Particle scale char gasification models for biomass fuels

Size: px
Start display at page:

Download "Particle scale char gasification models for biomass fuels"

Transcription

1 Finnish-Swedish Flame Days 2013, Gasification Workshop, , Jyväskylä Particle scale char gasification models for biomass fuels Kentaro Umeki Div. Energy Science Dept. Engineering Sciences and Mathematics Luleå University of Technology, Sweden

2 Background Agenda Particle scale biomass char gasification models Phenomenological model for intrinsic reaction rate Reaction mechanism Surface area development Catalytic activity of ash (K, Na, Ca, Mg, Fe, etc.) Considering intra-particle diffusion Considering external diffusion Summary and future challenges Red letters: Focus of this presentation (especially important for biomass fuels)

3 Solid-phase Gasphase Raw biomass Drying ( 100 C) Dry biomass Devolatilization ( C) Char Ash Mass transfer Heat transfer Gasification (> 700 C) Combustion (>500 C)

4 Char gasification Rate controlling step Slower than devolatilization by a few orders of magnitude High heating value of char Char yield from devolatilization: ~10% on weight basis, but 15-30% on energy basis Target for energy balance in allothermal gasifiers Endothermic reactions (with CO 2 /H 2 O) Convert sensible heat to useful chemical energy

5 Reactor scale Particle scale Microscopic scale Plant scale

6 Partice scale (mass diffusion) models? Important to predict char conversion accurately hence, important for gas composition as well Majority of current CFD models do NOT consider particle-scale (diffusion) phenomena 1. Develop constitutive equations to implement? 2. Find (numerically) efficient ways for coupling particle and reactor models? This presentation focuses on approach 1.

7 Important factors for char gasification Catalytic activity of inorganic matters O 2 CO 2 H2O Surface area External and intra-particle diffusion

8 Residual mass [g] Char conversion X Definitions m m ini Conversion rate dx r dt ini m m fin Apparent rate 0,4 0,3 0,2 0,1 0 m m fin m ini Conversion rate observed as a lump of chemical reaction and mass diffusion Intrinsic rate m ini - m Conversion rate of pure chemical reaction (when diffusion is negligible) m ini - m fin Elapsed time [s]

9 Common strategy for modelling Intrinsic reaction rate (1) reaction conditions dependent models based on reaction mechanisms: (k(p,t)) (2) Char conversion dependent models describing reactive surface area and catalytic activity: f(x) Intra-particle diffusion Effectiveness factor: External particle diffusion Mass balance in gas film r int = k p, T f X r app = η r int [e.g. A. Gómez-Barea and B. Leckner, Prog. Combust. Energy Sci. 2010]

10 Phenomenological models for intrinsic reaction rate Reaction mechanism Surface area development Catalytic activity of ash (K, Na, Ca, Mg, Fe, etc.) For more detail: K. Umeki, A. Moilanen, A. Gómez-Barea, J. Konttinen, A model of biomass char gasification describing the change in catalytic activity, Chemical Engineering Journal (2012)

11 Single-step reaction model C+γ O 2 2(1-γ) CO+(2γ-1) CO 2 C+H 2 OCO+H 2 C+CO 2 2CO k p, T = AP ga n exp E/RT Arrhenius plots from the reference will be shown.here. [C. Di Blasi, Prog. Energ. Comb. Sci. 35 (2009) ]

12 Detailed reaction model C+γO 2 2(1-γ) CO+ (2γ-1) CO 2 2C+O 2 2C(O) C(O) CO 2C(O) CO 2 + C C+CO 2 C(O) + CO C+H 2 OCO+H 2 C+H 2 O C(O) + H 2 O C(O) CO C+H 2 C(H) 2 C+1/2H 2 C(H) C+CO 2 2CO C+CO 2 C(O) + CO C(O) CO k p, T = O2, H2O, CO2 C C C C C k 1f P CO2 H2, CO, CO2 Examples (Langmuir-Hinshelwood model) k p, T = k p, T = k 1fk 2 P O2 O k 1f P O2 + k 2 Char (carbon) k 1f P H2O 1 + k 1b /k 2 P CO + k 1f /k 2 P CO2 H 1 + k 1f /k 3 P H2O + k 3f /k 3b P H2

13 Phenomenological models for surface area Models Overall reaction Shrinking core Random pore [Yagi 1953] [Bhatia 1980] Overlapped grain Percolation [Adschiri 1987] [Reyes and Jensen 1986] Reaction Throughout particle Particle surface Pore surface Overlapped grains surface Each carbon site in lattice

14 Function f(x) for different models Models Overall reaction Shrinking core Random pore Overlapped grain Percolation f(x) with f(x=0)=1 ( 1 X ( 1 X 2 ) ( 1 X ) 1 ln(1 X ) ) /3 0 ) X ]{1 (ln 0) ln[1 (1 0 ) ]} [ 1 (1 X (1 1 X )[1 (1 0) 0 X ] Ψ= 4πL o (1-ε o )/S o ε o : Initial porosity L o : Total length of pores per unit volume S o : Pore surface area per unit volume

15 1. 2. Models 1. Overall reaction 2. Shrinking core Random pore 4. Overlapped grain 5. Percolation 4. 5.

