Lecture 8. Design of cooling systems for effluent temperature reduction. L08-1 Energy System Design Update

Size: px
Start display at page:

Download "Lecture 8. Design of cooling systems for effluent temperature reduction. L08-1 Energy System Design Update"

Transcription

1 Lecture 8 Design of cooling systems for effluent temperature reduction L08-1 Energy System Design Update

2 Wastewater Treatment Utility System Wastewater Heat Exchanger Network Separation System Reactor Treatment system - Volume - Concentration - ph - Temperature Environmnent L08-2 Energy System Design Update

3 Effluent Cooling Systems Water-using system Cooling system Freshwater OPERATION 1 OPERATION 2 OPERATION 3 Discharge T env Interaction L08-3 Energy System Design Update

4 Chemical Pollution Distributed Treatment System Example 1 : Effluent Name Effluent 1 Effluent 2 Effluent 3 Flowrate (t/h) Treatment Process Data Environmental Discharge Limit Concentration (ppm) RR= 95% C env = 20 ppm L08-4 Energy System Design Update

5 Graphical Representation of Effluent Stream Data 250 C (ppm) 250 C (ppm) C env = Mass (kg/h) Individual Effluent Stream Data 40 C env = Mass (kg/h) 11.4 Effluent Composite Curve & Treatment Line L08-5 Energy System Design Update

6 Design of Distributed Effluent Treatment Above Pinch 1 2 Treating At Pinch 3 Treatment Process Below Pinch 4 5 Bypassing (Wang and Smith, Chem Eng Sci, 49, , 1994) L08-6 Energy System Design Update

7 Distributed Effluent Treatment 250 C (ppm) E1 40 t/h Treatment 75 t/h C env = 20 E3 E2 25 t/h 10 t/h 15 t/h Mass (kg/h) Minimum treatment flowrate can be targeted for distributed effluent treatment L08-7 Energy System Design Update

8 Comments on the Distributed Treatment Approach Provides a simple way for targeting the minimum flowrate to be treated Gives design guidelines to achieve the targets in practice Provides insights which can be explored and extended to a cooling system for effluent temperature reduction L08-8 Energy System Design Update

9 Distributed Cooling System T 1 Cooling Tower T 1 Cooling Tower T 2 T 2 T env Discharge T env T 3 T 3 Discharge Reduce effluent flowrate to cooling tower L08-9 Energy System Design Update

10 Targeting of Distributed Cooling System T ( C) T ( C) T 1 T 1 Effluent Temperature Composite Curve T 2 T 3 T env = 30 T 2 T 3 T env = 30 Cooling Line Disposable Heat Disposable Heat L08-10 Energy System Design Update

11 Effect of Evaporation Loss E 1 E E F in (T in -T out ) E 2 T in F in CT T out F out F in > F out T dis > T env E 3 T s F s T dis The evaporation loss forces an increase in the CT supply flowrate(f in ) L08-11 Energy System Design Update

12 CT Supply Line Target with Evaporation Loss E 1 E 2 E 3 F 1 T 1 F 21 + f F 22 - f T 2 F 3 T 3 Point A B F in + f T in - T in E NEW F s - f CT T s - T s f : increament of CT supply flowrate F out + f T out A F dis T dis =T env (F out + f)t out + (F S - f)(t S - T S ) = F dis T env Point B (F S - f)(t S - T S ) = (F 22 - f)t 2 + F 3 T 3 Combining the expressions gives F 3 T 3 + F 22 T 2 +F out T out - F dis T env f = T 2 - T out (Assume E NEW E) L08-12 Energy System Design Update

13 Example 2 : Effluent Name Flowrate (t/h) Effluent Effluent Effluent Environmental Discharge Limit Temperature ( o C) T env = 30 o C CT characteristic = 25 o C CW exit temperature L08-13 Energy System Design Update

14 T Effluent temperature composite curve 54.2 o C E t/h E 21.7 t/h 25 o C CT supply line 490 t/h E 2 E 3 CT 510 t/h t/h T dis 30.1 o C Q T dis > T env ( 30 o C) Calculate f : f = F 3 T 3 + F 22 T 2 +F out T out - F dis T env T 2 - T out = 5.4 t/h L08-14 Energy System Design Update

15 Final Design of Distributed Cooling System E 21.7 t/h E t/h t/h t/h CT E t/h t/h E t/h t/h T dis = 30 o C But, Is the cooling cost inversely proportional to the CT flowrate? L08-15 Energy System Design Update

16 Distributed Cooling System Targeting Wet Bulb Temp. limitation T Effluent temperature composite curve Feasible region for distributed cooling system Min. Flowrate Max. Flowrate (Centralised Cooling System) Q L08-16 Energy System Design Update

17 Effect of Distributed Cooling on CT Performance T CT flowrate decrease Range T Range Apporach Apporach R 2 R 1 A 2 A 1 Wet Bulb Temp. Q Flowrate L08-17 Energy System Design Update

