Spectral Shift Control for Pressurized Water Reactors

Size: px
Start display at page:

Download "Spectral Shift Control for Pressurized Water Reactors"

Transcription

1 Spectral Shift Control for Pressurized Water Reactors Yigal Ronen and Gilad Raitses Department of Nuclear Engineering Ben Gurion University of the Negev Beer Sheva 84105, Israel Long term control in Pressurized Water Reactor (PWR) is obtained either by soluble poison or by burnable poison. From the neutronic utilization aspect, control by absorbing neutrons in a poison is a waste. Better utilization of the neutrons is achieved if the neutrons would be absorbed by fertile isotopes in order to produce fissile nuclei. These fissile nuclei would contribute to obtain more energy from the fuel. Control of a reactor by absorbing neutrons in the fissile nuclei can be obtained by the so-called spectral shift control. Which a spectral shift, the hard neutron spectrum is achieved at the Beginning Of Life (BOL) and the soft neutron spectrum at the End Of Life (EOL). Several suggestions for spectral shift control were suggested and implemented [1-11]. In this paper a spectral shift control for PWR will be presented. The control is obtained by cooling the reactor with a mixture of gas (helium or CO 2 ) and water. The amount of the moderator is determined by the amount of the gas. Since the volume is constant, introducing gas into the moderator causes the density of the water to change. This study is limited to the neutronic aspect and does not deal with all the thermohydraulic and cooling aspects of the suggested two phase flow. This study is only first step in order to determine the neutronic benefits of using such an approach. In case that, the neutronic benefits are large enough, it will stimulate an investigation related to the other aspects of this suggested control. This control has been applied to a PWR, the parameters of which are presented in Table 1 and Fig. 1. Calculations were performed by the BOXER [12], the code performs cell and twodimensional transport and depletion calculations. The cross sections library is based on ENDF/B (up to ENDF/B 5) and JEF-1 data. The structure of the present library based on 70 energy groups and contains 162 nuclides and mixtures. Most of them are taken from JEF-1. The regular PWR fuel rod geometry and composition were chosen for these calculations (see fig.1). The results obtained from BOXER are received from cell unit calculations. The number of energy group used in this work is 9, and 4 of them are thermal groups. During the calculations the buckling was taken in account in order to account for the leakage from the reactor core. The buckling is cm -2. 1

2 Parameter Table 1. Core and Fuel Assembly Parameters Total Power Output, MWth 3,400 Total Core Flow Rate, Mg/sec Core Inlet Temperature, o C Average Coolant Temperature, C 306 Average Coolant Pressure, bar 155 Fuel Assembly Size, cm 21.4 Number of Fuel Assembly 193 Fuel Material Composition UO 2 U enrichment 3.5% Number of Fuel Rods 264 Average Fuel Temperature, o C 650 Fuel Pellet Radius, cm Gas Gap thickness, cm Cladding thickness, cm Fuel Rod Radii, cm Fuel Cell Pitch, cm 1.26 Moderator/Fuel Volume Ratio cm (0.950 cm) Clad cm (0.836 cm) Gap cm (0.819 cm) Fuel 3.5 % of UO2 Fig. 1: Fuel Rod Design: Geometry and Material Composition 2

3 Regular PWR fuel (3.5 % enriched UO2) void case reference case k effective % of void % of void 50 % of void 37 % of void 22 % of void 0 % of void ,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,000 27,500 30,000 32,500 35,000 burnup, MWd/t Fig. 2: k effective as a function of the burnup. Table 2. EOL Material Composition (isotopes / barn cm) Isotope Reference Case Void Case U E E-04 U E E-04 U E E-02 Pu E E-06 Pu E E-04 Pu E E-05 Pu E E-05 Pu E E-05 Pu E E-09 Pu E E-10 Am E E-06 Am E E-06 Cm E E-07 Cm E E-07 Cm E E-08 3

4 The control was presented by a change in the density of the water starting with 60 % void (gas in volume) up to 0 % void at EOL. The results are presented in Fig.2 and Table 2 and compared to the regular change in reactivity (the reference case). From Fig. 2 it can be seen that for a one batch consideration, the burnup with spectral shift control is 34,500 MWd/t compare to an upper limit of 29,000 MWd/t in a poison control. Namely the spectral shift control increases the burnup by 19 %, namely from the same amount of fuel in the PWR, 19 % more energy can be obtained. This relatively large increase in the fuel utilization is a promising one which suggests that further investigations are needed. Reference: 1. D. MARS et al., Spectral Shift Control Reactor Design and Economic Study, BAW-1241, Badcock and Wilcox (1961). 2. M. C. EDLUND, Developments in Spectral Shift Reactors, Proc. 3 rd U.N. Conf. Peaceful Uses Atomic Energy, Vol. 6, p.314, United Nations, New York (1964). 3. J. STORRER and S. RIGG, The Vulcain Core Power Experiment,, Proc. 3 rd U.N. Conf. Peaceful Uses Atomic Energy, Vol. 6, United Nations, New York (1964). 4. R. L. HELLENS, R. A. MATZIE, G. MENZEL, and N. L. SHAPIRO, Reactor Design Based on the Spectral Shift Control Concept, Trans. Am. Nuc. Soc., 28, 574 (1978). 5. R. A. MATZIE and F. M. SIDER, Evaluation of Spectral Shift Controlled Reactors Operating on the Uranium Fuel Cycle, EPRI NP-1156, Electric Power Research Institute (1979). 6. Y. RONEN and A. GALPERIN, A Comparison between Spectral Shift Control Methods for Light Water Reactors, Ann. Nucl. Energy, 7, 1, 59 (1980). 7. F. CORREA, M. J. DRISCOLL, and D. D. LANNING, An Evaluation of Tight-Pitch PWR Cores, MITNE-227, Massachusetts Institute of Technology (1979). 8. A. GALPERIN and Y. RONEN, Application of the Variable Water Content Method of Reactivity Control for Pressurized Water Reactors, Trans. Am. Nucl. Soc., 43, 567 (1982). 9. A. GALPERIN and Y. RONEN, Modified Fuel Assembly Design for Pressurized Water Reactors with Improved Fuel Utilization, Nucl. Technol., 62, 238 (1983). 10. W. D. LEGGET, Advances in Nuclear Power, Proc. 2 nd Joint ASME-ANS Nuclear Engineering Conf., Portland, Oregon, July 26, Y. RONEN and Y. FAHIMA, Combination of Two Spectral Shift Control Methods for Pressurized Water Reactors with Improved Power Utilization, Nucl. Technol., 67, 46 (1984). 4

