric generators and transformers Motors transform electrical energy into mechanical energy. Electric generators do the opposite. They transform mechanical

More information

Physics 100 Energy in Today s World Homework Chs Prof. Menningen p. 1 of 5

Physics 100 Energy in Today s World Homework Chs Prof. Menningen p. 1 of 5 Physics 100 Energy in Today s orld omework Chs. 16-18 Prof. Menningen p. 1 of 5 Name: 1. A primary resource used for the production of alternate fuel for vehicles is a. municipal solid waste b. biogas

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

2. TECHNICAL DESCRIPTION OF THE PROJECT

2. TECHNICAL DESCRIPTION OF THE PROJECT 2. TECHNICAL DESCRIPTION OF THE PROJECT 2.1. What is a Combined Cycle Gas Turbine (CCGT) Plant? A CCGT power plant uses a cycle configuration of gas turbines, heat recovery steam generators (HRSGs) and

More information

What type of radiation transmits heat energy? Complete this sentence. Hotter objects emit infrared radiation than cooler objects.

What type of radiation transmits heat energy? Complete this sentence. Hotter objects emit infrared radiation than cooler objects. Page 1 What type of radiation transmits heat energy? Complete this sentence Hotter objects emit infrared radiation than cooler objects. What type of surfaces are good absorbers and good emitters of infrared

More information

UNIT NO-03 [8 hrs] Second Law Of Thermodynamics: Introduction (Law of degradation of energy), Thermal energy reservoirs, Kelvin-Plank & Clausius

UNIT NO-03 [8 hrs] Second Law Of Thermodynamics: Introduction (Law of degradation of energy), Thermal energy reservoirs, Kelvin-Plank & Clausius UNIT NO-03 [8 hrs] Second Law Of Thermodynamics: Introduction (Law of degradation of energy), Thermal energy reservoirs, Kelvin-Plank & Clausius statements, Heat engines, Refrigerator and Heat pump, Perpetual

More information

A) W B) - W C) 0 D) cannot be determined

A) W B) - W C) 0 D) cannot be determined Chapter 19. Heat Engines and Refrigerators That s not smoke. It s clouds of water vapor rising from the cooling towers around a large power plant. The power plant is generating electricity by turning heat

More information

Energy Savers: Air-Source Heat Pumps

Energy Savers: Air-Source Heat Pumps 1 of 5 4/25/2009 8:55 AM U.S. Department of Energy - Energy Efficiency and Renewable Energy Energy Savers Air-Source Heat Pumps An air-source heat pump can provide efficient heating and cooling for your

More information

Electricity Generation

Electricity Generation Electricity Generation Page 1 Outline Combustion Generation Based on - Thermodynamic Cycles, Chapter 4 of Energy Resources and Systems by T.K. Ghosh and M.A. Prelas, Springer 2009. - Structure Operation

More information

ENGINEERING INFORMATION Hot water and steam service

ENGINEERING INFORMATION Hot water and steam service ENGINEERING INFORMTION Hot water and steam service What is steam? Like other substances, water can exist in the form of a solid, when we call it ice; as a liquid when we call it water or as a gas when

More information

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work the ability to cause an object to 1. move, change, or work 2. trade-off something that you do not want, but have to accept in order to have something that you want (disadvantage) 3. variable a changing

More information

LAB 13: HEAT ENGINES AND THE FIRST LAW OF THERMODYNAMICS

LAB 13: HEAT ENGINES AND THE FIRST LAW OF THERMODYNAMICS Lab 13 Heat Engines and the First Law of Thermodynamics 159 Name Date Partners LAB 13: HEAT ENGINES AND THE FIRST LAW OF THERMODYNAMICS... the quantity of heat produced by the friction of bodies, whether

More information

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced

More information

a.k.a. David N. Shaw, P. E.

a.k.a. David N. Shaw, P. E. BOOSTED AIR-SOURCE HEAT PUMPS a.k.a. Ac adia By David N. Shaw, P. E. Chief Technolo gy O fficer Hallowell I nternational w w w.gotohallowell.com HALLOWELL WHITE WHITE PAPER PAPER Hallowell.International

More information

LECTURE-15. Ideal Reverse Brayton Cycle. Figure (6) Schematic of a closed reverse Brayton cycle