18 Effect of Distributed Cooling System on CT Capital Cost Enthalpy Eq. Curve Cost CT capital cost Driving force L/G Operating Line Optimum Flowrate Effect Approach Twbt Range Water Temp Apporach Effect Range Effect Flowrate Approach is more important factor than flowrate and range to achieve high driving force for cooling L08-18 Energy System Design Update

19 Effect of Distributed Cooling Systems on CT Operating Cost Operating Cost Optimum Water pumping cost Air Fan Cost Flowrate Distributed cooling systems increase an air consumption for cooling L08-19 Energy System Design Update

20 Overall cost of Distributed Cooling System Cost Optimum Overall cost Operating cost Capital cost Flowrate To target for distributed cooling systems is an optimisation problem L08-20 Energy System Design Update

21 Optimisation of Distributed Cooling Systems Objective function CT capital cost [ ] : CC = R A WBT F Air fan power cost (FC) : Evaporation Loss - Required air flowrate = Air Humidity difference cfm of air requires one horsepower CW pumping cost (PC) : - Required power = flowrate head density efficiency Overall cost Minimise f = CC + FC + PC Details given in Kim, Savulescu and Smith, Chem. Eng. Sci. Vol. 56 (5), , 2001) L08-21 Energy System Design Update 82

22 Identification of Constraints T T i Pinch Composite curve Pinch Feasibility U T in L T in R T out U T out L A WBT Q i Pinch Q Heat Load L08-22 Energy System Design Update

23 Formulation of Constraints Heat load of cooling system : Q = F C P ( T T ) in out Range : R = T in T out Approach : A = T out T wbt Feasibility constraints : F L F F U T L in T in T U in T L out T out T U out Pinch feasibility constraints : Air humidity : Evaporation loss : Y = f air in E loss air ( T ) in T out = c R F Q + R Q Y air out pinch i = f T pinch i Tin + T 2 out L08-23 Energy System Design Update

24 Example 3 : Effluent Name Flowrate (t/h) Effluent Effluent Effluent Environmental Discharge Limit Temperature ( o C) T env = 30 o C Let s find optimal design of distributed cooling system - Payback year : 3 yr - Interest rate : 15 % - Operating time : 8600 hr/yr - Electricity cost : 0.05 /kwh L08-24 Energy System Design Update

25 Optimal Conditions for Distributed Cooling System Cost 34.2 k Optimum 534 t/h Flowrate Case Flowrate (t/h) Tin ( o C) Tout ( o C) Cost (k /yr) Centralised Distributed (Optimum) L08-25 Energy System Design Update

26 Optimal Design of Distributed Cooling Systems E 1 E 2 E t/h 40 o C 300 t/h 35 o C 450 t/h 32 o C Cost comparision Case 16 t/h 534 t/h 37.3 o C Overall cost E CT Capital cost 7.4 t/h Air fan cost 28.1 o C t/h f = 2 t/h Discharge t/h (k /yr) CW pumping cost 30 o C Centralised Distributed (Optimum) % L08-26 Energy System Design Update

27 Summary A systematic method for distributed cooling system CT thermal performance Distributed cooling system Cooling cost T 1 T 2 T 3 CT T env Discharge Minimum cooling cost L08-27 Energy System Design Update

28 Working Session 8 Design of cooling systems for effluent temperature reduction WS08-1 Energy System Design Update

29 Objectives To reduce the aqueous effluent discharge temperature to 30 C Water Effluent Steam Data - Base Case Effluent Flowrate (t/h) Effluent Effluent Effluent Environmental Discharge Limit Temperature ( o C) T env = 30 o C WS08-2 Energy System Design Update

30 Traditional Option End-of-Pipe Centralised Cooling System E1 E2 E3 200 t/h 40 o C 300 t/h 35 o C 300 t/h 33 o C 800 t/h 35.5 o C CT 30 o C WS08-3 Energy System Design Update

31 Task 1: 1. Open the file WS08.xls 2. Input the cooling water conditions for centralised cooling systems (callout 1). 3. Fill the answer 1 Answer 1: Centralised cooling system k /yr Capital cost of cooling tower Operating cost for air supply Operating cost for water pumping WS08-4 Energy System Design Update

32 Task 2: Draw effluent composite curve T T 1 T T 1 T 2 T 2 T 3 T 3 Environmental limit (30 o C) Q Q * Assume that the heat capacity of cooling water is 4.2 kj/kg o C. WS08-5 Energy System Design Update

33 Answer 2: Effluent composite curve T T 1 T 2 T 3 Environmental limit (30 o C) Q WS08-6 Energy System Design Update

34 Task 3: Indentify the optimisation constraints for targeting of distributed cooling systems. T Composite curve T in U T 2 Pinch T in L T out U T out L T 1 Pinch WBT = 20 o C Q 1 Pinch 1st kink point Q 2 Pinch 2nd kink point Q Heat Load WS08-7 Energy System Design Update

