Matter and Energy in the Environment

Size: px
Start display at page:

Download "Matter and Energy in the Environment"

Transcription

1 CHAPTER 20 LESSON 2 Key Concept How does matter move in ecosystems? Matter and Energy in the Environment Cycles of Matter What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you disagree. After you ve read this lesson, reread the statements to see if you have changed your mind. Before Statement After 3. Carbon, nitrogen, and other types of matter are used by living things over and over again. 4. Clouds are made of water vapor. Identify the Main Point As you read, highlight the main point of each paragraph. Then use a second color to highlight a detail or example to help explain the main point. Reading Check 1. Define In your own words, write a definition of the water cycle. How does matter move in ecosystems? The water that you use to wash your hands might once have traveled through the roots of a tree in Africa. It might also have been part of a glacier in Alaska. How can this be? Water is used over and over again in ecosystems. It never stops moving. The same is true of carbon, oxygen, nitrogen, and other types of matter. Elements that move through one matter cycle might play a role in another cycle. The Water Cycle Water covers about 70 percent of Earth s surface. Water surrounds all of Earth s landmasses. Most of Earth s water is in the oceans. Water is in rivers, streams, lakes, and underground. Water is also in the atmosphere, in icy glaciers, and in living things. Water is always moving from Earth to the atmosphere and back again. This movement is called the water cycle. The water moves by three processes: evaporation, condensation, and precipitation. 336 Matter and Energy in the Environment Reading Essentials

2 Transpiration Precipitation Condensation Evaporation 2. Identify Highlight the arrow showing which way water goes during transpiration. Groundwater Evaporation In the water cycle, as shown above, the Sun supplies the energy. As the Sun heats water on the surface of Earth, evaporation occurs. Evaporation (ih va puh RAY shun) is the process during which liquid water changes into a gas called water vapor. This water vapor rises into the atmosphere. Temperature, humidity, and wind affect how quickly water evaporates. Water is also released from living things. Cellular respiration occurs in many cells. Water is a by-product of cellular respiration. This water leaves cells and enters the environment and atmosphere as water vapor. Transpiration is the release of water vapor from the leaves and stems of plants. Condensation The higher in the atmosphere you are, the cooler the temperature is. As water vapor rises in the atmosphere, it cools. This cooling causes condensation. Condensation (kahn den SAY shun) is the process during which water vapor changes into liquid water. Clouds form as a result of condensation. Clouds are made of millions of tiny water droplets or ice crystals. These form when water vapor condenses on particles of dust and other substances in the atmosphere. 3. Evaluate Why is condensation the opposite of evaporation? Reading Essentials Matter and Energy in the Environment 337

3 Key Concept Check 4. Describe What form does water take as it falls to Earth? 5. Identify What changes nitrogen gas in the air to nitrogen compounds that fall to the ground? Precipitation Precipitation (prih sih puh TAY shun) is water that falls from clouds to Earth s surface. This water enters bodies of water or soaks into soil. Precipitation can be rain, snow, sleet, or hail. Precipitation forms as water droplets or ice crystals join together in clouds. The droplets or crystals get so large and heavy that they fall to Earth as precipitation. Over time, living things use this precipitation, and the water cycle continues. Bacteria in soil convert nitrogen compounds into nitrogen gas, which is released into the air. Decaying organic matter and animal waste return nitrogen compounds to the soil. Nitrogen gas in atmosphere Animals eat plants. Plants take in and use nitrogen compounds from the soil. Lightning changes nitrogen gas in the atmosphere to nitrogen compounds. The nitrogen compounds fall to the ground when it rains. Nitrogen compounds in soil Nitrogen-fixing bacteria on plant roots convert unusable nitrogen in soil to usable nitrogen compounds. Reading Check 6. Define What is nitrogen fixation? The Nitrogen Cycle You know that water is necessary for life on Earth. The element nitrogen is also necessary for life. Nitrogen is part of proteins, which all organisms need to stay alive. It also is part of DNA, the molecule that contains genetic information. Like water, nitrogen cycles between Earth and the atmosphere and back again. The nitrogen cycle is shown above. From the Environment to Organisms You learned earlier that the atmosphere is mostly nitrogen. Plants and animals cannot use the form of nitrogen that is in the atmosphere. How do organisms get nitrogen into their bodies? The process that changes nitrogen in the atmosphere into nitrogen compounds that living things can use is called nitrogen fixation (NI truh jun fihk SAY shun). Nitrogen from the atmosphere is changed into a different form with the help of bacteria that live in soil and water. These bacteria take in nitrogen from the atmosphere and change it into nitrogen compounds that other organisms can use. Plants and some other organisms take in this changed nitrogen from the soil and water. Then animals take in nitrogen when they eat these plants and other organisms. 338 Matter and Energy in the Environment Reading Essentials