5 12. J. M. PARATTE, K. FOSKOLOS, P. GRIMM and C. MAEDER, Das PSI Codesystem ELCOS zur stationaren Berechnung von Leichtwasserreaktoren, Proc. Jahrestagung Kerntechnik, Travemunde, Germany, May 17-19, p.59,

Improving Conversion Ratio of PWR with Th-U 233 Fuel Using Boiling Channels

Improving Conversion Ratio of PWR with Th-U 233 Fuel Using Boiling Channels 67 Reactor Physics and Technology I (Wednesday, February 12, 2014 11:30) Improving Conversion Ratio of PWR with Th-U 233 Fuel Using Boiling Channels M. Margulis, E. Shwageraus Ben-Gurion University of

More information

COMPARISON OF SQUARE AND HEXAGONAL FUEL LATTICES FOR HIGH CONVERSION PWRs

COMPARISON OF SQUARE AND HEXAGONAL FUEL LATTICES FOR HIGH CONVERSION PWRs COMPARISON OF SQUARE AND HEXAGONAL FUEL LATTICES FOR HIGH CONVERSION PWRs Dan Kotlyar, Eugene Shwageraus Department of Nuclear Engineering, Ben-Gurion University of the Negev Beer-Sheva, Israel kotlyar@bgu.ac.il

More information

Dissolution, Reactor, and Environmental Behavior of ZrO 2 -MgO Inert Fuel Matrix Neutronic Evaluation of MgO-ZrO2 Inert Fuels

Dissolution, Reactor, and Environmental Behavior of ZrO 2 -MgO Inert Fuel Matrix Neutronic Evaluation of MgO-ZrO2 Inert Fuels Fuels Campaign (TRP) Transmutation Research Program Projects 7-2006 Dissolution, Reactor, and Environmental Behavior of ZrO 2 -MgO Inert Fuel Matrix Neutronic Evaluation of MgO-ZrO2 Inert Fuels E. Fridman

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

LACKING SPENT NUCLEAR FUEL CRITICAL BENCHMARKS? - GOT REACTOR CRITICALS? William J. Anderson Framatome ANP, Inc.

LACKING SPENT NUCLEAR FUEL CRITICAL BENCHMARKS? - GOT REACTOR CRITICALS? William J. Anderson Framatome ANP, Inc. LACKING SPENT NUCLEAR FUEL CRITICAL BENCHMARKS? - GOT REACTOR CRITICALS? William J. Anderson Framatome ANP, Inc. ABSTRACT With increased interest in the use of burnup credit (BUC) for spent nuclear fuel

More information

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Journal of American Science 2014;10(2)  Burn-up credit in criticality safety of PWR spent fuel. Burn-up credit in criticality safety of PWR spent fuel Rowayda F. Mahmoud 1, Mohamed K.Shaat 2, M. E. Nagy 3, S. A. Agamy 3 and Adel A. Abdelrahman 1 1 Metallurgy Department, Nuclear Research Center, Atomic

More information

Reactivity Control of a Soluble-Boron-Free AP1000 Equilibrium Cycle

Reactivity Control of a Soluble-Boron-Free AP1000 Equilibrium Cycle Reactivity Control of a Soluble-Boron-Free AP1000 Equilibrium Cycle Mohd-Syukri Yahya and Yonghee Kim Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea Nuclear Science and Technology

More information

Calculation of Pellet Radial Power Distributions with Monte Carlo and Deterministic Codes

Calculation of Pellet Radial Power Distributions with Monte Carlo and Deterministic Codes Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.301-305 (2011) TECHNICAL MATERIAL Calculation of Pellet Radial Power Distributions with Monte Carlo and Deterministic Codes Motomu SUZUKI *, Toru

More information

Impact of Integral Burnable Absorbers on PWR Burnup Credit Criticality Safety Analyses

Impact of Integral Burnable Absorbers on PWR Burnup Credit Criticality Safety Analyses 35235 NCSD Conference Paper #1 7/13/01 2:43:36 PM Computational Physics and Engineering Division (10) Impact of Integral Burnable Absorbers on PWR Burnup Credit Criticality Safety Analyses Charlotta E.