35 Answer 3: 1. CW conditions 2. Pinch feasibility Temp. of CW inlet stream to CT [ o C] Temp. of CW exit stream from CT [ o C] CW flowrate of CT [t/h] Lower bound Upper bound Temperature [ o C] Heat load [kw] 1st kink point 2nd kink point End point WS08-8 Energy System Design Update

36 Task 4: 1. Return to the file WS08.xls 2. Input the constraints for the optimisation of distributed cooling systems (callout 2). 3. From the Tools menu, select Solver and run the Solver 4. Check the answer and fill the table Answer 4 : Distributed cooling systems Capital cost of cooling tower Operating cost for air supply Operating cost for water pumping k /yr WS08-9 Energy System Design Update

37 Task 5: 1. Check the temperature and flowrate conditions of cooling supply line (callout 3). 2. Check the temperature conditions of cooling supply line at kink points (callout 4). 3. Draw the optimal cooling supply line against the effluent composite curve 4. Design the distributed cooling systems. WS08-10 Energy System Design Update

38 Answer Identification of optimal cooling supply line T T 1 T 2 E1 200 t/h 40 o C E2 300 t/h 35 o C? 300 t/h E3 33 o C * No evaporation effect is assumed T 3 Environmental limit (30 o C) 2. Design for distributed cooling systems CT Q WS08-11 Energy System Design Update

39 Working Session 8 Solution SOL08-1 Energy System Design Update

40 Answer 1: Cooling cost for centralised cooling systems E1 E2 E3 200 t/h 40 o C 300 t/h 35 o C 300 t/h 33 o C 800 t/h 35.5 o C CT 30 o C Centralised cooling system Capital cost of cooling tower Operating cost for air supply Operating cost for water pumping Overall cost k /yr SOL08-2 Energy System Design Update

41 Answer 2 : Effluent composite curve T ( o C) 40 T ( o C) Environmental limit (30 o C) 2333 kw 1750 kw 1050 kw Q (kw) Q (kw) * Assume that the heat capacity of cooling water is 4.2 kj/kg o C. SOL08-3 Energy System Design Update

42 Answer 3 : The optimisation constraints T ( o C) 39.4 o C 35 o C 35.5 o C 30 o C 33 o C WBT = 20 o C Q (kw) SOL08-4 Energy System Design Update

43 Answer 3: 1. CW conditions Lower bound Temp. of CW inlet stream to CT [ o C] 35.5 Upper bound Pinch feasibility Temp. of CW exit stream from CT [ o C] CW flowrate of CT [t/h] Temperature [ o C] Heat load [kw] 1st kink point 2nd kink point End point SOL08-5 Energy System Design Update

44 Answer 4: Cooling cost for distributed cooling systems Distributed cooling systems Capital cost of cooling tower Operating cost for air supply k /yr Operating cost for water pumping Overall cost Reduction : 13.5 % SOL08-6 Energy System Design Update

45 Answer Identification of optimal cooling supply line T ( o C) Flowrate: t/h Q (kw) SOL08-7 Energy System Design Update

46 Answer Design for distributed cooling systems E1 200 t/h 40 o C t/h t/h o C CT E2 35 o C 3.3 t/h o C E3 300 t/h 33 o C t/h o C 30 o C * No evaporation effect is assumed SOL08-8 Energy System Design Update

Process intergration: Cooling water systems design

Process intergration: Cooling water systems design Process intergration: Cooling water systems design Khunedi Vincent Gololo a,b and Thokozani Majozi a* a Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South

More information

Module 03 : Building blocks of PINCH Technology. Lecture 07 : Hot and Cold Composite Curves and The Pinch

Module 03 : Building blocks of PINCH Technology. Lecture 07 : Hot and Cold Composite Curves and The Pinch Module 03 : Building blocks of PINCH Technology Lecture 07 : Hot and Cold Composite Curves and The Pinch Key words: Pinch, T H diagram, Hot utility, Cold Utility, Composite Curve, T min Pinch analysis

More information

Stochastic optimization based approach for designing cost optimal water networks

Stochastic optimization based approach for designing cost optimal water networks European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Stochastic optimization based approach for designing

More information

Wastewater Minimization in Process Industry Through Pinch Technology:

Wastewater Minimization in Process Industry Through Pinch Technology: WASTEWATER MINIMIZATION IN PROCESS 101 Jr. of Industrial Pollution Control 22 (1)(2006) pp 101-110 Enviromedia Printed in India. All rights reserved Wastewater Minimization in Process Industry Through

More information

Wastewater Minimization With Differentiated Regeneration of Contaminants using Water Source Diagrams (WSD)

Wastewater Minimization With Differentiated Regeneration of Contaminants using Water Source Diagrams (WSD) Wastewater Minimization With Differentiated Regeneration of Contaminants using Water Source Diagrams (WSD) B.E.P.C.Delgado 1, E.M.Queiroz 1, F. L. P. Pessoa 1 1 Chemical Engineering Department, Universidade

More information

Performance Analysis of Cooling Tower

Performance Analysis of Cooling Tower Performance Analysis of Cooling Tower M.V.H.Satish Kumar, Associate Professor, Department of Mechanical Engineering PVP Siddhartha Institute of Technology, Kanuru, Vijayawada 7. Andhra Pradesh, India.