4 From Organisms to the Environment How does nitrogen from living things return to the environment? Some types of bacteria can break down the tissues of dead organisms. These bacteria help return the nitrogen in the tissues of those organisms to the environment. You ve seen these bacteria at work in a decaying log or a rotten apple. Nitrogen also returns to the environment in the waste products of organisms. Manure is a waste product of organisms. Farmers often spread manure on their fields as a way to provide nitrogen for crops. The Oxygen Cycle You learned that organisms need water and nitrogen. Almost all organisms also need oxygen for cellular processes that release energy. Oxygen is also a part of carbon dioxide and water, substances that are important to life. The picture below shows how oxygen cycles through an ecosystem. ACADEMIC VOCABULARY release (verb) to set free or let go During photosynthesis, plants release oxygen gas into the air. During photosynthesis, plants take in carbon dioxide gas from the air. O2 (oxygen) Animals and other organisms release carbon dioxide gas into the air. CO2 (carbon dioxide) Animals and other organisms take in oxygen gas from the air. Most of the oxygen in the atmosphere comes from photosynthesis. Earth s early atmosphere probably did not contain oxygen gas. Certain bacteria evolved that made their own food through photosynthesis. Oxygen gas is a byproduct of photosynthesis. Over time, other photosynthetic organisms evolved. The amount of oxygen in Earth s atmosphere increased. Photosynthesis is the main source of oxygen in Earth s atmosphere today. Humans and many other living organisms take in oxygen and release carbon dioxide during cellular processes. There are many other relationships between different types of matter in ecosystems. 7. Explain What gas do humans take in and what gas do they release as part of the oxygen cycle? 8. Generalize Imagine that there are no plants on Earth. Would the planet have oxygen in its atmosphere? Why or why not? Reading Essentials Matter and Energy in the Environment 339

5 The Carbon Cycle All organisms contain carbon. Some organisms, including humans, get carbon from food. Other organisms, such as plants, get carbon from the atmosphere or bodies of water. Carbon cycles through ecosystems like water, nitrogen, and oxygen do. It is used over and over again. Carbon compounds in atmosphere Photosynthesis Combustion 9. Explore Circle the processes that return carbon to the atmosphere. Photosynthesis Cellular respiration Cellular respiration Plants, certain protists, and bacteria on land Cellular respiration Decomposition Animals Plants, certain protists, and bacteria in water CO2 in water Decomposition Sediments Carbon compounds in soil Decomposition Fossil fuels Make a half-book to organize information about the biotic and abiotic parts of one cycle of matter. Cycles in Nature Carbon in Soil All organisms return carbon to the environment, as shown above. Like nitrogen, carbon can enter the environment when organisms die and decompose. Decomposition is the breaking down of dead plants and animals. This process returns carbon compounds to the soil and releases carbon dioxide (CO 2 ) into the atmosphere. Other organisms then use carbon dioxide. Carbon also is found in fossil fuels. Carbon in Air How do living things use the carbon dioxide that is in the air? Plants and other organisms make their own food through photosynthesis. They take in carbon dioxide and water to make sugars. When other organisms eat plants, they get carbon and energy. Carbon dioxide is a by-product of the cellular processes that break down sugars to release energy. Carbon dioxide enters the atmosphere to be used again. 340 Matter and Energy in the Environment Reading Essentials