16 Catalytic activity of inorganic content K, Ca, Na, Mg and Fe known as catalyst Si, P and Al known to deactivate catalytic activity Difficult to observe actual catalytic activity due to its own transformation (vaporization, reaction, sintering) In-situ experiments are necessary for the observation of catalytic activity

17 Previous models describing catalytic activity Ref. Zhang et al. Fuel (2008) Zhant et al. Fuel (2010) Struis et al. Chem Eng Sci (2002) Dupont et al. Bioresour Technol (2011) Kitsuka et al. Energy Fuel (2007) Kajita et al. Energy Fuel (2010) Löwenthal, PhD thesis (1993) Model r r int int k(1 X ) 1 ln(1 X ) 1 k(1 X ) 1 ln(1 X ) 1 cx p p p bt r k(1 X ) 1 ln(1 X ) 1 1 int am m b 2/ 3 rint k k Si 1 X r r r int int int k k k k t k X ) exp 2(1 k2(1 X ) 1 k t 2 k3(1 X ) 1 ln(1 X ) 2 2 p

18 Isothermal TGA Schematic diagram of isothermal TGA will be shown.here. Mimic reaction conditions of commercial gasifiers Rapid heating rate and in-situ gasification (no cooling and reheating) Reaction conditions of FBG and cyclone gasifiers ( K; CO 2 -CO-H 2 O-H 2 ; MPa) [A. Moilanen, Doctoral thesis, VTT publication 607, 2006]

19 Conversion rate analysis by integral method If conversion rate is first-order: dx/dt = k 1 X By integration:1 X = exp( kt) ln(1-x) should be linear function of t Three regimes were observed. 1st/2nd regimes: linear functions Which is first-order reaction with respect to char conversion? Typical experimental data

20 Instantaneous reaction rate 2nd regime is first-order reaction! If dx/dt = k 1 X 1 dx = const. 1 X dt Typical experimental data Initial stage of char gasification: K, Na evaporation 1st regime Loss of catalytic activity?

21 Observed reaction mechanism 1. Catalytic char gasification w/ fast catalyst loss 2. Non-catalytic char gasification 3. Catalytic char gasification w/o catalyst loss

22 Three-parallel reactions model r = dx dt = r cg,1 + r ncg + r cg,2 1st regime: Catalytic gasification with deactivation r cg,1 = k cg,1 exp ξx 2 2nd regime: Non-catalytic gasification r ncg = k ncg 1 X 3rd regime: Catalytic gasification without deactivation r cg,2 = k cg,2

23 Effect of biomass species Biomasses with low Si in ash Poor predictability. Negative rate coefficient Biomasses with high Si in ash Good model predictability!! Governing deactivation mechanism Reaction with Si?

24 Effect of reaction atmosphere H 2 O-H 2 system Poor predictability. CO 2 -CO system Good model predictability!! Catalytic activity maintained under H2O-H2 system?

25 Intra-particle mass diffusion K. Umeki, S. Roh, T. Min, T. Namioka, K. Yoshikawa, A simple expression for the apparent reaction rate of large wood char gasification with steam, Bioresource Technology 101 (2010),

26 Models describing pore diffusional effect : very good : good : not so good Effect of initial diameter Diameter change Pseudoactivation energy Effective factor Simplified numerical simulation Direct numerical simulation Comp. time General versatility Calc. method Arrhenius plot Theoritical value Modify! (Effective factor) = rapp/rint Quantum method Numerical solution of PDEs

27 Macro-TG experiments Precision scale Gas cylinder Pump MFC Syringe pump (water) Temp.: 1123, 1173, 1223 K Steam: 0.02, 0.04, 0.06 Mpa Gas velocity: 5 L/min Thermocouple

28 Effect of particle diameter (1173 K, PH2O =0.04 MPa)

29 Simplified reaction model 0 < X < X1 X1 < X < X2 X2 < X <1 1 X X X1 r r r r Change of local char conversion and particle size 0 < X < X1 Uniform reaction X1 < X < X2 Shrinking reaction X2 < X < 1 Uniform reaction

30 Modification of effective factor Original Modified expression Thiele module Thiele module V S n 1 2 k c cg D C ea n1 AS Effective factor 1 1 tanh(3 ) 1 3 [Bischoff 1965] Effect of particle size change Effective factor η= rapp/rint Effect of local intrinsic rate

31 Predictability with theoretical parameters (1173 K, H 2 O: 0.04 MPa) Experimental data: solid lines Calculated data: dashed lines

32 External mass diffusion

33 Overall conversion rate with external diffusion C+a Agases (CO, H 2 and CO 2 ) (Amount of agent consumed in particle) = (Amount of agent diffusing to char surface) S k p C Mass loss rate of carbon from stoichiometry dm c dma a dt dt M C kc D a S p Ab M k A c As S p D Ab D As As Ab kc D D dm dt c Effective rate constant: k e M a M k k c C A c S p k e D D Ab D Sh D d AB p

34 Summary Intrinsic rate can be usually expressed as k(p,t)f(x), but parallel reaction model may be appropriate for describing catalytic activity Effect of intra-particle diffusion can be included by applying effectiveness factor Effect of external diffusion can be included by effective rate constant Future works More understanding of ash transformation and modification of models of catalytic activity Consideration of fragmentation in particle scale models Generalization of models to various shape

35 Co-workers Acknowledgment Catalyst model: Dr. A. Moilanen (VTT); Prof. A. Gómez-Barea (U. Sevilla); Prof. J. Konttinen (U. Jyväskylä) Intra-particle diffusion model: Dr. S. Roh and Dr. M. Taijin (Korean Inst. Machinery and Materials); Prof. T. Namioka and Prof. K. Yoshikawa (Tokyo Inst. Tech.) Finance Catalyst model: Bio4Energy, Nordic Energy Top-Level Initiative Pore diffusion model: Japan Society for the promotion of Science and Korea Science and Engineering Foundation

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Reginald Mitchell, Paul Campbell and Liqiang Ma High Temperature Gasdynamics Laboratory Group Mechanical Engineering

More information

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Coal and Biomass Char Reactivity Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Project Overview: There is considerable

More information

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Investigators Reginald E. Mitchell, Associate Professor, Mechanical Engineering; Paul A. Campbell and Liqiang Ma, Graduate

More information

STEAM GASIFICATION OF LOW RANK COAL CHARS IN A THERMOBALANCE REACTOR AND A FLUIDIZED BED REACTOR

STEAM GASIFICATION OF LOW RANK COAL CHARS IN A THERMOBALANCE REACTOR AND A FLUIDIZED BED REACTOR Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 2010 STEAM GASIFICATION OF LOW RANK COAL CHARS

More information

A comparative study on pyrolysis characteristic Indonesia biomassa and low grade coal

A comparative study on pyrolysis characteristic Indonesia biomassa and low grade coal IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS A comparative study on pyrolysis characteristic Indonesia biomassa and low grade coal To cite this article: G I Adhityatama et al

More information

Coal char oxidation kinetics in air medium

Coal char oxidation kinetics in air medium Coal char oxidation kinetics in air medium Alexander G. Korotkikh 1, Konstantin V. Slyusarskiy 1,*, and Ivan V. Sorokin 1 1 National ResearchTomsk polytechnic university, 634050 Tomsk, Russia Abstract.