More information

Energy and water in the pulp and paper industry: the two solitudes

Energy and water in the pulp and paper industry: the two solitudes Energy and water in the pulp and paper industry: the two solitudes Enrique Mateos Espejel, Lovina Madtha, Mariya Marinova, Jean Paris Department of Chemical Engineering, Ecole Polytechnique de Montreal

More information

Pressure Drop in Heat Exchanger Networks

Pressure Drop in Heat Exchanger Networks Pressure Drop in Heat Exchanger Networks Topics: Heat Exchangers have (considerable) P Heat Transfer and Pressure Drop are related New Design: A new -way Trade-off Retrofit: Bottleneck Problems Basis:

More information

Cooling Tower Operation

Cooling Tower Operation Cooling Tower Operation Forced draught cooling towers use the evaporation of a liquid (often water) into air to achieve cooling. The tower often consists of a sprinkler system which wets a high-surface-area

More information

pinch 70 C 70 C 4 We want to cool both the hot streams to the pinch temperature. The next step is to find the duty for the two heat exchangers:

pinch 70 C 70 C 4 We want to cool both the hot streams to the pinch temperature. The next step is to find the duty for the two heat exchangers: Ene-47.5130 Process Integration (3 ECTS credits) P Espoo 2016 EXERCISE 2 SOLUTIONS 1 MER heat exchanger network First we draw the stream-grid and calculate the enthalpy rate change, Q, above and below

More information

Automatic Synthesis of Alternative Heat-Integrated Water-Using Networks

Automatic Synthesis of Alternative Heat-Integrated Water-Using Networks A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics Fall Design Project. Production of Dimethyl Ether

Fluid Mechanics, Heat Transfer, and Thermodynamics Fall Design Project. Production of Dimethyl Ether Fluid Mechanics, Heat Transfer, and Thermodynamics Fall 2001 Design Project Production of Dimethyl Ether We are investigating the feasibility of constructing a new, grass-roots, 50,000 tonne/y, (1 tonne

More information

Modeling Techniques for Increased Accuracy

Modeling Techniques for Increased Accuracy SECTION 1 Modeling Techniques for Increased Accuracy Ed Haack Duke Energy 1-1 Modeling Techniques for Increased Accuracy By Ed Haack, Duke Power Company The PEPSE model for the Catawba Units have been

More information

LAHU Heat Recovery System Optimal Operation and Control Schedules

LAHU Heat Recovery System Optimal Operation and Control Schedules Yujie Cui Nexant, Inc., 44 South Broadway, 5th Floor, White Plains, NY 10601 e-mail: ycui@nexant.com Mingsheng Liu Architectural Engineering, University of Nebraska Lincoln, 206C, PKI, 1110 S. 67th St.,

More information

Module 5: Process Integration of Heat and Mass Chapter 10. David R. Shonnard Department of Chemical Engineering Michigan Technological University

Module 5: Process Integration of Heat and Mass Chapter 10. David R. Shonnard Department of Chemical Engineering Michigan Technological University Module 5: Process Integration of Heat and Mass Chapter 10 David R. Shonnard Department of Chemical Engineering Michigan Technological University 1 Module 5: Outline The environmental performance of a process

More information

MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE

MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE Colak L.* and Bahadir T. *Author for correspondence Department of Mechanical Engineering,

More information

Pan American Advanced Studies Institute Program on Process Systems Engineering August 16-25, 2005, Iguazu Falls

Pan American Advanced Studies Institute Program on Process Systems Engineering August 16-25, 2005, Iguazu Falls A T M Mahmoud M. El-Halwagi Department of Chemical Engineering Texas A&M University College Station, Texas 77843-3122 USA E-Mail: El-Halwagi@tamu.edu http://cheweb.tamu.edu/faculty/el-halwagi Pan American

More information

September 22, Roy Hubbard HVAC Systems Technology

September 22, Roy Hubbard HVAC Systems Technology September 22, 2011 Roy Hubbard HVAC Systems Technology Lesson Objectives (YC-3) At the end of this session, you will understand: Understanding Chiller Energy Fundamentals Impact of VSDs (maintenance and

More information

Performance Improvement and Efficiency Optimization of an Industry through Energy Audit

Performance Improvement and Efficiency Optimization of an Industry through Energy Audit Performance Improvement and Efficiency Optimization of an Industry through Energy Audit Barot Vishal Kumar G, Sirish K Patel Department of Mechanical Engineering, Government Engineering College Valsad,