6 The Greenhouse Effect Carbon dioxide and other gases in the atmosphere absorb thermal energy from the Sun. This energy keeps Earth warm. This process is called the greenhouse effect. How does the greenhouse effect help Earth? Life on Earth could not exist without the greenhouse effect. As you can see in the figure below, some of this energy is reflected back into space, and some passes through Earth s atmosphere. Greenhouse gases in the atmosphere absorb thermal energy that reflects off Earth s surface. The greenhouse effect helps keep Earth from becoming too hot or too cold. How does the greenhouse effect harm Earth? While the greenhouse effect is necessary for life, a steady increase in greenhouse gases can harm ecosystems. For example, carbon is stored in fossil fuels, such as coal, oil, and natural gas. When people burn fossil fuels to heat homes, to power cars, or to provide electricity, carbon dioxide gas is released into the atmosphere. The amount of carbon dioxide in the air has increased because of both natural and human activities. The more greenhouse gases released, the greater the gas layer becomes and the more heat is absorbed. Reading Check 10. Define What is the greenhouse effect? 11. Describe Explain how the greenhouse effect benefits Earth. 4 Some heat is absorbed by greenhouse gases, such as carbon dioxide, in the atmosphere. Earth 1 Atmosphere The Sun gives off solar radiation. 3 Some of the radiation passes through the atmosphere and is absorbed by Earth's surface. Sun Some solar 2 radiation is reflected by Earth's atmosphere. 12. Explain What might happen if heat were not absorbed by greenhouse gases? Reading Essentials Matter and Energy in the Environment 341

7 Mini Glossary condensation (kahn den SAY shun): the process during which water vapor changes into liquid water evaporation (ih va puh RAY shun): the process during which liquid water changes into a gas called water vapor nitrogen fixation (NI truh jun fihk SAY shun): the process that changes atmospheric nitrogen into nitrogen compounds that are usable to living things precipitation (prih sih puh TAY shun): water that falls from clouds to Earth s surface 1. Review the terms and their definitions in the Mini Glossary. Choose a term and write at least two sentences explaining how the term is linked to the nitrogen cycle. 2. On the lines in the graphic below, identify the processes that make up the water cycle. 3. How did highlighting the main point of each paragraph, along with a detail or example to explain that point, help you understand what you read? What do you think Reread the statements at the beginning of the lesson. Fill in the After column with an A if you agree with the statement or a D if you disagree. Did you change your mind? ConnectED Log on to ConnectED.mcgraw-hill.com and access your textbook to find this lesson s resources. END OF LESSON 342 Matter and Energy in the Environment Reading Essentials

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

Water cycles through ecosystems.

Water cycles through ecosystems. Water cycles through ecosystems. Water is stored on Earth s surface in lakes, rivers, and oceans. Water is found underground, filling the spaces between soil particles and cracks in rocks. Large amounts

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?)

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings.

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings. 2.2 Notes Objectives Compare an open system with a closed system. List the characteristics of Earth s four major spheres. Identify the two main sources of energy in the Earth system. Identify four processes

More information

Air & Water Lesson 2. Chapter 6 Conserving Our Resources

Air & Water Lesson 2. Chapter 6 Conserving Our Resources Air & Water Lesson 2 Chapter 6 Conserving Our Resources Objectives Summarize the importance of air. Describe the water cycle. Main Idea Living things use air and water to carry out their life processes.