LECTURE-15. Ideal Reverse Brayton Cycle. Figure (6) Schematic of a closed reverse Brayton cycle Lecturer: -Dr. Esam Mejbil Abid Subject: Air Conditioning and Refrigeration Year: Fourth B.Sc. Babylon University College of Engineering Department of Mechanical Engineering LECTURE-15 Ideal Reverse Brayton

More information

September Hybrid Air, Solar, and Ground Source Heat Pump Designs. Gaylord Olson, Yao Yu

September Hybrid Air, Solar, and Ground Source Heat Pump Designs. Gaylord Olson, Yao Yu Abstract September 2017 Hybrid Air, Solar, and Ground Source Heat Pump Designs Air-Source Heat Pumps (ASHP) are often considered as an alternative to conventional air conditioners and gas-fired furnaces/boilers

More information

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Chemical Engineering Thermodynamics Lab

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Chemical Engineering Thermodynamics Lab DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Chemical Engineering Thermodynamics Lab Introduction The application of thermodynamics to any real problem starts with

More information

The University of Hong Kong Department of Physics. Physics Laboratory PHYS3550 Statistical Mechanics and Thermodynamics

The University of Hong Kong Department of Physics. Physics Laboratory PHYS3550 Statistical Mechanics and Thermodynamics The University of Hong Kong Department of Physics Physics Laboratory PHYS3550 Statistical Mechanics and Thermodynamics Experiment No. 3550-2: Thermoelectric phenomena: heat pump and heat engine Student

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

White Paper. Geothermal Heating and Cooling

White Paper. Geothermal Heating and Cooling White Paper Geothermal Heating and Cooling The fundamentals of a geoexchange system (geothermal heating and cooling system) are well understood and although many factors need to be considered when designing

More information

Cool Producing Systems Based on Burning and Gasification of Biomass

Cool Producing Systems Based on Burning and Gasification of Biomass Cool Producing Systems Based on Burning and Gasification of Biomass J. POSPISIL, J. FIEDLER, Z. SKALA Energy Institute Faculty of Mechanical Engineering Brno University of Technology Technicka 2, Brno

More information

Energy Efficiency & Renewable Energy Resources

Energy Efficiency & Renewable Energy Resources Energy Efficiency & Renewable Energy Resources Discuss with your table partner: What is the difference between energy conservation and energy efficiency? Give an example of each. Improving the percentage

More information

Christian Ohler, ABB Switzerland Corporate Research Efficiency versus Cost - a Fundamental Design Conflict in Energy Science

Christian Ohler, ABB Switzerland Corporate Research Efficiency versus Cost - a Fundamental Design Conflict in Energy Science Christian Ohler, ABB Switzerland Corporate Research Efficiency versus Cost - a Fundamental Design Conflict in Energy Science ABB Group August 1, 2012 Slide 1 Purpose of this Presentation (1) Clarify the

More information

OVERALL EFFICIENCY CONSIDERATION OF PNEUMATIC SYSTEMS INCLUDING COMPRESSOR, DRYER, PIPE AND ACTUATOR

OVERALL EFFICIENCY CONSIDERATION OF PNEUMATIC SYSTEMS INCLUDING COMPRESSOR, DRYER, PIPE AND ACTUATOR OVERALL EFFICIENCY CONSIDERATION OF PNEUMATIC SYSTEMS INCLUDING COMPRESSOR, DRYER, PIPE AND ACTUATOR Toshiharu KAGAWA*, Maolin CAI*, Hirotaka KAMEYA** *P recision and Intelligence Laboratory, Tokyo Institute

More information

Chapter Six{ TC "Chapter Six" \l 1 } System Simulation

Chapter Six{ TC Chapter Six \l 1 } System Simulation Chapter Six{ TC "Chapter Six" \l 1 } System Simulation In the previous chapters models of the components of the cooling cycle and of the power plant were introduced. The TRNSYS model of the power plant

More information

Energy is involved in everything that happens. We are aware

Energy is involved in everything that happens. We are aware 57 The Conservation of Energy R EA D I N G Energy is involved in everything that happens. We are aware of energy when it is released or absorbed. Examining the changes of energy in action has led to one

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

High Bridge Combined Cycle Plant

High Bridge Combined Cycle Plant High Bridge Combined Cycle Plant Location: Down town St. Paul, on the Mississippi River Plant Description: High Bridge is a combined cycle generating facility. A combined cycle plant produces electricity