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016 Regn No: Name : (To be written by the candidate) 16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016 PAPER 4:Energy Performance Assessment for Equipment and Utility

More information

Energy Balances and Numerical Methods Design Project. Production of Maleic Anhydride

Energy Balances and Numerical Methods Design Project. Production of Maleic Anhydride Energy Balances and Numerical Methods Design Project Production of Maleic Anhydride Maleic anhydride is a chemical intermediate that is used to produce resins, surface coatings, lubricant additives, and

More information

Plant Utilities and Energy Efficiency CH505

Plant Utilities and Energy Efficiency CH505 Plant Utilities and Energy Efficiency CH505 Teaching Scheme Course code CH505 Course Name Plant Utilities and Energy Efficiency Teaching scheme L T P Credit 3 0 0 3 Process Process is simply a method by

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic Methods

Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic Methods Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic

More information

Chilled Water Loop Optimization. Kazimir Gasljevic Richard Dewey Sandro Sanchez

Chilled Water Loop Optimization. Kazimir Gasljevic Richard Dewey Sandro Sanchez Chilled Water Loop Optimization Kazimir Gasljevic Richard Dewey Sandro Sanchez WHAT WE STARTED WITH: LOOP OUTLINE: WHAT WE STARTED WITH: LOOP OUTLINE: - Justification for the loop WHAT WE STARTED WITH:

More information

Thermal and Exergy Analysis of Counter Flow Induced Draught Cooling Tower

Thermal and Exergy Analysis of Counter Flow Induced Draught Cooling Tower International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Thermal

More information

Composite Table Algorithm - A Powerful Hybrid Pinch Targeting Method for Various Problems in Water Integration

Composite Table Algorithm - A Powerful Hybrid Pinch Targeting Method for Various Problems in Water Integration Composite Table Algorithm - A Powerful Hybrid Pinch Targeting Method for Various Problems in Water Integration R. Parand, H. M. Yao, M. O. Tadé, and V. Pareek Abstract Water management has become a very

More information

Administrative Building Cooling Tower. University of Tennessee Chattanooga

Administrative Building Cooling Tower. University of Tennessee Chattanooga Administrative Building Cooling Tower University of Tennessee Chattanooga Ben Dalton Lab Partner: Murat Ozkaya ENCH 435 Dr. Jim Henry December 2, 2008 Abstract Experimental data was taken at the air inlet

More information

INVESTIGATION ON THE OPTIMUM DESIGN OF HEAT EXCHANGERS IN A HYBRID CLOSED CIRCUIT COOLING TOWER

INVESTIGATION ON THE OPTIMUM DESIGN OF HEAT EXCHANGERS IN A HYBRID CLOSED CIRCUIT COOLING TOWER 52 INVESTIGATION ON THE OPTIMUM DESIGN OF HEAT EXCHANGERS IN A HYBRID CLOSED CIRCUIT COOLING TOWER M. M. A. Sarker Department of Mathematics, BUET, Dhaka-1000, Bangladesh. Corresponding email: masarker@math.buet.ac.bd

More information

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016 Regn No: Name : (To be written by the candidate) 16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016 PAPER 4:Energy Performance Assessment for Equipment and Utility

More information

NOVO PRO PDE / GT PRO / GT MASTER / PEACE

NOVO PRO PDE / GT PRO / GT MASTER / PEACE September 26, 2018 Dear Customer, We are pleased to release Version 28 of our software suite, with the new features and improvements summarised below. Some of the items described here were released as

More information

ERT 318/4 UNIT OPERATIONS SEMESTER 1 (2013/2014)

ERT 318/4 UNIT OPERATIONS SEMESTER 1 (2013/2014) ERT 318/4 UNIT OPERATIONS SEMESTER 1 (2013/2014) WATER COOLING TOWER School of Bioprocess Engineering University Malaysia Perlis EXPERIMENT Water Cooling Tower 1.0 OBJECTIVES 1.1 To determine energy and

More information

A Method for On-Going Commissioning of VRV Package Systems Using a. Simulation Model

A Method for On-Going Commissioning of VRV Package Systems Using a. Simulation Model A Method for On-Going Commissioning of VRV Package Systems Using a Simulation Model Motoi Yamaha Ken Sekiyama Shinya Misaki Associate Professor Graduate Student Chubu University Chubu University Sunloft

More information

Water Network Optimisation with Consideration of Network Complexity

Water Network Optimisation with Consideration of Network Complexity A publication of 13 CHEMICAL ENGINEERING TRANSACTIONS VOL. 45, 2015 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Sharifah Rafidah Wan Alwi, Jun Yow Yong, Xia Liu Copyright 2015, AIDIC Servizi

More information

3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY

3.17. PROCESS INTEGRATION AND PINCH TECHNOLOGY FUNDAMENTALS OF ENERGY BALANCES 111 pressure is expanded over the throttle value and fed to the condenser, to provide cooling to condense the vapour from the column. The vapour from the condenser is compressed