More information

Unit 5 Lesson 1 What Is the Water Cycle? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 1 What Is the Water Cycle? Copyright Houghton Mifflin Harcourt Publishing Company Water on the Move warm up 1 Water on the Move About three-fourths of Earth s surface is covered by water. Water on the Move Video!!! Water on the Move Water moves between Earth s surface and the atmosphere

More information

Biosphere & Biogeochemical Cycles

Biosphere & Biogeochemical Cycles Biosphere & Biogeochemical Cycles Biosphere Sphere of living organisms All the regions of the earth and its atmosphere in which living organisms are found or can live. Interacts with all the other spheres

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Ecology: Part 2. Biology Mrs. Bradbury

Ecology: Part 2. Biology Mrs. Bradbury Ecology: Part 2 Biology Mrs. Bradbury Model 1: Food Chains Food Chain simple model showing the movement of matter and energy through ecosystems. Autotrophs Heterotrophs Decomposers Arrows show energy transfer

More information

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary 3.4 Cycles of Matter Lesson Objectives Describe how matter cycles among the living and nonliving parts of an ecosystem. Describe how water cycles through the biosphere. Explain why nutrients are important

More information

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter Ecosystems Table of Contents Section 1 Organisms and Their Releationships Section 2 Flow of Energy in an Ecosystem Section 3 Cycling of Matter Section 1 Organisms and Their Releationships Interactions

More information

THE IMPORTANCE OF WATER

THE IMPORTANCE OF WATER THE IMPORTANCE OF WATER 2/3rds of the Earth s surface is covered in. water Earth s aquatic ecosystems contain biomass more (living mass) than its terrestrial ecosystems. Phytoplankton are microscopic producers

More information

Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards

Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards For ROSS Certifications at least nine of the 14 science standards are addressed during a 5-day program,

More information

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System.

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System. Earth as a System Table of Contents Section 1 Earth: A Unique Planet Section 2 Energy in the Earth System Section 3 Ecology Section 1 Earth: A Unique Planet Objectives Describe the size and shape of Earth.

More information

Chapter Review USING KEY TERMS UNDERSTANDING KEY IDEAS. Skills Worksheet. Multiple Choice

Chapter Review USING KEY TERMS UNDERSTANDING KEY IDEAS. Skills Worksheet. Multiple Choice Skills Worksheet Chapter Review USING KEY TERMS Complete each of the following sentences by choosing the correct term from the word bank. evaporation condensation precipitation decomposition combustion

More information

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16 NOTEBOOK Table of Contents: 9. Properties of Water 9/20/16 10. Water & Carbon Cycles 9/20/16 NOTEBOOK Assignment Page(s): Agenda: Tuesday, September 20, 2016 Properties of Water Water & Carbon Cycles 1.

More information

Cycles in the Biosphere MiniLab: Test for Nitrates Assessment. Essential Questions. Review Vocabulary. Reading Preview

Cycles in the Biosphere MiniLab: Test for Nitrates Assessment. Essential Questions. Review Vocabulary. Reading Preview Cycles in the Biosphere MiniLab: Test for Nitrates Assessment 11 Reading Preview Essential Questions How do nutrients move through biotic and abiotic parts of an ecosystem? Why are nutrients important

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

NCERT solution for Natural Resources

NCERT solution for Natural Resources 1 NCERT solution for Natural Resources Question 1 How is our atmosphere different from the atmospheres on Venus and Mars? Earth's atmosphere is a mixture of nitrogen (79%), oxygen (20%), and a small fraction

More information

CONNECTICUT SCIENCE FRAMEWORK. Grade 6

CONNECTICUT SCIENCE FRAMEWORK. Grade 6 CONNECTICUT SCIENCE FRAMEWORK Grade 6 Core Themes, Content Standards and Expected Performances Properties of Matter How does the structure of matter affect the properties and uses of materials? 6.1 - Materials

More information

Unit 3 Lesson 1 Earth s Support of Life. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 1 Earth s Support of Life. Copyright Houghton Mifflin Harcourt Publishing Company Living It Up What do living things need to survive? Earth is covered in living things. The basic necessities of life are air, water, a source of energy, and a habitat to live in. How do Earth and the sun

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems CARBON CYCLE A. Carbon Facts: Carbon is found in all living matter. Places that carbon is found are called stores or sinks Short-term Stores Long-term Stores - living

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information

Class IX Chapter 14 Natural Resources Science

Class IX Chapter 14 Natural Resources Science Question 1: How is our atmosphere different from the atmospheres on Venus and Mars? Earth s atmosphere is different from those of Venus and Mars. This difference lies essentially in their compositions.