More information

"Post-combustion CO 2 capture by Ca-looping"

Post-combustion CO 2 capture by Ca-looping "Post-combustion CO 2 capture by Ca-looping" Borja Arias Rozada CO 2 Capture Group National Institute of Coal (INCAR-CSIC) Workshop on Mathematical Modelling of Combustion 23-25 May, Santiago de Compostela,

More information

The Role of Solid Fuel Conversion in Future Power Generation

The Role of Solid Fuel Conversion in Future Power Generation The Role of Solid Fuel Conversion in Future Power Generation Hartmut Spliethoff FINNISH-SWEDISH FLAME DAYS 2013 Focus on Combustion and Gasification Research Jyväskylä, April, 17th and 18th 2013 Content

More information

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Investigators Reginald E., Associate Professor, Mechanical Engineering; Paul A. Campbell and Liqiang Ma, Graduate Researchers

More information

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore , pp. 570 575 Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore Daisuke NOGUCHI, 1) * Ko-ichiro OHNO, 2) Takayuki MAEDA, 2) Kouki NISHIOKA 3) and Masakata SHIMIZU

More information

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR Jinhu Wu, Yitain Fang, Yang Wang Institute of Coal Chemistry, Chinese Academy of Sciences P. O. Box 165, Taiyuan, 030001,

More information

REDUCTION OF NITRIC OXIDE ON THE CHAR SURFACE AT PULVERIZED COMBUSTION CONDITIONS

REDUCTION OF NITRIC OXIDE ON THE CHAR SURFACE AT PULVERIZED COMBUSTION CONDITIONS Proceedings of the Combustion Institute, Volume 29, 2002/pp. 2275 2281 REDUCTION OF NITRIC OXIDE ON THE CHAR SURFACE AT PULVERIZED COMBUSTION CONDITIONS ALEJANDRO MOLINA, ERIC G. EDDINGS, DAVID W. PERSHING

More information

Flowsheet Modelling of Biomass Steam Gasification System with CO 2 Capture for Hydrogen Production

Flowsheet Modelling of Biomass Steam Gasification System with CO 2 Capture for Hydrogen Production ISBN 978-967-5770-06-7 Proceedings of International Conference on Advances in Renewable Energy Technologies (ICARET 2010) 6-7 July 2010, Putrajaya, Malaysia ICARET2010-035 Flowsheet Modelling of Biomass

More information

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach and My Research in General Martin Andersson Division of Heat Transfer, Department of Energy Sciences, Faculty of Engineering (LTH),

More information

Numerical modelling of the solidification of ductile iron

Numerical modelling of the solidification of ductile iron Journal of Crystal Growth 191 (1998) 261 267 Numerical modelling of the solidification of ductile iron J. Liu*, R. Elliott Manchester Materials Science Centre, University of Manchester, Grosvenor Street,

More information

Towards a Muti-scale Modeling Framework for Fluidized Bed Reactor Simulation

Towards a Muti-scale Modeling Framework for Fluidized Bed Reactor Simulation Towards a Muti-scale Modeling Framework for Fluidized Bed Reactor Simulation Addison Killean Stark 1,3, Christos Altantzis 2,3, Ahmed F Ghoniem 3 November 16, 2016 November 16, 2016 1 ARPA-E, 2 NETL, 3

More information

The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion

The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion Charles Churchman, P.E. Stephanie England, E.I.T. International Applied Engineering, Inc. Marietta, Georgia

More information

Jing Su and Chang-Won Park Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611

Jing Su and Chang-Won Park Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611 A Compact Reformer for Portable Fuel Cells Jing Su and Chang-Won Park Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611 Abstract A compact reformer to generate hydrogen for portable

More information

Modeling chemical and physical processes of wood and biomass pyrolysis

Modeling chemical and physical processes of wood and biomass pyrolysis Progress in Energy and Combustion Science 34 (2008) 47 90 www.elsevier.com/locate/pecs Modeling chemical and physical processes of wood and biomass pyrolysis Colomba Di Blasi Dipartimento di Ingegneria

More information

Available online at ScienceDirect. 9th International Conference on Applied Energy, ICAE2017, August 2017, Cardiff, UK

Available online at  ScienceDirect. 9th International Conference on Applied Energy, ICAE2017, August 2017, Cardiff, UK Available online at www.sciencedirect.com ScienceDirect Energy Procedia 142 (2017) 932 937 www.elsevier.com/locate/procedia 9th International Conference on Applied Energy, ICAE2017, 21-24 August 2017,

More information

VTT PUBLICATIONS 769. Antero Moilanen & Muhammad Nasrullah. Gasification reactivity and ash sintering behaviour of biomass feedstocks

VTT PUBLICATIONS 769. Antero Moilanen & Muhammad Nasrullah. Gasification reactivity and ash sintering behaviour of biomass feedstocks VTT PUBLICATIONS 769 Antero Moilanen & Muhammad Nasrullah Gasification reactivity and ash sintering behaviour of biomass feedstocks VTT PUBLICATIONS 769 Gasification reactivity and ash sintering behaviour