More information

Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries W. Mughees, M. Al-Ahmad, M. Naeem

Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries W. Mughees, M. Al-Ahmad, M. Naeem Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries W. Mughees, M. Al-Ahmad, M. Naeem Abstract This research involves the design and analysis of pinch-based water/wastewater

More information

COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY

COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY S93 Introduction COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY by Wanjin BAI a* and Xiaoxiao XU b a School of Mechanical and Vehicle Engineering,

More information

Module 04 : Targeting. Lecture 11: PROBLEM TABLE ALGORITHM 1 st Part

Module 04 : Targeting. Lecture 11: PROBLEM TABLE ALGORITHM 1 st Part Module 04 : Targeting Lecture : PROBLEM TABLE ALGORITHM st Part Key words: Problem Table Algorithm, shifted temperature, composite curve, PTA, For a given ΔT min, Composite curves can be used to obtain

More information

1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option.

1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option. 1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option. a) Fins are generally attached on gas side. b) Fins are generally

More information

Introduction to Pinch Technology

Introduction to Pinch Technology Downloaded from orbit.dtu.dk on: Oct 07, 2018 Introduction to Pinch Technology Rokni, Masoud Publication date: 2016 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Rokni,

More information

Mechanical System Study

Mechanical System Study Mechanical System Study MECHANICAL SYSTEM STUDY The existing mechanical system of Eight Tower Bridge employs a chilled water loop to cool the building through evaporative cooling. Evaporative cooling is

More information

The Grid Diagram The Heat-Content Diagram Pinch Subnetworks Minimum Number of Heat-Exchange Units...

The Grid Diagram The Heat-Content Diagram Pinch Subnetworks Minimum Number of Heat-Exchange Units... 3.1 INTRODUCTION... 2 3.2 DESIGN TOOLS: REPRESENTING HEAT -EXCHANGER NETWORKS... 4 3.2.1. The Grid Diagram...4 3.2.2. The Heat-Content Diagram...7 3.3 PRELIMINARY HEAT -EXCHANGER NETWORK DESIGN... 10 3.2.1

More information

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra CONTROL VOLUME ANALYSIS USING ENERGY 1 By Ertanto Vetra Outlines Mass Balance Energy Balance Steady State and Transient Analysis Applications 2 Conservation of mass Conservation of mass is one of the most

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics. Design Project. Production of Acetone

Fluid Mechanics, Heat Transfer, and Thermodynamics. Design Project. Production of Acetone Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project Production of Acetone We are investigating the feasibility of constructing a new, grass-roots, 15,000 metric tons/year, acetone plant.

More information

Lecture No.3. The Ideal Reheat Rankine Cycle

Lecture No.3. The Ideal Reheat Rankine Cycle Lecture No.3 The Ideal Reheat Rankine Cycle 3.1 Introduction We noted in the last section that increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases

More information

ChE 455 Fall 2001 Major 1. Ethylene Oxide Production

ChE 455 Fall 2001 Major 1. Ethylene Oxide Production 10/19/01 ChE 455 Fall 2001 Major 1 Ethylene Oxide Production Ethylene oxide is a chemical used to make ethylene glycol (the primary ingredient in antifreeze). It is also used to make poly(ethylene oxide),

More information

Seasonal effect on the performance of counter flow induced draft cooling tower of class800 for 2x250mw

Seasonal effect on the performance of counter flow induced draft cooling tower of class800 for 2x250mw Seasonal effect on the performance of counter flow induced draft cooling tower of class800 for 2x250mw Abhisheak Kumar Verma¹, Sanjay Agrawal 1 1 Department of Mechanical Engineering, B.I.E.T Jhansi, India

More information

Combustion Chamber. Fig Schematic diagram of a simple gas turbine

Combustion Chamber. Fig Schematic diagram of a simple gas turbine Module 06: Integration and placement of equipment Lecture 37: Integration of Gas turbine with process 1 st Part Key word: Gas turbine, Acid dew temperature, after burner, specific work In its non complicated

More information

Mapping of Thermal Energy Integration Retrofit Assessment of Industrial Plants

Mapping of Thermal Energy Integration Retrofit Assessment of Industrial Plants 15 th Conference Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction Mapping of Thermal Energy Integration Retrofit Assessment of Industrial Plants Luciana Savulescu,

More information

Guidance page for practical work: optimization of combined cycles by the pinch method

Guidance page for practical work: optimization of combined cycles by the pinch method Guidance page for practical work: optimization of combined cycles by the pinch method 1) Objectives of the practical work The objective of the practical work is to study the implementation of the pinch

More information

Pinch Analysis of an Industrial Milk Evaporator with Vapour Recompression Technologies

Pinch Analysis of an Industrial Milk Evaporator with Vapour Recompression Technologies Pinch Analysis of an Industrial Milk Evaporator with Vapour Recompression Technologies Energy Research Centre University of Waikato New Zealand Dr Tim Walmsley A.Prof Michael Walmsley Dr James Neale Dr

More information

Improving energy efficiency in an ammonia plant

Improving energy efficiency in an ammonia plant Improving energy efficiency in an ammonia plant D. Velázquez, F. Rossi and J. Rodríguez of DVA Global Energy Services and F.Galindo of Fertiberia present the results of an energy study carried out in an

More information

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions.