More information

Nuclear Energy Revision Sheet

Nuclear Energy Revision Sheet Nuclear Energy Revision Sheet Question I Identify the NPP parts by writing the number of the correct power plant part in the blank. Select your answers from the list provided below. 1 Reactor 2 Steam generator

More information

Specification for Phase IID Benchmark. A. BARREAU (CEA, France) J. GULLIFORD (BNFL, UK) J.C. WAGNER (ORNL, USA)

Specification for Phase IID Benchmark. A. BARREAU (CEA, France) J. GULLIFORD (BNFL, UK) J.C. WAGNER (ORNL, USA) Specification for Phase IID Benchmark PWR-UO 2 Assembly: Study of control rods effects on spent fuel composition A. BARREAU (CEA, France) J. GULLIFORD (BNFL, UK) J.C. WAGNER (ORNL, USA) 1. Introduction

More information

Sodium versus Lead-Bismuth Coolants for the ENHS (Encapsulated Nuclear Heat Source) Reactor

Sodium versus Lead-Bismuth Coolants for the ENHS (Encapsulated Nuclear Heat Source) Reactor Proceedings of the Korean Nuclear Society Autumn Meeting Yongpyong, Korea, October 2002 Sodium versus Lead-Bismuth Coolants for the ENHS (Encapsulated Nuclear Heat Source) Reactor Ser Gi Hong a, Ehud Greenspan

More information

The Effect of Neutron Energy Spectrum on Actinide Management in High Temperature Reactors

The Effect of Neutron Energy Spectrum on Actinide Management in High Temperature Reactors The Effect of Neutron Energy Spectrum on Actinide Management in High Temperature Reactors ABSTRACT Üner Çolak, Mehmet Türkmen Hacettepe University, Department of Nuclear Engineering Beytepe Campus, Ankara,

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea NEUTRONIC ANALYSIS OF THE CANDIDATE MULTI-LAYER CLADDING MATERIALS WITH ENHANCED ACCIDENT TOLERANCE FOR VVER REACTORS Ondřej Novák 1, Martin Ševeček 1,2 1 Department of Nuclear Reactors, Faculty of Nuclear

More information

A Nuclear Characteristics Study of Inert Matrix Fuel for MA Transmutation in Thermal Spectrum

A Nuclear Characteristics Study of Inert Matrix Fuel for MA Transmutation in Thermal Spectrum Proceeding of the Korean Nuclear Autumn Meeting Yongpyong, Korea, Octorber 2002 A Nuclear Characteristics Study of Inert Matrix Fuel for MA Transmutation in Thermal Spectrum Jae-Yong Lim, Myung-Hyun Kim

More information

Core Design of a High Temperature Reactor Cooled and Moderated by Supercritical Light Water

Core Design of a High Temperature Reactor Cooled and Moderated by Supercritical Light Water GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1041 Core Design of a High Temperature Reactor Cooled and Moderated by Supercritical Light Water Akifumi YAMAJI 1*, Yoshiaki OKA 2 and Seiichi KOSHIZUKA

More information

Burn up Analysis for Fuel Assembly Unit in a Pressurized Heavy Water CANDU Reactor

Burn up Analysis for Fuel Assembly Unit in a Pressurized Heavy Water CANDU Reactor Burn up Analysis for Fuel Assembly Unit in a Pressurized Heavy Water CANDU Reactor A. A. EL-Khawlani a, Moustafa Aziz b, M. Ismail c and A. Y. Ellithi c a Physics Department, Faculty of Science, High Education,

More information

ONCE-THROUGH THORIUM FUEL CYCLE OPTIONS FOR THE ADVANCED PWR CORE

ONCE-THROUGH THORIUM FUEL CYCLE OPTIONS FOR THE ADVANCED PWR CORE ONCE-THROUGH THORIUM FUEL CYCLE OPTIONS FOR THE ADVANCED PWR CORE Myung-Hyun Kim and Il-Tak Woo Department of Nuclear Engineering Kyung Hee University YoungIn, KyungGi-Do, 449-701, Korea mhkim@nms.kyunghee.ac.kr;

More information

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Fusion Power Program Technology Division Argonne National Laboratory 9700 S. Cass Avenue, Argonne, IL 60439,

More information

Validation of the Monte Carlo Code MVP on the First Criticality of Indonesian Multipurpose Reactor

Validation of the Monte Carlo Code MVP on the First Criticality of Indonesian Multipurpose Reactor Validation of the Monte Carlo Code MVP on the First Criticality of Indonesian Multipurpose Reactor T.M. Sembiring, S. Pinem, Setiyanto Center for Reactor Technology and Nuclear Safety,PTRKN-BATAN, Serpong,

More information

Flexibility of the Gas Cooled Fast Reactor to Meet the Requirements of the 21 st Century

Flexibility of the Gas Cooled Fast Reactor to Meet the Requirements of the 21 st Century Flexibility of the Gas Cooled Fast Reactor to Meet the Requirements of the 21 st Century T D Newton and P J Smith Serco Assurance (Sponsored by BNFL) Winfrith, Dorset, England, DT2 8ZE Telephone : (44)

More information

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory I. Introduction Benchmark Specification for HTGR Fuel Element Depletion Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory Anthony P. Ulses Office of Research U.S. Nuclear

More information

UKEPR Issue 04

UKEPR Issue 04 Title: PCSR Sub-chapter 4.1 Summary description Total number of pages: 16 Page No.: I / III Chapter Pilot: D. PAGE BLAIR Name/Initials Date 29-06-2012 Approved for EDF by: A. PETIT Approved for AREVA by:

More information

NEUTRONICS ASSESSMENT OF STRINGER FUEL ASSEMBLY DESIGNS FOR THE LIQUID-SALT-COOLED VERY HIGH TEMPERATURE REACTOR (LS-VHTR)

NEUTRONICS ASSESSMENT OF STRINGER FUEL ASSEMBLY DESIGNS FOR THE LIQUID-SALT-COOLED VERY HIGH TEMPERATURE REACTOR (LS-VHTR) Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) NEUTRONICS ASSESSMENT OF STRINGER FUEL ASSEMBLY