More information

Comparative Study on the Modeling of Char-CO 2 Reaction Kinetics under Pressurized Conditions

Comparative Study on the Modeling of Char-CO 2 Reaction Kinetics under Pressurized Conditions Topic: Gasification / Co-Gasification - # Comparative Study on the Modeling of Char-CO Reaction Kinetics under Pressurized Conditions Martyna Tomaszewicz, Grzegorz Tomaszewicz, Marek Sciazko, Tomasz Chmielniak

More information

Computational and Analytical Methods in AM: Linking Process to Microstructure

Computational and Analytical Methods in AM: Linking Process to Microstructure Computational and Analytical Methods in AM: Linking Process to Microstructure Greg Wagner Associate Professor, Mechanical Engineering Northwestern University Workshop on Predictive Theoretical and Computational

More information

Activation Energy of Recovery Process in a Heat-Resistant Alloy Type RR58 with Zirconium

Activation Energy of Recovery Process in a Heat-Resistant Alloy Type RR58 with Zirconium Type RR58 with Zirconium Nada Jauković 1, Žarko Radović 1, Milisav Lalović 1 1 University of Montenegro, Faculty of Metallurgy and Technology, Cetinjski put bb, 81000 Podgorica, Serbia and Montenegro E-mail:

More information

Formazione e Controllo di Inquinanti nella Combustione Impianti di trattamento effluenti

Formazione e Controllo di Inquinanti nella Combustione Impianti di trattamento effluenti Corso di Laurea Magistrale in Ingegneria Chimica/ Ingegneria Energetica Formazione e Controllo di Inquinanti nella Combustione Impianti di trattamento effluenti Thermochemical reactions involving solid

More information

Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods

Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods Microstructure and Vacuum Leak Characteristics of SiC coating Layer by Three Different Deposition Methods Y. Kim Professor, Department of Materials Science and Engineering, College of Engineering, Kyonggi

More information

THE CHALMERS GASIFIER

THE CHALMERS GASIFIER ASSESSMENT OF THE MASS AND ENERGY FLOWS IN THE CHALMERS GASIFIER Anton Larsson 1,2*, Martin Seemann 1,3, Henrik Thunman 1,4 1 Division of Energy Technology, Chalmers University of Technology, SE-412 96

More information

Modeling of drying and pyrolysis in a gasifier during the startup phase

Modeling of drying and pyrolysis in a gasifier during the startup phase TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 128, 2015, 73 83 PRZEMYSŁAW CIŻMIŃSKI, SYLWIA POLESEK-KARCZEWSKA 1 and DARIUSZ KARDAŚ Modeling of drying and pyrolysis in a gasifier during the

More information

Applications of the constrained Gibbs energy method in modelling thermal biomass conversion.

Applications of the constrained Gibbs energy method in modelling thermal biomass conversion. VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Applications of the constrained Gibbs energy method in modelling thermal biomass conversion GTT-Technologies' 7th Annual Users' Meeting, Herzogenrath, Germany,

More information

STUDIES ON NUCLEAR COAL GASIFICATION IN ARGENTINA

STUDIES ON NUCLEAR COAL GASIFICATION IN ARGENTINA STUDIES ON NUCLEAR COAL GASIFICATION IN ARGENTINA D. Nassini (1), G.G. Fouga (1,2), G. De Micco (1,2) H.E. Nassini (2) and A.E. Bohé (1,2) (1) Consejo Nacional de Investigaciones Científicas y Técnicas

More information

American Journal of Chemical Engineering

American Journal of Chemical Engineering American Journal of Chemical Engineering 2013; 1(1): 17-23 Published online June 30, 2013 (http://www.sciencepublishinggroup.com/j/ajche) doi: 10.11648/j.ajche.20130101.14 Optimum and comparison of theoretical

More information

XXXIX Meeting of the Italian Section of the Combustion Institute

XXXIX Meeting of the Italian Section of the Combustion Institute DEVELOPMENT OF A ROBUST AND EFFICIENT BIOGAS PROCESSOR FOR HYDROGEN PRODUCTION IN THE FRAMEWORK OF THE EUROPEAN BIOROBUR PROJECT Y. S. Montenegro Camacho*, S. Bensaid, D. Fino*, A. Herrmann**, H. Krause**,

More information

Presented at the COMSOL Conference 2010 Paris

Presented at the COMSOL Conference 2010 Paris Presented at the COMSOL Conference 2010 Paris Modeling of a strongly coupled Thermal, Hydraulic and Chemical problem: drying and low-temperature pyrolysis of chromated copper arsenate (CCA)-wood waste

More information

GASIFICATION: gas cleaning and gas conditioning

GASIFICATION: gas cleaning and gas conditioning GASIFICATION: gas cleaning and gas conditioning A. van der Drift November 2013 ECN-L--13-076 GASIFICATION: gas cleaning and gas conditioning Bram van der Drift SUPERGEN Bioenergy Hub Newcastle, UK 23 October

More information

Cool Producing Systems Based on Burning and Gasification of Biomass

Cool Producing Systems Based on Burning and Gasification of Biomass Cool Producing Systems Based on Burning and Gasification of Biomass J. POSPISIL, J. FIEDLER, Z. SKALA Energy Institute Faculty of Mechanical Engineering Brno University of Technology Technicka 2, Brno

More information

Kinetic Modeling of the Pyrolysis of Biomass

Kinetic Modeling of the Pyrolysis of Biomass National Conference on Environmental Conservation (NCEC-006) Birla Institute of Technology and Science (BITS) - Pilani Kinetic Modeling of the Pyrolysis of Biomass Prati N. Sheth a and B. V. Babu a * a

More information

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases?