More information

Term Info Picture. The process by which liquid water changes to gas. The process by which water vapor changes in to liquid water.

Term Info Picture. The process by which liquid water changes to gas. The process by which water vapor changes in to liquid water. Water Cycle S6E3. Obtain, evaluate and communicate information to recognize the significant role of water in Earth s processes. A. Ask questions to determine where water is located on Earth s surface (oceans,

More information

The Cycling of Matter

The Cycling of Matter Section 2 Objectives Describe the short-term and long-term process of the carbon cycle. Identify one way that humans are affecting the carbon cycle. List the three stages of the nitrogen cycle. Describe

More information

The Nonliving Environment

The Nonliving Environment Chapter Review The Nonliving Environment Part A. Vocabulary Review Directions: Write the correct term in the spaces beside each definition. Unscramble the boxed letters to find a word that describes a

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

What does each part of the equation mean? q=cm T

What does each part of the equation mean? q=cm T Assignment #10 Energy Pyramids LO: I can define trophic levels and explain the energy flow. I can apply those ideas to food webs EQ: Where does all the energy from the sun go? (4-5 sentences) LEVEL ZERO

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Water Travels Grade 5

Water Travels Grade 5 TEACHING LEARNING COLLABORATIVE (TLC) EARTH SCIENCE Water Travels Grade 5 Created by: Shane Lee (Pomo Elementary School); Nola Montgomery (Clearlake Community School); Lori Kincaid (Lower Lake Elementary

More information

Biology Ecology Unit Chapter 2 Study Guide

Biology Ecology Unit Chapter 2 Study Guide Name: Date: Block: Biology Ecology Unit Chapter 2 Study Guide 1. Directions: Use each of the terms below just once to complete the passage. Ecology Biotic factors Nonliving Environments Atmosphere Humans

More information

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. Chapter 18 What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. What is Biodiversity? Biodiversity is the sum

More information

Material Cycles in Ecosystems. Total Recall: What happens to energy with increasing levels of a food chain?

Material Cycles in Ecosystems. Total Recall: What happens to energy with increasing levels of a food chain? Material Cycles in Ecosystems Total Recall: What happens to energy with increasing levels of a food chain? Available energy decreases with increasing levels of a food chain. *What must occur for there

More information

The water cycle. By NASA.gov, adapted by Newsela staff on Word Count 664 Level 810L

The water cycle. By NASA.gov, adapted by Newsela staff on Word Count 664 Level 810L The water cycle By NASA.gov, adapted by Newsela staff on 12.15.16 Word Count 664 Level 810L TOP: Water is the only common substance that can exist naturally as a gas, liquid or solid at the relatively

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

Water can have three states

Water can have three states Water Cycle Goals 1. Know the states of water and how / why they change from one state to another 2. Describe the Water Cycle using specific and precise vocabulary when describing each part of the Water

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

Where s the Water?: Acting Out Science Cycles

Where s the Water?: Acting Out Science Cycles Where s the Water?: Acting Out Science Cycles SEASONS: SUBJECTS: EXT. SUBJECT: X MATERIALS For each student: water cycle card, water cycle picture, pencil. For class: glass of water, Where Does the Water

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

BIO 2 GO! THE CARBON CYCLE Carbon and carbon dioxide are continuously recycled between living organisms and their environment.

BIO 2 GO! THE CARBON CYCLE Carbon and carbon dioxide are continuously recycled between living organisms and their environment. BIO 2 GO! THE CARBON CYCLE 3132 Carbon and carbon dioxide are continuously recycled between living organisms and their environment. At the end of this unit, you should be able to do the following: 1. Draw

More information

Biogeochemical Cycles Webquest

Biogeochemical Cycles Webquest Name: Date: Biogeochemical Cycles Webquest In this webquest you will search for information that will answer questions about the water, carbon/oxygen, nitrogen and phosphorous cycles using the listed websites.