More information

THORIUM FUEL OPTIONS FOR SUSTAINED TRANSURANIC BURNING IN PRESSURIZED WATER REACTORS

THORIUM FUEL OPTIONS FOR SUSTAINED TRANSURANIC BURNING IN PRESSURIZED WATER REACTORS THORIUM FUEL OPTIONS FOR SUSTAINED TRANSURANIC BURNING IN PRESSURIZED WATER REACTORS - 12381 Fariz Abdul Rahman*, Fausto Franceschini**, Michael Wenner**, John C. Lee* *University of Michigan, Ann Arbor,

More information

ACTINIDE COMPOSITION ANALYSIS OF LIGHT WATER REACTOR (LWR) FOR DIFFERENT REACTOR CONDITION OF BURNUP AND COOLING TIME

ACTINIDE COMPOSITION ANALYSIS OF LIGHT WATER REACTOR (LWR) FOR DIFFERENT REACTOR CONDITION OF BURNUP AND COOLING TIME ACTINIDE COMPOSITION ANALYSIS OF LIGHT WATER REACTOR (LWR) FOR DIFFERENT REACTOR CONDITION OF BURNUP AND COOLING TIME Sidik Permana 1, Abdul Waris 1, Mitsutoshi Suzuki 2 and Masako Saito 3 1 Department

More information

Types of Nuclear Reactors. Dr. GUVEN Professor of Aerospace Engineering Nuclear Science and Technology Engineer

Types of Nuclear Reactors. Dr. GUVEN Professor of Aerospace Engineering Nuclear Science and Technology Engineer Types of Nuclear Reactors Dr. GUVEN Professor of Aerospace Engineering Nuclear Science and Technology Engineer Types of Reactors (Fuel) As far as the type of fuels are concerned, three types of reactors

More information

English - Or. English NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE. Benchmark Specification for HTGR Fuel Element Depletion

English - Or. English NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE. Benchmark Specification for HTGR Fuel Element Depletion Unclassified NEA/NSC/DOC(2009)13 NEA/NSC/DOC(2009)13 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 16-Jun-2009 English

More information

AEN WPRS Sodium Fast Reactor Core Definitions (version 1.2 September 19 th )

AEN WPRS Sodium Fast Reactor Core Definitions (version 1.2 September 19 th ) AEN WPRS Sodium Fast Reactor Core Definitions (version 1.2 September 19 th ) David BLANCHET, Laurent BUIRON, Nicolas STAUFF CEA Cadarache Email: laurent.buiron@cea.fr 1. Introduction and main objectives

More information

Reactivity requirements can be broken down into several areas:

Reactivity requirements can be broken down into several areas: Reactivity Control (1) Reactivity Requirements Reactivity requirements can be broken down into several areas: (A) Sufficient initial reactivity should be installed to offset the depletion of U 235 and

More information

Resource Evaluation of Heavy Rare Earth Derived from the Spent Gd 2 O 3 Burnable Poison in LWRs

Resource Evaluation of Heavy Rare Earth Derived from the Spent Gd 2 O 3 Burnable Poison in LWRs Journal of Energy and Power Engineering 1 (216) 237-241 doi: 1.17265/1934-8975/216.4.4 D DAVID PUBLISHING Resource Evaluation of Heavy Rare Earth Derived from the Spent Gd 2 O 3 Burnable Poison in LWRs

More information

Fuel data needs for Posiva s postclosure. B. Pastina (Posiva) IGD-TP 5th Exchange Forum Kalmar

Fuel data needs for Posiva s postclosure. B. Pastina (Posiva) IGD-TP 5th Exchange Forum Kalmar Fuel data needs for Posiva s postclosure safety case B. Pastina (Posiva) IGD-TP 5th Exchange Forum Kalmar 28-29.10.2014 Disposal system at Olkiluoto, Finland TURVA-2012 Safety case report portfolio now

More information

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1079 Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium Yasunori Ohoka * and Hiroshi

More information

AN INVESTIGATION OF TRU RECYCLING WITH VARIOUS NEUTRON SPECTRUMS

AN INVESTIGATION OF TRU RECYCLING WITH VARIOUS NEUTRON SPECTRUMS AN INVESTIGATION OF TRU RECYCLING WITH VARIOUS NEUTRON SPECTRUMS Yong-Nam Kim, Hong-Chul Kim, Chi-Young Han and Jong-Kyung Kim Hanyang University, South Korea Won-Seok Park Korea Atomic Energy Research

More information

Specification for Phase VII Benchmark

Specification for Phase VII Benchmark Specification for Phase VII Benchmark UO 2 Fuel: Study of spent fuel compositions for long-term disposal John C. Wagner and Georgeta Radulescu (ORNL, USA) November, 2008 1. Introduction The concept of

More information

Nuclear Power Plants (NPPs)

Nuclear Power Plants (NPPs) (NPPs) Laboratory for Reactor Physics and Systems Behaviour Weeks 1 & 2: Introduction, nuclear physics basics, fission, nuclear reactors Critical size, nuclear fuel cycles, NPPs (CROCUS visit) Week 3:

More information

Self-Sustaining Thorium Boiling Water Reactors

Self-Sustaining Thorium Boiling Water Reactors Sustainability 2012, 4, 2472-2497; doi:10.3390/su4102472 Article OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Self-Sustaining Thorium Boiling Water Reactors Francesco Ganda

More information

Nuclear Fuel Cycle Lecture 8: Reactor Concepts

Nuclear Fuel Cycle Lecture 8: Reactor Concepts Nuclear Fuel Cycle 2011 Lecture 8: Reactor Concepts Fission Exotherm process for all nuclides with more than 130 nucleons (A>130) Activation energy for A=130 is very high; 100 MeV For A > 230 the activation