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? Diffusion in Solids ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Ash Deposition Prediction Tool for PF Boilers Fired with Coal and Biomass

Ash Deposition Prediction Tool for PF Boilers Fired with Coal and Biomass Ash Deposition Prediction Tool for PF Boilers Fired with Coal and Biomass Piotr Plaza, Cardiff University, TU Delft Tony Griffiths, Cardiff University Yash Joshi, Wiebren de Jong, TU Delft Mark Mulder,

More information

Evaluating the effective diffusion coefficient within the automobile catalysts

Evaluating the effective diffusion coefficient within the automobile catalysts Evaluating the effective diffusion coefficient within the automobile catalysts Hironobu Ozeki, Hiroshi Yamada, Tomohiko Tagawa and aoki Takahashi 2. Chemical Engineering, agoya University, agoya, Japan

More information

-100 tons/day Demonstration Plant Operation and Scale up Study-

-100 tons/day Demonstration Plant Operation and Scale up Study- Slurry Phase DME Direct Synthesis Technology A.B. Editor et al. (Editors) 2005 Elsevier B.V./Ltd. All rights reserved. 1 Slurry Phase DME Direct Synthesis Technology -100 tons/day Demonstration Plant Operation

More information

MODELING THE GASIFICATION/COMBUSTION OF WOOD AND CHAR PARTICLES

MODELING THE GASIFICATION/COMBUSTION OF WOOD AND CHAR PARTICLES MODELING THE GASIFICATION/COMBUSTION OF WOOD AND CHAR PARTICLES Colomba Di Blasi Dipartimento di Ingegneria Chimica, Università degli Studi di Napoli "Federico II" Tel: 39-081-7682232; Fax: 39-081-2391800;e-mail:diblasi@unina.it

More information

Oxidation of Graphite and Metallurgical Coke

Oxidation of Graphite and Metallurgical Coke DEGREE PROJECT IN MATERIALS DESIGN AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 Oxidation of Graphite and Metallurgical Coke A Numerical Study with an Experimental Approach YOUSEF AHMAD

More information

MECHANISMS OF PYROLYSIS. Jim Jones

MECHANISMS OF PYROLYSIS. Jim Jones MECHANISMS OF PYROLYSIS Jim Jones WHAT IS PYROLYSIS? the thermal decomposition of carbonaceous materials in the absence of oxygen WHAT IS PYROLYSIS? the thermal decomposition of carbonaceous materials

More information

High Temperature Corrosion Behavior of DS GTD-111 in Oxidizing and Sulfidizing Environments

High Temperature Corrosion Behavior of DS GTD-111 in Oxidizing and Sulfidizing Environments High Temperature Corrosion Behavior of DS GTD-111 in Oxidizing and Sulfidizing Environments Matthew D. Trexler, Preet M. Singh, and Thomas H. Sanders Jr. School of Materials Science and Engineering, Georgia

More information

Gasification of Biomass and SulfurContaining Carbonaceous Fuels. Majid Charmchi

Gasification of Biomass and SulfurContaining Carbonaceous Fuels. Majid Charmchi Gasification of Biomass and SulfurContaining Carbonaceous Fuels Majid Charmchi Department of Mechanical Engineering University of Massachusetts - Lowell 1 Introduction Biomass: Black Liquor Gasification

More information

Modeling Biomass Gasification in a Fluidized Bed Reactor

Modeling Biomass Gasification in a Fluidized Bed Reactor Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Modeling Biomass Gasification in a Fluidized Bed Reactor R. Fatoni

More information

Kinetic Parameters Estimation of MgO-C Refractory by Shrinking Core Model

Kinetic Parameters Estimation of MgO-C Refractory by Shrinking Core Model 826 J. Mater. Sci. Technol., Vol.22 No.6, 2006 Kinetic Parameters Estimation of MgO-C Refractory by Shrinking Core Model B.Hashemi 1), Z.A.Nemati 2), S.K.Sadrnezhaad 2) and Z.A.Moghimi 2) 1) Department

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

Design and model development of circulating fluidized bed reactor for biomass gasification

Design and model development of circulating fluidized bed reactor for biomass gasification Proceeding of ISBN 978-602-17952-1-7 2 nd International Conference on Sustainable Energy Engineering and Application Grand Hotel Preanger, Bandung, Indonesia 14 15 October 2014 Design and model development

More information

BIOMASS GASIFICATION IN DOWNDRAFT REACTOR FOR POWER GENERATION

BIOMASS GASIFICATION IN DOWNDRAFT REACTOR FOR POWER GENERATION BIOMASS GASIFICATION IN DOWNDRAFT REACTOR FOR POWER GENERATION N. CERONE, L. CONTUZZI, S. CAVALIERE, F. ZIMBARDI, G. BRACCIO ENEA, Dipartimento Tecnologie per l'energia, Fonti Rinnovabili e Risparmio Energetico,

More information

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes International Journal of Emerging Engineering Research and Technology Volume 3, Issue 9, September, 2015, PP 1-7 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design of a Small Scale CFB Boiler Combustion

More information

Flow and Heat Transfer Characteristics in High Porosity Metal Foams

Flow and Heat Transfer Characteristics in High Porosity Metal Foams Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 333 Flow and Heat Transfer Characteristics in High Porosity Metal

More information

CO 2 Recycling via Reaction with Hydrogen

CO 2 Recycling via Reaction with Hydrogen CO 2 Recycling via Reaction with Hydrogen S. Kent Hoekman, Amber Broch, Curt Robbins, Rick Purcell Desert Research Institute, Division of Atmospheric Sciences John Ralston Recycle CO 2 Inc. EUEC Energy

More information

University of Concepcion, Department of Metallurgical Engineering, Concepcion, Chile

University of Concepcion, Department of Metallurgical Engineering, Concepcion, Chile J Min Metall Sect B-Metall 50 (2) B (2014) 127-132 Journal of Mining and Metallurgy, Section B: Metallurgy KINETICS OF STIBNITE ( ) OXIDATION AT ROASTING TEMPERATURES R Padilla a,*, A Aracena b, MC Ruiz