More information

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Life Depends on the Sun Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Where have we been. Where are we going today? Lecture Outline. Geoengineering. What is a system?

Where have we been. Where are we going today? Lecture Outline. Geoengineering. What is a system? Where have we been 1. Course Introduction 2. What is the environment 3. Examined in some detail weather disasters for 2010 and 2011 4. Touched on Scale 5. Touched on borders. Examples a) Air pollution

More information

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE HYDROLOGIC CYCLE 3 4 5 2 5 1B 6B 1A 6A 7 6C LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE 1A. Evaporation of water from oceans 1B. Evaporation of water from land sources (water and

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

Ecology Part 2: How Ecosystems Work

Ecology Part 2: How Ecosystems Work Ecology Part 2: How Ecosystems Work Name: Unit 2 1 In this second part of Unit 2, our big idea questions are: SECTION 1 How is energy transferred from the Sun to producers and then to consumers? Why do

More information

Name Date Class. This section describes Earth s atmosphere, or the layer of gases that surrounds the planet.

Name Date Class. This section describes Earth s atmosphere, or the layer of gases that surrounds the planet. The Atmosphere Name Date Class The Atmosphere Guided Reading and Study The Air Around You This section describes Earth s atmosphere, or the layer of gases that surrounds the planet. Use Target Reading

More information

natural resources energy resources fossil fuels pollution environment deposition Acid Rain sulfur dioxide carbon dioxide nitrogen oxides

natural resources energy resources fossil fuels pollution environment deposition Acid Rain sulfur dioxide carbon dioxide nitrogen oxides Humans make use of many things found in nature. For example, we use trees to build our homes and cotton to make our clothes. Things that are not made by people, but instead occur naturally, are called

More information

ì<(sk$m)=bdicad< +^-Ä-U-Ä-U

ì<(sk$m)=bdicad< +^-Ä-U-Ä-U Earth Science by Kim Fields Genre Comprehension Skill Text Features Science Content Nonfiction Cause and Effect Captions Diagram Call Outs Glossary Water Scott Foresman Science 3.5 ì

More information

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed MLA Header: s worksheet Please answer the following using the words in the text box. Carbon coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

More information

Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move!

Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move! The Carbon Cycle Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move! Carbon moves from the atmosphere to plants.

More information

The Returning Raindrop

The Returning Raindrop Did you know that some of the water molecules we drink today may have been around when dinosaurs walked the Earth thousands of years ago? Water is continuously recycling in a process called the hydrologic

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science CLIMATE CHANGE AND ACID RAIN Mr. Banks 7 th Grade Science COMPOSITION OF AIR? COMPOSITION OF AIR? 78% Nitrogen 21% Oxygen 0.93% Argon and other noble gases 0.04% carbon dioxide Variable amounts of water

More information

3.F.1 The Water Cycle: Part 1 Students will learn to demonstrate the various phases of the water cycle

3.F.1 The Water Cycle: Part 1 Students will learn to demonstrate the various phases of the water cycle 3.F.1 The Water Cycle: Part 1 Students will learn to demonstrate the various phases of the water cycle Grade Level 3 Sessions Seasonality Instructional Mode(s) Team Size WPS Benchmarks MA Frameworks Key

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique

More information

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE Water Vapor: A GHG Lesson 3 page 1 of 2 Water Vapor: A GHG Water vapor in our atmosphere is an important greenhouse gas (GHG). On a cloudy day we can see evidence of the amount of water vapor in our atmosphere.