More information

Influence of Fuel Design and Reactor Operation on Spent Fuel Management

Influence of Fuel Design and Reactor Operation on Spent Fuel Management Influence of Fuel Design and Reactor Operation on Spent Fuel Management International Conference on The Management of Spent Fuel from Nuclear Power Reactors 18 June 2015 Vienna, Austria Man-Sung Yim Department

More information

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Idaho National Engineering and Environmental Laboratory Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Nuclear Energy Research Initiative

More information

IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR. Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY

IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR. Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY Principal investigator Farhang Sefidvash Collaborators Bardo

More information

IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR. Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY

IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR. Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY IAEA REPORT 2006 PRELIMINARY NEUTRONICS CALCULATIONS OF THE FIXED BED NUCLEAR REACTOR FBNR Submitted to the INTERNATIONAL ATOMIC ENERGY AGENCY Principal investigator Farhang Sefidvash Collaborators Bardo

More information

Thorium Fuel Performance in a Tight Pitch LWR Lattice

Thorium Fuel Performance in a Tight Pitch LWR Lattice Thorium Fuel Performance in a Tight Pitch LWR Lattice Taek Kyum Kim and Thomas J. Downar School of Nuclear Engineering Purdue University Abstract Research on the utilization of thorium-based fuels in the

More information

THE NUCLEAR FUEL CYCLE

THE NUCLEAR FUEL CYCLE THE NUCLEAR FUEL CYCLE Uranium is a slightly radioactive metal that is found throughout the earth s crust It is about 500 times more abundant than gold and about as common as tin Natural uranium is a mixture

More information

Design Study of Innovative Simplified Small Pebble Bed Reactor

Design Study of Innovative Simplified Small Pebble Bed Reactor Design Study of Innovative Simplified Small Pebble Bed Reactor Dwi Irwanto 1* and Toru OBARA 2 1 Department of Nuclear Engineering, Tokyo Institute of Technology 2 Research Laboratory for Nuclear Reactors,

More information

Breeding Capability of Moltex's Stable Salt Reactor. Naoyuki Takaki, Takumi Iida Department of Nuclear Safety Engineering

Breeding Capability of Moltex's Stable Salt Reactor. Naoyuki Takaki, Takumi Iida Department of Nuclear Safety Engineering Breeding Capability of Moltex's Stable Salt Reactor Naoyuki Takaki, Takumi Iida Department of Nuclear Safety Engineering Contents Recent movement in Japan Why breeder? Moltex s Stable Salt Reactor Pin

More information

Fall 2005 Core Design Criteria - Physics Ed Pilat

Fall 2005 Core Design Criteria - Physics Ed Pilat 22.251 Fall 2005 Core Design Criteria - Physics Ed Pilat Two types of criteria, those related to safety/licensing, & those related to the intended function of the reactor run at a certain power level,

More information

The Fixed Bed Nuclear Reactor Concept

The Fixed Bed Nuclear Reactor Concept ICENES 2007, Istanbul, Türkiye, 03-08 June 2007 The Fixed Bed Nuclear Reactor Concept Sümer ŞAHİN Gazi University, Teknik Eğitim Fakültesi, Ankara, Turkey sumer@gazi.edu.tr Farhang SEFIDVASH Federal University

More information

Robert Kilger (GRS) Criticality Safety in the Waste Management of Spent Fuel from NPPs

Robert Kilger (GRS) Criticality Safety in the Waste Management of Spent Fuel from NPPs Robert Kilger (GRS) Criticality Safety in the Waste Management of Spent Fuel from NPPs Introduction Criticality Safety Analysis for Spent Nuclear Fuel (SNF) Concept of Burn-up Credit Requirements and Validation

More information

Bhabha Atomic Research Centre

Bhabha Atomic Research Centre Bhabha Atomic Research Centre Department of Atomic Energy Mumbai, INDIA An Acrylic Model of AHWR to Scale 1:50 Threat of climate change and importance of sustainable development has brought nuclear power

More information

Disposing High-level Transuranic Waste in Subcritical Reactors

Disposing High-level Transuranic Waste in Subcritical Reactors Disposing High-level Transuranic Waste in Subcritical Reactors Yaosong Shen Institute of Applied Physics and Computational Mathematics, 6 Huayuan Road, 100088, Beijing, China We propose a new method of

More information

Journal of Power and Energy Systems

Journal of Power and Energy Systems Energy Systems Advanced Recycling Core Accommodating Oxide Fuel and Metal Fuel for Closed Fuel Cycle* Kazumi IKEDA**, James W. MADDOX***, Wataru NAKAZATO**** and Shigeru KUNISHIMA**** **Mitsubishi FBR

More information

Variations in Neutronic Characteristics Accompanying Burnup in a Large Fast Converter

Variations in Neutronic Characteristics Accompanying Burnup in a Large Fast Converter journal of NUCLEAR SCIENCE and TECHNOLOGY, 7 (7), p. 341-354 (July 1970), 341 Variations in Neutronic Characteristics Accompanying Burnup in a Large Fast Converter Shizuo YAMASHITA* Received October 29,

More information

A HELIUM COOLED PARTICLE FUEL REACTOR FOR FUEL SUSTAINABILITY. T D Newton, P J Smith and Y Askan SERCO Assurance, Winfrith, Dorset, England * Abstract

A HELIUM COOLED PARTICLE FUEL REACTOR FOR FUEL SUSTAINABILITY. T D Newton, P J Smith and Y Askan SERCO Assurance, Winfrith, Dorset, England * Abstract A HELIUM COOLED PARTICLE FUEL REACTOR FOR FUEL SUSTAINABILITY T D Newton, P J Smith and Y Askan SERCO Assurance, Winfrith, Dorset, England * Abstract Sustainability is a key goal for future reactor systems.