More information

CFD MODELLING OF THE STEEL BELT SINTERING PROCESS

CFD MODELLING OF THE STEEL BELT SINTERING PROCESS CFD MODELLING OF THE STEEL BELT SINTERING PROCESS J. Keihäs, P. Mäkelä, J. Ollila 1 and L. Hekkala 2 Outokumpu Technology Research Centre, P.O. Box 60, FIN-28101 Pori, Finland 1 Outokumpu Technology Oy,

More information

Alternative reducing agents Bio-coke

Alternative reducing agents Bio-coke Alternative reducing agents Bio-coke Nordic Recycling Day VIII 26-27 September 2017 Luleå University of Technology Maria Lundgren, Swerea MEFOS AB Outline Why bio-coke? Problems/challenges Bio mass (bio-coal)

More information

A MODEL FOR SOIL OXYGEN DELIVERY TO WASTEWATER INFILTRATION SURFACES. J. Erickson, E. J. Tyler* ABSTRACT

A MODEL FOR SOIL OXYGEN DELIVERY TO WASTEWATER INFILTRATION SURFACES. J. Erickson, E. J. Tyler* ABSTRACT #4.44 A MODEL FOR SOIL OXYGEN DELIVERY TO WASTEWATER INFILTRATION SURFACES J. Erickson, E. J. Tyler* ABSTRACT Soil could accept onsite wastewater at rates two to three orders of magnitude higher than the

More information

THE HOT GAS DESULFURIZATION IN A COMPACT TWO BEDS SYSTEM INTEGRATED WITH COAL GASIFICATION AND FISHER-TROPSCH SYSTEM

THE HOT GAS DESULFURIZATION IN A COMPACT TWO BEDS SYSTEM INTEGRATED WITH COAL GASIFICATION AND FISHER-TROPSCH SYSTEM Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 21 THE HOT GAS DESULFURIZATION IN A COMPACT

More information

INDIRECT vs. DIRECT GASIFICATION

INDIRECT vs. DIRECT GASIFICATION INDIRECT vs. DIRECT GASIFICATION Bram van der Drift, Guadalupe Aranda, Berend Vreugdenhil, Rian Visser, Carlos Vilela, Christiaan van der Meijden 4 September 2013 www.ecn.nl GASIFICATION matching energy

More information

Fıxed bed slow pyrolysıs of bıomass solıd waste for bıo-char

Fıxed bed slow pyrolysıs of bıomass solıd waste for bıo-char IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Fıxed bed slow pyrolysıs of bıomass solıd waste for bıo-char To cite this article: M N Islam et al 2017 IOP Conf. Ser.: Mater.

More information

Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview

Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview 47 th International Energy Agency Fluidized bed conversion (IEA- FBC) meeting, on October 13-14 th, 2003 in Zlotniki,

More information

Heat transfer coefficient and latent heat of martensite in a medium-carbon steel

Heat transfer coefficient and latent heat of martensite in a medium-carbon steel International Communications in Heat and Mass Transfer, volume 39, issue 10, December 2012, Pages 1519 1521. Heat transfer coefficient and latent heat of martensite in a medium-carbon steel Hala Salman

More information

Applications of Powder Densification Maps to Direct Metal SLS/HIP Processing

Applications of Powder Densification Maps to Direct Metal SLS/HIP Processing Applications of Powder Densification Maps to Direct Metal SLS/HIP Processing Martin Wohlert, David L. Bourell *, Suman Das*, Joseph J. Beaman * Texas Materials Institute Laboratory for Freeform Fabrication

More information

A Study on the Powder Forging of Aluminum Alloy Pistons

A Study on the Powder Forging of Aluminum Alloy Pistons International Journal of the Korean Society of Precision Engineering Vol. 2, No. 4, November 2001. A Study on the Powder Forging of Aluminum Alloy Pistons Jong-Ok Park 1,Chul-WooPark 1 and Young-Ho Kim

More information

Impact of Co-Firing Coal and Biomass on Char Conversion under Dry Gasification Conditions

Impact of Co-Firing Coal and Biomass on Char Conversion under Dry Gasification Conditions 8th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 Impact of Co-Firing Coal and Biomass on Char

More information

Process Optimization of Hydrogen Production from Coal Gasification

Process Optimization of Hydrogen Production from Coal Gasification Process Optimization of Hydrogen Production from Coal Gasification E. Biagini 1, G. Pannocchia 2, M. Zanobini 2, G. Gigliucci 3, I. Riccardi 3, F. Donatini 3, L. Tognotti 2 1. Consorzio Pisa Ricerche Divisione

More information

Advanced steady-state modelling and optimisation of Natural Gas Reforming reactors

Advanced steady-state modelling and optimisation of Natural Gas Reforming reactors Advanced steady-state modelling and optimisation of Natural Gas Reforming reactors Vasco H. Manaças a, Henrique A. Matos a, Štěpán Špatenka b a Chemical Engineering Department, Instituto Superior Técnico,

More information

Quality Enhancement of Producer Gas From Cassava Rhizome Using High Temperature Air-Steam Downdraft Gasification

Quality Enhancement of Producer Gas From Cassava Rhizome Using High Temperature Air-Steam Downdraft Gasification American Journal of Applied Sciences, 10 (4): 395-402, 2013 ISSN: 1546-9239 2013 Ngamchompoo and Triratanasirichai, This open access article is distributed under a Creative Commons Attribution (CC-BY)

More information

Working group Gasification & Gas Cleaning

Working group Gasification & Gas Cleaning Working group Gasification & Gas Cleaning hermann.hofbauer@tuwien.ac.at Institute of Chemical Engineering page 1 Working group Gasification & Gas Cleaning Content Working group Gasification and Gas Cleaning