More information

TransPacific Energy Advantage: Case Studies

TransPacific Energy Advantage: Case Studies TransPacific Energy Advantage: Case Studies Typical Power Plant TPE-ORC 0.60 KWh ORC 2.3 KWh LP steam 0.35 KWh 30% (maximum) 2.05 KWh CHP Typical Power Generated 1.1 KWh Typical Power Wasted 2.31 KWh Typical

More information

ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat

ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat Absorption Machines - Heat Pumps & Chillers Thermal Energy Storage Solutions Special Heat Exchangers Italy 65 MW Turnkey Waste-to-energy Plant

More information

Chapter 6 THE SECOND LAW OF THERMODYNAMICS

Chapter 6 THE SECOND LAW OF THERMODYNAMICS 6-1 Chapter 6 TE SECOND AW OF TERMODYNAMICS The Second aw of Thermodynamics and Thermal Energy Reservoirs 6-1C Water is not a fuel; thus the claim is false. 6-2C Transferring 5 kwh of heat to an electric

More information

Absorption Chillers in Commerce

Absorption Chillers in Commerce Absorption Chillers in Commerce Today, absorption chillers are sold for a wide variety of applications. Here s why Changing Electrical Prices The absorption chiller is remarkably flexible, using steam,

More information

Nonrenewable Energy Resources 5.1

Nonrenewable Energy Resources 5.1 Nonrenewable Energy Resources 5.1 I. Energy Some energy resources on Earth are being used faster than nature can replace them these are called nonrenewable energy resources Most of the energy resources

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS THE SCIENCE BEHIND ENERGY TRANSFORMATIONS Q1 GENERATING ELECTRICITY AT A POWER PLANT Unit Essential Question: How are Earth s energy resources used to generate electricity What are the advantages and disadvantages

More information

Power cycles. Principles of combustion cycles and efficient concepts

Power cycles. Principles of combustion cycles and efficient concepts Power cycles Principles of combustion cycles and efficient concepts This contribution is based on the EC BREF- document Reference Document on Best Available Techniques for Large Combustion Plants July

More information

ENERGY. 1. Non-renewable or finite energy resources are. 2. Renewable or infinite energy resources are source of

ENERGY. 1. Non-renewable or finite energy resources are. 2. Renewable or infinite energy resources are source of Energy is the ability to do work. Energy cannot be created or destroyed: it can only be transformed, from one type into another. Energy can be either potential or kinetic. Kinetic energy is found in anything

More information

Refrigeration Cycle. Definitions , , 11-46, 11-49,

Refrigeration Cycle. Definitions , , 11-46, 11-49, Refrigeration Cycle Reading Problems - -7, -9 -, -46, -49, -03 Definitions the st law of thermodynamics tells us that heat flow occurs from a hot source to a cooler sink, therefore, energy in the form

More information

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN (EXECUTIVE SESSION) November, 2007 JAPAN EXTERNAL TRADE ORGANIZATION JAPAN CONSULTING INSTITUTE SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN 1. Power Generation

More information

3/6/2017 Past president & currently on the board of directors for the Wisconsin Geothermal Association

3/6/2017 Past president & currently on the board of directors for the Wisconsin Geothermal Association Saving energy and money with Geothermal technology Presented By Mark Flock President Flock s Heating & Air Conditioning WaterFurnace GeoPro Master Dealer Nate Certified Ground Source Loop Installer Member

More information

In this lecture... Solve problems related to First law of thermodynamics for closed and open systems Heat engines Refrigerators and heat pumps

In this lecture... Solve problems related to First law of thermodynamics for closed and open systems Heat engines Refrigerators and heat pumps 13 1 In this lecture... Solve problems related to First law of thermodynamics for closed and open systems Heat engines Refrigerators and heat pumps 2 Problem 1 A 50 kg iron block at 80 C is dropped into

More information

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1.