More information

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 Feasibility and Deployment Strategy of Water Cooled Thorium Breeder Reactors Naoyuki Takaki Department of

More information

Generation IV Reactors

Generation IV Reactors Generation IV Reactors Richard Stainsby National Nuclear Laboratory Recent Ex-Chair of the GFR System Steering Committee Euratom member of the SFR System Steering Committee What are Generation IV reactors?

More information

Abundant and Reliable Energy from Thorium. Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015

Abundant and Reliable Energy from Thorium. Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015 Abundant and Reliable Energy from Thorium Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015 This is incorrect. Nuclear energy is our greatest hope for the future. Nuclear energy contains over

More information

Chapter 7: Strategic roadmap

Chapter 7: Strategic roadmap Chapter 7: Strategic roadmap Research is to see what everybody else has seen, and to think what nobody else has thought. ~ Albert Szent-Gyorgyi~ Overview A systematic strategic thorium-based fuel implementation

More information

IRIS Core Criticality Calculations

IRIS Core Criticality Calculations International Conference Nuclear Energy for New Europe 2003 Portorož, Slovenia, September 8-11, 2003 http://www.drustvo-js.si/port2003 ABSTRACT IRIS Core Criticality Calculations Radomir Ječmenica, Krešimir

More information

Application of the generally available WIMS versions to modern PWRs

Application of the generally available WIMS versions to modern PWRs NUKLEONIKA 2012;57(1):87 93 ORIGINAL PAPER Application of the generally available WIMS versions to modern PWRs Teresa Kulikowska, Anna Stadnik, Krzysztof Andrzejewski, Agnieszka Boettcher, Mariusz Łuszcz

More information

TRANSMUTATION OF TRANSURANIC ELEMENTS IN ADVANCED MOX AND IMF FUEL ASSEMBLIES UTILIZING MULTI-RECYCLING STRATEGIES. A Thesis YUNHUANG ZHANG

TRANSMUTATION OF TRANSURANIC ELEMENTS IN ADVANCED MOX AND IMF FUEL ASSEMBLIES UTILIZING MULTI-RECYCLING STRATEGIES. A Thesis YUNHUANG ZHANG TRANSMUTATION OF TRANSURANIC ELEMENTS IN ADVANCED MOX AND IMF FUEL ASSEMBLIES UTILIZING MULTI-RECYCLING STRATEGIES A Thesis by YUNHUANG ZHANG Submitted to the Office of Graduate Studies of Texas A&M University

More information

ENCAPSULATED NUCLEAR HEAT SOURCE REACTORS FOR ENERGY SECURITY

ENCAPSULATED NUCLEAR HEAT SOURCE REACTORS FOR ENERGY SECURITY 15 th Pacific Basin Nuclear Conference, Sidney, Australia, October 15-20, 2006 ENCAPSULATED NUCLEAR HEAT SOURCE REACTORS FOR ENERGY SECURITY Greenspan E 1., Hong S.G. 1,2, Monti L 1,3., Okawa T 1,4., Sumini

More information

A Parametric Study on Core Performance of Sodium Fast Reactors Using SERPENT Code RUBÉN GARCÍA MORENO

A Parametric Study on Core Performance of Sodium Fast Reactors Using SERPENT Code RUBÉN GARCÍA MORENO A Parametric Study on Core Performance of Sodium Fast Reactors Using SERPENT Code RUBÉN GARCÍA MORENO Master of Science Thesis Division of Nuclear Safety Royal Institute of Technology Stockholm, Sweden

More information

Enriched Gadolinium as Burnable Absorber for PWR Klaes-Håkan Bejmer* 1 and Ola Seveborn 2

Enriched Gadolinium as Burnable Absorber for PWR Klaes-Håkan Bejmer* 1 and Ola Seveborn 2 Enriched Gadolinium as Burnable Absorber for PWR Klaes-Håkan Bejmer* 1 and Ola Seveborn 2 1 Vattenfall Bränsle AB, S-162 87 Stockholm, Sweden 2 Sernanders väg 5-518, S-752 61 Uppsala, Sweden Abstract This

More information

CANDU REACTORS WITH THORIUM FUEL CYCLES

CANDU REACTORS WITH THORIUM FUEL CYCLES CANDU REACTORS WITH THORIUM FUEL CYCLES Hopwood, J.M., Fehrenbach, P., Duffey, R., Kuran, S., Ivanco, M., Dyck, G.R., Chan, P.S.W., Tyagi, A.K. and Mancuso, C. Atomic Energy of Canada, Mississauga and

More information

Power Stations Nuclear power stations

Power Stations Nuclear power stations Power Stations Nuclear power stations Introduction A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. The heat is used to generate steam which drives a steam

More information

The Fusion-Fission Fission Thorium Hybrid

The Fusion-Fission Fission Thorium Hybrid Invited paper presented at the 1st Thorium Energy Alliance Conference, The Future Thorium Energy Economy," Kellog Conference Center, Gallaudet University, Washington D. C. 2002-3695, USA, October 19-20,

More information

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS M. Clemente a, S. Langenbuch a, P. Kusnetzov b, I. Stenbock b a) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)mbH, Garching, E-mail:

More information

DESIGN OF A PROTEUS LATTICE REPRESENTATIVE OF A BURNT AND FRESH FUEL INTERFACE AT POWER CONDITIONS IN LIGHT WATER REACTORS

DESIGN OF A PROTEUS LATTICE REPRESENTATIVE OF A BURNT AND FRESH FUEL INTERFACE AT POWER CONDITIONS IN LIGHT WATER REACTORS PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education Knoxville, Tennessee, USA, April 15-20, 2012, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2012) DESIGN OF A

More information

Lecture (3) on. Nuclear Reactors. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering. Fayoum University