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Calculations Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Change as a Result of Temperature Sensible heat is the

More information

Extended Total Sites with Multiple Energy Carriers

Extended Total Sites with Multiple Energy Carriers Extended Total Sites with Multiple Energy Carriers Petar Sabev Varbanov, Jiří Jaromír Klemeš, Zsófia Fodor EC MC Chair (EXC) INEMAGLOW, Centre for Process Integration and Intensification CPI 2 ; Research

More information

Retrofitting Heat Exchanger Networks Based on Simple Pinch Analysis

Retrofitting Heat Exchanger Networks Based on Simple Pinch Analysis Ind. Eng. Chem. Res. 2010, 49, 3967 3971 3967 Retrofitting Heat Exchanger Networks Based on Simple Pinch Analysis Bao-Hong Li Department of Chemical Engineering, Dalian Nationalities UniVersity, Dalian

More information

Rankine (steam) Cycle Cooling Options

Rankine (steam) Cycle Cooling Options Rankine (steam) Cycle Cooling Options Babul Patel Nexant, Inc. San Francisco, CA Energy Solutions October 23, 2009 1 ankine Cycle Cooling Considerations Steam turbine output and Rankine cycle efficiency

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

Application of a cooling tower model for optimizing energy use

Application of a cooling tower model for optimizing energy use Advances in Fluid Mechanics X 305 Application of a cooling tower model for optimizing energy use G. C. O Mary & D. F. Dyer Department of Mechanical Engineering, Auburn University, USA Abstract The overall

More information

Process Integration of Complex Cooling Water Systems

Process Integration of Complex Cooling Water Systems Process Integration of Complex Cooling Water Systems by Khunedi Vincent Gololo A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Engineering (Chemical Engineering)

More information

An Investigation in Performance Enhancement of Induced Draft Counter Flow Wet Cooling Tower

An Investigation in Performance Enhancement of Induced Draft Counter Flow Wet Cooling Tower An Investigation in Performance Enhancement of Induced Draft Counter Flow Wet Cooling Tower Manoj Kumar Chopra 1, Rahul Kumar 2 1Vice Principal, Dean Academic & Head, Dept. Of Mechanical Engineering, R.K.D.F

More information

PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen. PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant

PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen. PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen

More information

Cooling Water System Modelling for Control and Energy Optimisation Purposes

Cooling Water System Modelling for Control and Energy Optimisation Purposes Proceedings of the 19th World Congress The International Federation of Automatic Control Cooling Water System Modelling for Control and Energy Optimisation Purposes Cornelius J. Muller, Ian K. Craig Sasol

More information

Conventional Analysis of Performance of Cooling Tower Used for Industrial Purpose

Conventional Analysis of Performance of Cooling Tower Used for Industrial Purpose International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 9 898, Volume- Issue-, April Conventional Analysis of Performance of Cooling Tower Used for Industrial Purpose Rahul Patel, Ramji

More information

Utilization of THERMOPTIM Optimization Method

Utilization of THERMOPTIM Optimization Method Utilization of THERMOPTIM Optimization Method Thermoptim optimization method is dedicated to complex systems where a large number of fluids exchange heat, the overall behaviour of the system being governed

More information

Cooling coil optimisation in hot and humid climates for IAQ and energy considerations

Cooling coil optimisation in hot and humid climates for IAQ and energy considerations Cooling coil optimisation in hot and humid climates for IAQ and energy considerations Chandra Sekhar 1, Uma Maheswaran 2 1 Department of Building, National University of Singapore 2 Jurong Consultants

More information

WATER AND ENERGY INTEGRATION: A COMPREHENSIVE LITERATURE REVIEW OF NON-ISOTHERMAL WATER NETWORK SYNTHESIS

WATER AND ENERGY INTEGRATION: A COMPREHENSIVE LITERATURE REVIEW OF NON-ISOTHERMAL WATER NETWORK SYNTHESIS WATER AND ENERGY INTEGRATION: A COMPREHENSIVE LITERATURE REVIEW OF NON-ISOTHERMAL WATER NETWORK SYNTHESIS Elvis Ahmetović a,b*, Nidret Ibrić a, Zdravko Kravanja b, Ignacio E. Grossmann c a University of