More information

The effect of driving force in Gibbs energy on the fraction of martensite

The effect of driving force in Gibbs energy on the fraction of martensite The effect of driving force in Gibbs energy on the fraction of martensite Erik Andersson Andreas Johansson Supervisor: Associate Prof. Annika Borgenstam 2013 Dept. of Material Science and Engineering Royal

More information

Arch. Metall. Mater. 62 (2017), 2B,

Arch. Metall. Mater. 62 (2017), 2B, Arch. Metall. Mater. 6 (7), B, 9- DOI:.55/amm-7- B.-H. KANG*, M.-H. PARK**, K.-A. LEE*** # EFFECT OF STRUT THICKNESS ON ROOM AND HIGH TEMPERATURE COMPRESSIVE PROPEIES OF BLOCK-TYPE Ni-Cr-Al POWDER POROUS

More information

Chapter 5: Diffusion

Chapter 5: Diffusion Chapter 5: Diffusion ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

SunCHem: a 3 rd Generation Biofuel Technology to Produce Methane from Algae

SunCHem: a 3 rd Generation Biofuel Technology to Produce Methane from Algae SunCHem: a 3 rd Generation Biofuel Technology to Produce Methane from Algae Martin Brandenberger* 1, Martin Schubert 1, Johannes Müller 1, Frédéric Vogel 1, Christian Ludwig 1,2, Samuel Stucki 1, Anca

More information

ES Hydrogen Production via the Iron/Iron Oxide Looping Cycle. Copyright 2011 by ASME

ES Hydrogen Production via the Iron/Iron Oxide Looping Cycle. Copyright 2011 by ASME Proceedings of the ASME 2011 5th International Conference on Energy Sustainability ES2011 August 7-10, 2011, Washington, DC, USA ES2011-54 Abstract Hydrogen Production via the Iron/Iron Oxide Looping Cycle

More information

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Clean Coal Technologies Conference 2009 19 May 2009 Joshua Mermelstein

More information

HYDROXIDE FORMATION AND CARBON SPECIES DISTRIBUTIONS DURING HIGH-TEMPERATURE KRAFT BLACK LIQUOR GASIFICATION

HYDROXIDE FORMATION AND CARBON SPECIES DISTRIBUTIONS DURING HIGH-TEMPERATURE KRAFT BLACK LIQUOR GASIFICATION HYDROXIDE FORMATION AND CARBON SPECIES DISTRIBUTIONS DURING HIGH-TEMPERATURE KRAFT BLACK LIQUOR GASIFICATION A Thesis Presented to The Academic Faculty By Michael Dance In Partial Fulfillment Of the Requirements

More information

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Sn) = 232 C, T m (Pb) = 327 C but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Au) = 1064 C, T m (Si) = 2550 C but T m (Au0.97Si0.03) = 363 C, so thin layer of gold is used

More information

INFLUENCE OF STEAM AND CO 2 ON POROSITY CHANGES OF ACTIVATED CARBON OBTAINED DURING THERMOCHEMICAL BIOMASS CONVERSION IN ROTARY KILN

INFLUENCE OF STEAM AND CO 2 ON POROSITY CHANGES OF ACTIVATED CARBON OBTAINED DURING THERMOCHEMICAL BIOMASS CONVERSION IN ROTARY KILN INFLUENCE OF STEAM AND CO 2 ON POROSITY CHANGES OF ACTIVATED CARBON OBTAINED DURING THERMOCHEMICAL BIOMASS CONVERSION IN ROTARY KILN M. Kiełczewski, S. Ziętek* The Agricultural University of Poznań, 60-637

More information

Review Questions for the FE Examination

Review Questions for the FE Examination 110 THE FIRST LAW OF THERMODYNAMICS [CHAP. 4 4.1FE Review Questions for the FE Examination Select a correct statement of the first law if kinetic and potential energy changes are negligible. (A) Heat transfer

More information

Eric Betterton Robert Arnold, Brian Barbaris, Theresa Foley, Ozer Orbay Erik Rupp, Eduardo Sáez, Suzanne Richards, Marty Willinger

Eric Betterton Robert Arnold, Brian Barbaris, Theresa Foley, Ozer Orbay Erik Rupp, Eduardo Sáez, Suzanne Richards, Marty Willinger Catalytic Destruction of PCE and TCE in Soil Vapor Laboratory and Field Studies Department of Chemical & Environmental Engineering Department of Atmospheric Sciences The University of Arizona, Tucson,

More information

COMPARISON OF INSTANTANEOUS, EQUILIBRIUM, AND FINITE-RATE GASIFICATION MODELS IN AN ENTRAINED-FLOW COAL GASIFIER. Armin Silaen Ting Wang *

COMPARISON OF INSTANTANEOUS, EQUILIBRIUM, AND FINITE-RATE GASIFICATION MODELS IN AN ENTRAINED-FLOW COAL GASIFIER. Armin Silaen Ting Wang * Proceedings of the 26th International Pittsburgh Coal Conference, Pittsburgh, USA, September 20-23, 2009 COMPARISON OF INSTANTANEOUS, EQUILIBRIUM, AND FINITE-RATE GASIFICATION MODELS IN AN ENTRAINED-FLOW

More information

Effect of Flue Gas Recirculation on the Formation of Fine Particulate Matter in a Domestic Pellet-Fired Boiler

Effect of Flue Gas Recirculation on the Formation of Fine Particulate Matter in a Domestic Pellet-Fired Boiler Effect of Flue Gas Recirculation on the Formation of Fine Particulate Matter in a Domestic Pellet-Fired Boiler U. Fernandes, M. Henriques and M. Costa Mechanical Engineering Department, Instituto Superior

More information

Synfuels China CTL Technologies

Synfuels China CTL Technologies 中科合成油技术有限公司 SynfuelsChina Synfuels China CTL Technologies Yongbin Cui Synfuels China Technology Co., Ltd. cuiyongbin@synfuelschina.com.cn SFC Background Established in 2006 Registered Capital: 1b RMB Synfuels