Lecture (3) on. Nuclear Reactors. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering. Fayoum University 1 Lecture (3) on Nuclear Reactors By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical Engineering Dept. 2015-2016 2 Nuclear Fission

More information

Two Methods for Converting Iran s IR-40 Reactor to Use Low-Enriched-Uranium Fuel to Improve Proliferation Resistance After Startup

Two Methods for Converting Iran s IR-40 Reactor to Use Low-Enriched-Uranium Fuel to Improve Proliferation Resistance After Startup Two Methods for Converting Iran s IR-40 Reactor to Use Low-Enriched-Uranium Fuel to Improve Proliferation Resistance After Startup R.S. Kemp March 2014 Abstract This article demonstrates the feasibility

More information

Benchmark Evaluation of Reactivity Measurements for Beryllium- Reflected Space Reactor Mockup

Benchmark Evaluation of Reactivity Measurements for Beryllium- Reflected Space Reactor Mockup Benchmark Evaluation of Reactivity Measurements for Beryllium- Reflected Space Reactor Mockup Margaret A. Marshall Idaho National Laboratory John D. Bess Idaho National Laboratory NETS 2015 NETS 2014 Infinity

More information

HELIOS-2: Benchmarking Against Hexagonal Lattices

HELIOS-2: Benchmarking Against Hexagonal Lattices HELIOS-2: Benchmarking Against Hexagonal Lattices Teodosi Simeonov a and Charles Wemple b a Studsvik Scandpower, GmbH., Hamburg,Germany b Studsvik Scandpower, Inc., Idaho Falls, ID, USA ABSTRACT The critical

More information

Neutronic Challenges in SCWR Core Design. T. K. Kim Argonne National Laboratory

Neutronic Challenges in SCWR Core Design. T. K. Kim Argonne National Laboratory Neutronic Challenges in SCWR Core Design T. K. Kim Key Differences between SCWR and LWR Normalized Eφ(E).8.7 FBR.6.5.4 RMWR SCR. BWR.2.1. 1-1 -2 1-1 1 1 1 1 2 1 1 4 1 5 1 6 1 7 1 8 Neutron energy(ev) Density

More information

Generation IV Water-Cooled Reactor Concepts

Generation IV Water-Cooled Reactor Concepts Generation IV Water-Cooled Reactor Concepts Technical Working Group 1 - Advanced Water- Cooled Reactors Generation IV Roadmap Session ANS Winter Meeting Reno, NV November 13, 2001 1 TWG 1 Members Mario

More information

Thorium in de Gesmolten Zout Reactor

Thorium in de Gesmolten Zout Reactor Thorium in de Gesmolten Zout Reactor 30-1-2015 Jan Leen Kloosterman TU-Delft Delft University of Technology Challenge the future Reactor Institute Delft Research on Energy and Health with Radiation 2 1

More information

Comparisons of Deterministic Neutronic Calculations with Monte Carlo Results for an Advanced BWR Fuel Assembly with Hafnium Control Blades

Comparisons of Deterministic Neutronic Calculations with Monte Carlo Results for an Advanced BWR Fuel Assembly with Hafnium Control Blades Journal of Nuclear Science and Technology ISSN: 0022-3131 (Print) 1881-1248 (Online) Journal homepage: https://www.tandfonline.com/loi/tnst20 Comparisons of Deterministic Neutronic Calculations with Monte

More information

TRAVELING WAVE REACTOR

TRAVELING WAVE REACTOR TRAVELING WAVE REACTOR M. Ragheb 3/13/2013 INTRODUCTION In the 2012 USA budget, $853 million is allocated for nuclear research, including small reactors. A 30-person Company, TerraPower LLC, at Bellevue,

More information

PROPOSAL OF A GUIDE TO PERFORMANCE ASSESSMENT OF FUEL RODS FOR NUCLEAR POWER PLANTS

PROPOSAL OF A GUIDE TO PERFORMANCE ASSESSMENT OF FUEL RODS FOR NUCLEAR POWER PLANTS 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 PROPOSAL OF A GUIDE TO PERFORMANCE

More information

Chapter 4 THE HIGH TEMPERATURE GAS COOLED REACTOR TEST MODULE CORE PHYSICS BENCHMARKS

Chapter 4 THE HIGH TEMPERATURE GAS COOLED REACTOR TEST MODULE CORE PHYSICS BENCHMARKS Chapter 4 THE HIGH TEMPERATURE GAS COOLED REACTOR TEST MODULE CORE PHYSICS BENCHMARKS 4.1 HTR-10 GENERAL INFORMATION China has a substantial programme for the development of advanced reactors that have

More information

Systematic Evaluation of Uranium Utilization in Nuclear Systems

Systematic Evaluation of Uranium Utilization in Nuclear Systems Systematic Evaluation of Uranium Utilization in Nuclear Systems Taek K. Kim and T. A. Taiwo 11 th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation San Francisco,

More information

Reactor Boiler and Auxiliaries - Course 133 REACTOR CLASSIFICATIONS - FAST & THERMAL REACTORS

Reactor Boiler and Auxiliaries - Course 133 REACTOR CLASSIFICATIONS - FAST & THERMAL REACTORS Lesson 133.10-2 Reactor Boiler and Auxiliaries - Course 133 REACTOR CLASSIFICATIONS - FAST & THERMAL REACTORS Development of nuclear power in various countries has depended on a variety of factors not

More information

Full MOX Core Design in ABWR

Full MOX Core Design in ABWR GENES4/ANP3, Sep. -9, 3, Kyoto, JAPAN Paper 8 Full MOX Core Design in ABWR Toshiteru Ihara *, Takaaki Mochida, Sadayuki Izutsu 3 and Shingo Fujimaki 3 Nuclear Power Department, Electric Power Development