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Maria is riding her bicycle on a flat road at 10 mi/hr. Then

More information

2291-6A. Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors. 27 June - 1 July, 2011

2291-6A. Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors. 27 June - 1 July, 2011 2291-6A Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors 27 June - 1 July, 2011 INTRODUCTION TO THERMODYNAMICS Igor PIORO Faculty of Energy Systems and Nuclear Science

More information

Chapter 3.7: Cooling Towers

Chapter 3.7: Cooling Towers Part-I: Objective type questions and answers Chapter 3.7: Cooling Towers 1. The type of cooling towers with maximum heat transfer between air to water is. a) Natural draft b) Mechanical draft c) Both a

More information

EVALUATION OF GROUND COUPLED HEAT PUMPS FOR THE STATE OF WISCONSIN

EVALUATION OF GROUND COUPLED HEAT PUMPS FOR THE STATE OF WISCONSIN EVALUATION OF GROUND COUPLED HEAT PUMPS FOR THE STATE OF WISCONSIN by Jonathan J. Giardina A thesis submitted in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE (MECHANICAL

More information

Reliant on fossil fuels (coal, oil, natural gas)

Reliant on fossil fuels (coal, oil, natural gas) Reliant on fossil fuels (coal, oil, natural gas) Those will not last forever, need to have a back up plan Using fossil fuels creates greenhouse gases, which impact climate change Renewable energy is better

More information

Quiz Questions. For Process Integration. Fill in the blanks type Questions

Quiz Questions. For Process Integration. Fill in the blanks type Questions Quiz Questions For Process Integration Fill in the blanks type Questions 1. is the key parameter used in the Pinch Technology. ( T min ) 2. In onion diagram pinch technology in applied at. (the boundary

More information

Heat Effects in Gas Systems

Heat Effects in Gas Systems Heat Effects in Gas Systems Günter Wagner, LIWACOM and Zdeněk Vostrý, Simone Research Group Paper presented at the 9 th SIMONE Congress, Dubrovnik, Croatia, 15.-17. October 2008 Introduction This paper

More information

TRANQUILITY WATER-TO-WATER SERIES

TRANQUILITY WATER-TO-WATER SERIES TRANQUILITY WATER-TO-WATER SERIES CLIMATEMASTER GEOTHERMAL HEATING AND COOLING DECLARE YOUR PERSONAL ENERGY INDEPENDENCE NATURALLY CONTROL CLIMATE AND COST Wherever you live, the temperature beneath your

More information

A Study on the Integration of a Novel Absorption Chiller into a Microscale Combined Cooling, Heating, and Power (Micro-CCHP) System

A Study on the Integration of a Novel Absorption Chiller into a Microscale Combined Cooling, Heating, and Power (Micro-CCHP) System University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-20-2013 A Study on the Integration of a Novel Absorption Chiller into a Microscale

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

Conceptual Design of Nuclear CCHP Using Absorption Cycle

Conceptual Design of Nuclear CCHP Using Absorption Cycle Conceptual Design of Nuclear CCHP Using Absorption Cycle International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21 st Century Vienna, Austria, October 27-30, 2009 Gyunyoung

More information

Chapter 2 Energy Produced and Carbon Released from Fossil Fuels and the Amount of Alternative Energy Required as a Replacement

Chapter 2 Energy Produced and Carbon Released from Fossil Fuels and the Amount of Alternative Energy Required as a Replacement Chapter 2 Energy Produced and Carbon Released from Fossil Fuels and the Amount of Alternative Energy Required as a Replacement 2.1 Use and Production of Power and Energy from Fossil Fuels Before we embark

More information

Climate Control Solutions. Geothermal. A New Level of. Comfort. & Reliability.

Climate Control Solutions. Geothermal. A New Level of. Comfort. & Reliability. Climate Control Solutions Geothermal. A New Level of Comfort & Reliability. EFFICIENCY. COMFORT. RELIABILITY. Get it All with Geothermal From Bard. With rising costs and environmental concerns, energy

More information

PHASE CHANGES. Time Temperature Observations. Name(s)

PHASE CHANGES. Time Temperature Observations. Name(s) 3 5 PHASE CHANGES PHASE CHANGES Name(s) The activities presented here focus on the energy changes that occur in substances undergoing a phase change. The first activity will take the most time to complete.

More information

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA Paper Number: NAWTEC18-3563 ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE

More information

SorTech package solution description

SorTech package solution description SorTech package solution description Version 2.0 Edited by: Jörg Rupp Lotta Koch, Edo Wiemken, Björn Nienborg Freiburg, 06.10.2009 Table of Contents 1 Introduction... 3 2 The Chiller... 4 3 System s Components...