More information

Visco-elastic model of the fuzz growth (P64B)

Visco-elastic model of the fuzz growth (P64B) Visco-elastic model of the fuzz growth (P64B) S. I. Krasheninnikov* University California San Diego, La Jolla, CA 92093, USA PACS numbers: 47.55.dd, 52.40.Hf Abstract The visco-elastic model of fuzz growth

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 5. Diffusion Learning objectives: - To know the

More information

Available online: 03 Oct Full terms and conditions of use:

Available online: 03 Oct Full terms and conditions of use: This article was downloaded by: [Indian Institute of Science], [Varunkumar Sivakumar] On: 13 October 2011, At: 23:00 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number:

More information

Holdup measurement in a gas-liquid ejector for a sodium chloride-air system

Holdup measurement in a gas-liquid ejector for a sodium chloride-air system Indian Journal of Chemical Technology Vol. 13, March 2006, pp. 144-148 Holdup measurement in a gas-liquid ejector for a sodium chloride-air system P T Raghuram* & T R Das Department of Chemical Engineering,

More information

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation Title Author(s) Citation Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation Nakamoto, Masashi; Tanaka, Toshihiro; Lee, Joonho; Usui, Tateo ISIJ International. 44(12)

More information

OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS. Abstract

OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS. Abstract OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS Ahmad Wafiq 1, Ahmed Soliman 1, Tarek M. Moustafa 1, and A.F. Nassar 1 1 Chemical Engineering Department, Faculty of Engineering,

More information

Mini converter carbons and wastes for Biogas production and Energy Cogeneration model «ПТК-52»

Mini converter carbons and wastes for Biogas production and Energy Cogeneration model «ПТК-52» Mini converter carbons and wastes for Biogas production and Energy Cogeneration model «ПТК-52» Team: System processing of raw materials, thermochemical conversion reactor. Features: the team is a model

More information

Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter

Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter RESEARCH Exhaust Aftertreatment AUTHORS Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter Michael Albrecht is Research Assistant at the Institute of Internal Combustion Engines at

More information

Title: Modeling of microstructure in the HAZ for microalloyed steel S700 MC

Title: Modeling of microstructure in the HAZ for microalloyed steel S700 MC Kompetenznetzwerk für Fügetechnik Title: Modeling of microstructure in the HAZ for microalloyed steel S7 MC Sub title: Modeling of grain growth in HAZ Autor: Mizanur Rahman Projekt: Join4+, 1.1 Datum:

More information

COMPARATIVE BEHAVIOUR OF AGRICULTURAL BIOMASS RESIDUES DURING THERMOCHEMICAL PROCESSING

COMPARATIVE BEHAVIOUR OF AGRICULTURAL BIOMASS RESIDUES DURING THERMOCHEMICAL PROCESSING Global NEST Journal, Vol 14, No 2, pp 111-117, 2012 Copyright 2012 Global NEST Printed in Greece. All rights reserved COMPARATIVE BEHAVIOUR OF AGRICULTURAL BIOMASS RESIDUES DURING THERMOCHEMICAL PROCESSING

More information

PRODUCTION OF BIO METHANE FROM WOOD USING THE MILENA GASIFCATION TECHNOLOGY

PRODUCTION OF BIO METHANE FROM WOOD USING THE MILENA GASIFCATION TECHNOLOGY International Gas Union Research Conference 2014 PRODUCTION OF BIO METHANE FROM WOOD USING THE MILENA GASIFCATION TECHNOLOGY Christiaan van der Meijden Luc Rabou Britta van Boven (Gasunie) Bram van der

More information

Stability of fast pyrolysis bio-oils and upgraded products

Stability of fast pyrolysis bio-oils and upgraded products Stability of fast pyrolysis bio-oils and upgraded products TCBiomass13 Anja Oasmaa, VTT, Finland Douglas C. Elliott, PNNL, USA VTT Technical Research Centre of Finland 2 Content Composition of fast pyrolysis

More information

Process Simulation and Energy Optimization for the Pulp and Paper Mill

Process Simulation and Energy Optimization for the Pulp and Paper Mill CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021048 283

More information

Modeling and experimental results of heavy oil injection into a high pressure entrained flow gasifier

Modeling and experimental results of heavy oil injection into a high pressure entrained flow gasifier Modeling and experimental results of heavy oil injection into a high pressure entrained flow gasifier André Bader 1, Paul Tischer 1, Peter Seifert 1, Andreas Richter 2, Bernd Meyer 1 Institute of Energy

More information

Biomass Gasification IEA Task 33 Country Report - Finland Piteå, Sweden

Biomass Gasification IEA Task 33 Country Report - Finland Piteå, Sweden Biomass Gasification IEA Task 33 Country Report - Finland ESA KURKELA 18.10.2011 Piteå, Sweden 2 OIL COAL BIOMASS WASTE/SRF GASIFICATION 800-1400 o C A I R S T E A M G A S C L E A N I N G SYNGAS (CO +

More information

Energy Conversion Technologies for Biomass fuelled small-systems

Energy Conversion Technologies for Biomass fuelled small-systems Facoltà di Ingegneria Corso di laurea in Engineering Sciences Thesis on applied Thermal Engineering Energy Conversion for Biomass fuelled small-systems Relatore Prof. Ing. Roberto Verzicco Correlatore

More information

Catalytic Activated Ceramic Dust Filter a new technology for combined removal of dust, NOx, dioxin, VOCs and acids from off gases.

Catalytic Activated Ceramic Dust Filter a new technology for combined removal of dust, NOx, dioxin, VOCs and acids from off gases. Catalytic Activated Ceramic Dust Filter a new technology for combined removal of dust, NOx, dioxin, VOCs and acids from off gases. * Presenting author Peter Schoubye and Joakim Reimer Jensen *, Haldor

More information