More information

OECD Nuclear Energy Agency Nuclear Science Committee OECD/NEA AND U.S. NRC PWR MOX/UO 2 CORE TRANSIENT BENCHMARK

OECD Nuclear Energy Agency Nuclear Science Committee OECD/NEA AND U.S. NRC PWR MOX/UO 2 CORE TRANSIENT BENCHMARK OECD Nuclear Energy Agency Nuclear Science Committee Working Party of the Physics of Plutonium Fuels and Innovative Fuel Cycles OECD/NEA AND U.S. NRC PWR MOX/UO 2 CORE TRANSIENT BENCHMARK Tomasz Kozlowski

More information

Full Submersion Criticality Accident Mitigation in the Carbide LEU-NTR

Full Submersion Criticality Accident Mitigation in the Carbide LEU-NTR Full Submersion Criticality Accident Mitigation in the Carbide LEU-NTR Paolo Venneri, Yonghee Kim Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea, 35-71 paolovenneri@kaist.ac.kr,

More information

UNIT-5 NUCLEAR POWER PLANT. Joining of light nuclei Is not a chain reaction. Cannot be controlled

UNIT-5 NUCLEAR POWER PLANT. Joining of light nuclei Is not a chain reaction. Cannot be controlled UNIT-5 NUCLEAR POWER PLANT Introduction Nuclear Energy: Nuclear energy is the energy trapped inside each atom. Heavy atoms are unstable and undergo nuclear reactions. Nuclear reactions are of two types

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics Technical

More information

Reactor Technology --- Materials, Fuel and Safety

Reactor Technology --- Materials, Fuel and Safety Reactor Technology --- Materials, Fuel and Safety UCT EEE4101F / EEE4103F April 2015 Emeritus Professor David Aschman Based on lectures by Dr Tony Williams Beznau NPP, Switzerland, 2 x 365 MWe Westinghouse,

More information

Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack. Brahmananda Chakraborty Bhabha Atomic Research Centre, India

Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack. Brahmananda Chakraborty Bhabha Atomic Research Centre, India Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack Brahmananda Chakraborty Bhabha Atomic Research Centre, India Indian High Temperature Reactors Programme Compact High Temperature Reactor (CHTR)

More information

Feasibility to convert an advanced PWR from UO2 to a mixed (U,Th)O2 core

Feasibility to convert an advanced PWR from UO2 to a mixed (U,Th)O2 core 2017 International Nuclear Atlantic Conference - INAC 2017 Belo Horizonte, MG, Brazil, October 22-27, 2017 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR ABEN Feasibility to convert an advanced PWR from UO2

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

Readiness of Current and New U.S. Reactors for MOX Fuel

Readiness of Current and New U.S. Reactors for MOX Fuel Readiness of Current and New U.S. Reactors for MOX Fuel North Carolina and Virginia Health Physics Societies Joint 2009 Spring Meeting New Bern, North Carolina 13 March 2009 Andrew Sowder, Ph.D., CHP Project

More information

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 06 Boiling Water Reactors (BWR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Contents BWR Basics Technical Data Safety Features Reactivity

More information

Safety Practices in Chemical and Nuclear Industries

Safety Practices in Chemical and Nuclear Industries Lecture 9 Safety Practices in Chemical and Nuclear Industries CANDU Safety Functions and Shutdown Systems Dr. Raghuram Chetty Department of Chemical Engineering Indian Institute of Technology Madras Chennai-

More information

UNIT- III NUCLEAR POWER PLANTS Basics of Nuclear Engineering, Layout and subsystems of Nuclear Power Plants, Working of Nuclear Reactors: Boiling Water Reactor (BWR), Pressurized Water Reactor (PWR), CANada

More information

THE FUEL BURN UP DETERMINATION METHODOLOGY AND INDICATIVE DEPLETION CALCULATIONS IN THE GREEK RESEARCH REACTOR M. VARVAYANNI

THE FUEL BURN UP DETERMINATION METHODOLOGY AND INDICATIVE DEPLETION CALCULATIONS IN THE GREEK RESEARCH REACTOR M. VARVAYANNI THE FUEL BURN UP DETERMINATION METHODOLOGY AND INDICATIVE DEPLETION CALCULATIONS IN THE GREEK RESEARCH REACTOR M. VARVAYANNI Nuclear Research Reactor Laboratory Institute of Nuclear Technology & Radiation

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona USA The Potential Role of the Thorium Fuel Cycle in Reducing the Radiotoxicity of Long-Lived Waste 13477 Kevin Hesketh and Mike Thomas The UK s National Nuclear Laboratory, Preston Laboratory, Preston, PR4

More information

Thorium Fuel Cycle Activities in IAEA

Thorium Fuel Cycle Activities in IAEA Thorium Fuel Cycle Activities in IAEA Uddharan Basak Nuclear Fuel Cycle and Material Section Division of Nuclear Fuel Cycle and Waste Technology Department of Nuclear Energy IAEA 1 International Atomic

More information

Annals of Nuclear Energy

Annals of Nuclear Energy Annals of Nuclear Energy 35 (2008) 1587 1597 Contents lists available at ScienceDirect Annals of Nuclear Energy journal homepage: www.elsevier.com/locate/anucene Core physics analysis of 100% MOX core

More information

Improved PWR Core Characteristics with Thorium-containing Fuel

Improved PWR Core Characteristics with Thorium-containing Fuel CTH-NT-285 Thesis for the degree of Doctor of Philosophy Improved PWR Core Characteristics with Thorium-containing Fuel CHEUK WAH LAU Division of Nuclear Engineering Department of Applied Physics Chalmers

More information