More information

II. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING

II. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING Mathematical Modeling and Analysis of Absorption Refrigeration System Using Waste Heat of Diesel Genset Yashvir Singh 1*, Deepak Kumar 2, Ajay Kumar 3, Amneesh Singla 4 1,2,3,4 Mechanical Engineering,

More information

Gas turbine power plant. Contacts: Mail: Web:

Gas turbine power plant. Contacts: Mail: Web: Gas turbine power plant Contacts: Mail: poddar05@gmail.com Web: http://www.ajourneywithtime.weebly.com/ Contents Gas turbine power plant Elements of gas turbine power plants Gas turbine fuels Cogeneration

More information

Topic 8: Energy production 8.1 Energy sources

Topic 8: Energy production 8.1 Energy sources Essential idea: The constant need for new energy sources implies decisions that may have a serious effect on the environment. The finite quantity of fossil fuels and their implication in global warming

More information

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY ES 202 - Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY Objective The objective of this laboratory experience is to demonstrate how mechanical power can be generated using a steam turbine

More information

Plant Utilities and Energy Efficiency CH505

Plant Utilities and Energy Efficiency CH505 Plant Utilities and Energy Efficiency CH505 Teaching Scheme Course code CH505 Course Name Plant Utilities and Energy Efficiency Teaching scheme L T P Credit 3 0 0 3 Process Process is simply a method by

More information

Large Frame Gas Turbines, The Leading Technology of Power Generation Industries

Large Frame Gas Turbines, The Leading Technology of Power Generation Industries Large Frame Gas Turbines, The Leading Technology of Power Generation Industries YASUSHI FUKUIZUMI*1 AKIMASA MUYAMA*2 SHIGEHIRO SHIOZAKI*1 SUMIU UCHIDA*3 In developing large-capacity turbines for use in

More information

2. Ground Source Heat Pumps Invitations to complete questionnaire Responses received... 7

2. Ground Source Heat Pumps Invitations to complete questionnaire Responses received... 7 Case Study July 2012 2. Ground Source Heat Pumps Table of Contents 2.1 INTRODUCTION TO THE TECHNOLOGY...2 2.2 AVAILABLE TYPES OF THIS TECHNOLOGY...3 2.3 STRENGTHS, WEAKNESSES, OPPORTUNITIES AND THREATS...5

More information

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc 1 of 12 1/24/2013 9:01 AM Science Generating electricity Electricity is a convenient source of energy and can be generated in a number of different ways. You will need to weigh up the advantages and disadvantages

More information

Chapter 13 Renewable Energy and Conservation

Chapter 13 Renewable Energy and Conservation Chapter 13 Renewable Energy and Conservation Overview of Chapter 13 Direct Solar Energy Indirect Solar Energy Wind Biomass Hydropower Geothermal Tidal High and Low Technology Energy Solution Direct Solar

More information

A Trans-critical CO2 Heat Pump System for Waste Heat Utilization in Warm Weather Condition Applied to a Milk Refrigeration Plant

A Trans-critical CO2 Heat Pump System for Waste Heat Utilization in Warm Weather Condition Applied to a Milk Refrigeration Plant Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 A Trans-critical CO2 Heat Pump System for Waste Heat Utilization in Warm

More information

THE USAGE OF LOW POTENTIAL SOURCES OF HEAT FOR PRODUCTION OF ELECTRICITY AND HOT WATER

THE USAGE OF LOW POTENTIAL SOURCES OF HEAT FOR PRODUCTION OF ELECTRICITY AND HOT WATER THE USAGE OF LOW POTENTIAL SOURCES OF HEAT FOR PRODUCTION OF ELECTRICITY AND HOT WATER Golovin M.V. 1, Popov A.E. 1, Slavutsky D.L. 1, Suhomlinov I.Y. 1 1 "VNIIkholodmash-Holding", Russia, Moscow, 127410,

More information

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) Term-End Examination

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) Term-End Examination No. of Printed Pages : 5 ET-201(B) B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) Term-End Examination 007: 7 8 December, 2013 ET-201(B)

More information

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett Faculté de génie Génie mécanique Faculty of Engineering Mechanical Engineering MCG2131 - THERMODYNAMICS II 22 April 2008 Page 1 of 7 Prof. W. Hallett Closed book. Non-programmable calculators only allowed.