More information

1 Characteristics of the Atmosphere

1 Characteristics of the Atmosphere CHAPTER 22 1 Characteristics of the Atmosphere SECTION The Atmosphere KEY IDEAS As you read this section, keep these questions in mind: What are the layers of Earth s atmosphere? How has Earth s atmosphere

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

Table of Contents. Discovering Ecology. Table of Contents

Table of Contents. Discovering Ecology. Table of Contents Table of Contents Table of Contents Introduction...1 What Is Ecology?...2 What Is an Ecosystem?...4 Learning About the Web of Life...7 Round and Round We Go: Cycles in the Ecosystem...10 Habitat Activity...13

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

The Carbon Cycle. Subject: Environmental Systems. Grade Level: High school (9-11)

The Carbon Cycle. Subject: Environmental Systems. Grade Level: High school (9-11) Subject: Environmental Systems Grade Level: High school (9-11) The Carbon Cycle Rational or Purpose: Students will investigate biological systems and summarize relationships between systems. Students will

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles

How Ecosystems Work: Energy Flow and Nutrient Cycles How Ecosystems Work: Energy Flow and Nutrient Cycles Bubble in your ID and the answer to the 25 questions. You can look up the answers to these question on line. 1. The flow of solar energy through an

More information

PhET Greenhouse Effect

PhET Greenhouse Effect PhET Greenhouse Effect Objective: Describe how the greenhouse effect affects temperature on the earth and to use evidence to support whether the greenhouse effect is good or bad for the earth. Introduction:

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

What is the carbon cycle?

What is the carbon cycle? What is the carbon cycle? By NASA Earth Observatory, adapted by Newsela staff on 03.29.17 Word Count 1,160 Carbon is both the foundation of all life on Earth and the source of the majority of energy consumed

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Journey of a Raindrop

Journey of a Raindrop Journey of a Raindrop Grade Level Second to Fourth Duration Prep time: 15 minutes Activity time: 30 to 60 minutes Materials 10 different colored pony beads (from craft stores) 10 large pieces of paper

More information

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through

More information

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS:

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS: CHAPTER 2 BLM 1-19 The Carbon Cycle Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-20 The Carbon Cycle Concept Map Goal Use this page to make a concept map about the carbon cycle. What

More information

Water: A Valuable, Yet Limited Resource

Water: A Valuable, Yet Limited Resource Water: A Valuable, Yet Limited Resource Subject: Science Target Grades 4-5 Duration: One class period Materials per class 3 100-ml graduated cylinders container of water (10-ml/student) Water Cycle with

More information

Unsaved Test, Version: 1 1

Unsaved Test, Version: 1 1 Name: Key Concepts Select the term that best completes the statement. A. abiotic B. light C. biotic D. organisms E. ecology F. soil G. ecosystem H. temperature I. factors J. water Date: 1. A(n) is made

More information

Part I: Water s Trip Around the World Fundamental Question: How does water cycle through living systems?

Part I: Water s Trip Around the World Fundamental Question: How does water cycle through living systems? Part I: Water s Trip Around the World Fundamental Question: How does water cycle through living systems? What is the Water Cycle? Three of the key processes in the water cycle are evaporation, condensation,

More information

Chapter 19: Global Change

Chapter 19: Global Change 1 Summary Of the Case Study Polar Bear population in the Antarctic going down because temperatures are going up and melting the caps. Polar bears are losing their habitat, they also can t get their food

More information

Overview Interactions of Living Things

Overview Interactions of Living Things Directed Reading for Content Mastery Overview Interactions of Living Things Directions: Complete the concept map using the terms in the list below. air biotic soil communities water organisms populations

More information

Chapter 4: The Global Energy System

Chapter 4: The Global Energy System Discovering Physical Geography Third Edition by Alan Arbogast Chapter 4: The Global Energy System The Electromagnetic Spectrum and Solar Energy Solar Energy as Radiation Electromagnetic energy transmitted

More information

List the 5 levels of environmental organization, in order, from the lowest level to the highest level.