More information

RECYCLING LOW GRADE WASTE HEAT TO ELECTRICITY. *N. Razavinia, F. Mucciardi and F. Hassani

RECYCLING LOW GRADE WASTE HEAT TO ELECTRICITY. *N. Razavinia, F. Mucciardi and F. Hassani RECYCLING LOW GRADE WASTE HEAT TO ELECTRICITY *N. Razavinia, F. Mucciardi and F. Hassani McGill University Mining &Materials Engineering Wong Building 3610 University Street Montreal, Quebec H3A 2B2 (*Corresponding

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Design and development of a residential gas-fired heat pump

Design and development of a residential gas-fired heat pump Design and development of a residential gas-fired heat pump Edward A Vineyard a*, Ahmad Abu-Heiba a, Isaac Mahderekal b a Oak Ridge National Laboratory, P.O. Box 2008, MS 6070, Oak Ridge, TN, 37831, USA

More information

Unit B-3: List of Subjects

Unit B-3: List of Subjects ES312 Energy Transer Fundamentals Unit B: First Law o Thermodynamics ROAD MAP... B-1: The Concept o Energy B-2: ork Interactions B-3: First Law o Thermodynamics B-4: Heat Transer Fundamentals Unit B-3:

More information

Energy & Power Unit 5, Lesson 1 Explanation

Energy & Power Unit 5, Lesson 1 Explanation Energy & Power 5.1.1 Unit 5, Lesson 1 Explanation The Unit Big Idea The designed world is the product of a design process, which provides ways to turn resources - materials, tools and machines, people,

More information

Chapter 13 Renewable Energy and Conservation

Chapter 13 Renewable Energy and Conservation Chapter 13 Renewable Energy and Conservation Overview of Chapter 13 Direct Solar Energy Indirect Solar Energy Wind Biomass Hydropower Geothermal Tidal High and Low Technology Energy Solutions Direct Solar

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

22 DIGITAL SERIES CLIMATEMASTER GEOTHERMAL HEATING AND COOLING

22 DIGITAL SERIES CLIMATEMASTER GEOTHERMAL HEATING AND COOLING 22 DIGITAL SERIES CLIMATEMASTER GEOTHERMAL HEATING AND COOLING DECLARE YOUR PERSONAL ENERGY INDEPENDENCE NATURALLY CONTROL CLIMATE AND COST Wherever you live, the temperature beneath your home remains

More information

The desire for fossil fuel alternatives and environmentally friendly energy has

The desire for fossil fuel alternatives and environmentally friendly energy has Chris Schleck Bioresource Engineering Design 1 September 19, 2008 Geothermal Energy and Sustainable Design The desire for fossil fuel alternatives and environmentally friendly energy has grown dramatically

More information

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India Thermodynamic Analysis of Combined ORC-VCR System Using Low Grade Thermal Energy K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar-263145, India 2 Department

More information

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 7 Earth s Natural Resources Section 1 Electricity and Your Community What Do You See? Learning Outcomes In this section, you will Compare energy resources used to generate electricity in the United

More information

Principles of Engineering Thermodynamics. 8th Edition SI Version

Principles of Engineering Thermodynamics. 8th Edition SI Version Brochure More information from http://www.researchandmarkets.com/reports/3148694/ Principles of Engineering Thermodynamics. 8th Edition SI Version Description: Now in its Eighth Edition, Principles of

More information

CTD (CONDUCTIVITY-TEMPERATURE-DEPTH)

CTD (CONDUCTIVITY-TEMPERATURE-DEPTH) CTD (CONDUCTIVITY-TEMPERATURE-DEPTH) Related lesson plan Fresh and Seawater Density What is this sensor? CTD is an acronym for Conductivity, Temperature and Depth. However, this is somewhat misleading

More information

Introduction to Energy Economics. Basic Concepts and Global Energy Picture

Introduction to Energy Economics. Basic Concepts and Global Energy Picture Introduction to Energy Economics Basic Concepts and Global Energy Picture Agenda Basic Definitions Units and Conversion Factors Energy Balances Global Energy Picture Exercise 2 Definitions Energy: the

More information

The answer is... yes!

The answer is... yes! The answer is... yes! TURN YOUR HEAT INTO ELECTRICITY NO FUEL, ZERO EMISSION Can plain machines save costs and energy at the same time as saving our beautiful planet? ENERGY CONCERN Today s society is

More information

AC : THE ENERGY SYSTEMS LABORATORY AT KETTERING UNIVERSITY

AC : THE ENERGY SYSTEMS LABORATORY AT KETTERING UNIVERSITY AC 2007-27: THE ENERGY SYSTEMS LABORATORY AT KETTERING UNIVERSITY Ahmad Pourmovahed, Kettering University Ahmad Pourmovahed is a Professor of Mechanical Engineering at Kettering University. He received

More information