List the 5 levels of environmental organization, in order, from the lowest level to the highest level. ECOLOGY REVIEW 1 List the 5 levels of environmental organization, in order, from the lowest level to the highest level. 1 List the 5 levels of environmental organization, in order, the lowest level to

More information

Chapter 13 Principles of Ecology Lecture Guide, Day 1

Chapter 13 Principles of Ecology Lecture Guide, Day 1 Chapter 13 Principles of Ecology Lecture Guide, Day 1 What is Ecology? It is the scientific study of interactions among organisms and between organisms or surroundings. The Nonliving Environment - Abiotic

More information

Where did the water you drank today come from? Summary With a roll of the dice, you can simulate the movement of water within the water cycle.

Where did the water you drank today come from? Summary With a roll of the dice, you can simulate the movement of water within the water cycle. The Water Cycle Where did the water you drank today come from? Summary With a roll of the dice, you can simulate the movement of water within the water cycle. Objectives Students will learn the complex

More information

Global Climate Change

Global Climate Change Global Climate Change Hello Initial Ideas 1.1 Introduction 1.2 Warm car cold day 1.3 Eliciting: Burning fossil fuels 1.4 My actions & global climate change 1.5 Advise Gwen 1.6 Initial MySystem 1.7 Energy

More information

Ecosystems & Energy Chapter 5

Ecosystems & Energy Chapter 5 Ecosystems & Energy Chapter 5 Energy Exchange in Ecosystems Cells Cells - minute compartments in a living organism which carry out processes of life Surrounded by lipid membrane controlling flow of materials

More information

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate 1 Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Extra Resources Website: http://waa-science.weebly.com Module 1: The Mechanics of Change 1. What

More information

Page 2. Q1.Greenhouse gases affect the temperature of the Earth. Which gas is a greenhouse gas? Tick one box. Argon. Methane. Nitrogen.

Page 2. Q1.Greenhouse gases affect the temperature of the Earth. Which gas is a greenhouse gas? Tick one box. Argon. Methane. Nitrogen. Q1.Greenhouse gases affect the temperature of the Earth. (a) Which gas is a greenhouse gas? Tick one box. Argon Methane Nitrogen Oxygen (b) An increase in global temperature will cause climate change.

More information

greenhouse effect 1 of 5

greenhouse effect 1 of 5 This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry greenhouse effect

More information

Global Warming Science Solar Radiation

Global Warming Science Solar Radiation SUN Ozone and Oxygen absorb 190-290 nm. Latent heat from the surface (evaporation/ condensation) Global Warming Science Solar Radiation Turbulent heat from the surface (convection) Some infrared radiation

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

Energy Flow in Organisms

Energy Flow in Organisms Imagine that a student in your school falls and has difficulty breathing. Sirens wail as an ambulance pulls into the school parking lot. The emergency workers rush over to help the student. They begin

More information

Energy and Matter in COMMUNITIES AND ECOSYSTEMS

Energy and Matter in COMMUNITIES AND ECOSYSTEMS Energy and Matter in COMMUNITIES AND ECOSYSTEMS abiotic factors physical aspects i.e. soil, water, weather (non-living) biotic factors the organisms (living) The community AND all physical aspects of

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

5-PS1-1 Matter and Its Interactions. Disciplinary Core Ideas

5-PS1-1 Matter and Its Interactions. Disciplinary Core Ideas defining problems (for Modeling in 3 5 builds on K 2 building and revising simple models and using models to represent events and design solutions. Develop a model to describe phenomena. Using mathematics

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

The water cycle. What is the water cycle? Fact file 2

The water cycle. What is the water cycle? Fact file 2 Fact file 2 The water cycle The water we use at home and at work comes from the natural environment. It is being recycled all the time in what is called the water cycle. What is the water cycle? Water

More information

Energy is crucial to an ecosystem. But all organisms need more

Energy is crucial to an ecosystem. But all organisms need more Section 3 3 3 3 Cycles of Matter 1 FOCUS Objectives 3.3.1 Describe how matter cycles among the living and nonliving parts of an ecosystem. 3.3.2 Explain why nutrients are important in living systems. 3.3.3

More information