More information

AMENDMENT NO. 4 AUGUST 2010 TO IS 1391 (PART 1) : 1992 ROOM AIR CONDITIONERS SPECIFICATION

AMENDMENT NO. 4 AUGUST 2010 TO IS 1391 (PART 1) : 1992 ROOM AIR CONDITIONERS SPECIFICATION AMENDMENT NO. 4 AUGUST 2010 TO IS 1391 (PART 1) : 1992 ROOM AIR CONDITIONERS SPECIFICATION PART 1 UNITARY AIR CONDITIONERS ( Second Revision ) (Page 9, clause 11.1.1) Substitute the following for the existing:

More information

Performance Investigation of Window Air Conditioner

Performance Investigation of Window Air Conditioner IOSR Journal of Civil and Mechanical Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 32-37 www.iosrjournals.org Performance Investigation of Window Air Conditioner Prof. S.M.Shaikh 1, Prof. A.M.Patil 2, Prof.

More information

Energy Optimisation Of Upstream Separation And Stabilisation Plant Using Pinch Technology

Energy Optimisation Of Upstream Separation And Stabilisation Plant Using Pinch Technology Energy Optimisation Of Upstream Separation And Stabilisation Plant Using Pinch Technology Ritesh Sojitra Srashti Dwivedi ITM University, Gwalior, India Abstract: Energy optimisation and process integration

More information

Condenser Water Heat Recovery"

Condenser Water Heat Recovery PLEASE MUTE CELL PHONES Condenser Water Heat Recovery" Julian de Bullet ASHRAE Distinguished Lecturer Director of Industry Relations McQuay International 703-395-5054 1 What Is Sustainability? sustainable

More information

Free Cooling Technology

Free Cooling Technology Free Technology Utilise low ambient temperatures to save energy and reduce your cooling costs by up to 70% Free for industrial process and air conditioning How Free can save you money Free is a fast and

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project. Production of Acrylic Acid

Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project. Production of Acrylic Acid Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project Production of Acrylic Acid We are investigating the feasibility of constructing a new, grass-roots, 50,000 metric tons/year, acrylic acid

More information

7 th NATIONAL CERTIFICATION EXAMINATION Nov FOR ENERGY MANAGERS & ENERGY AUDITORS

7 th NATIONAL CERTIFICATION EXAMINATION Nov FOR ENERGY MANAGERS & ENERGY AUDITORS Regn No: Name: (To be written by the candidates) 7 th NATIONAL CERTIFICATION EXAMINATION Nov. 2008 FOR ENERGY MANAGERS & ENERGY AUDITORS PAPER 3: Energy Efficiency in Electrical Utilities Date: 23.11.2008

More information

Ohio Energy. Workshop G. Best Practices in Energy Efficiency to Help You Reduce Your Energy Spend. Tuesday, February 21, :45 a.m.

Ohio Energy. Workshop G. Best Practices in Energy Efficiency to Help You Reduce Your Energy Spend. Tuesday, February 21, :45 a.m. Ohio Energy Workshop G Best Practices in Energy Efficiency to Help You Reduce Your Energy Spend Tuesday, February 21, 2017 10:45 a.m. to Noon Principles of Energy Efficiency Ohio Energy Management Conference

More information

Sensitivity Analysis of Industrial Heat Exchanger Network Design

Sensitivity Analysis of Industrial Heat Exchanger Network Design 1489 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 56, 2017 Guest Editors: JiříJaromírKlemeš, Peng Yen Liew, Wai Shin Ho, JengShiun Lim Copyright 2017, AIDIC ServiziS.r.l., ISBN978-88-95608-47-1;

More information

Demonstration of IAEA program for water management (WAMP) K. Kavvadias. Ph.D Chemical Engineer

Demonstration of IAEA program for water management (WAMP) K. Kavvadias. Ph.D Chemical Engineer Demonstration of IAEA program for water management (WAMP) K. Kavvadias Ph.D Chemical Engineer IAEA Training Workshop September 2017 Introduction Motivation for development Program features and architecture

More information

Chapter 3.7: Cooling Towers

Chapter 3.7: Cooling Towers Part-I: Objective type questions and answers Chapter 3.7: Cooling Towers 1. The type of cooling towers with maximum heat transfer between air to water is. a) Natural draft b) Mechanical draft c) Both a

More information

OPTIMISATION OF EXISTING HEAT-INTEGRATED REFINERY DISTILLATION SYSTEMS

OPTIMISATION OF EXISTING HEAT-INTEGRATED REFINERY DISTILLATION SYSTEMS OPTIMISATION OF EXISTING HEAT-INTEGRATED REFINERY DISTILLATION SYSTEMS Mamdouh Gadalla, Megan Jobson and Robin Smith Department of Process Integration, UMIST, Manchester, UK ABSTRACT Existing refinery

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source

Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source *Corresponding author. mohammed.khennich@ usherbrooke.ca Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source... Mohammed Khennich *, Nicolas Galanis

More information

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

Available online at   ScienceDirect. Procedia Engineering 121 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 121 (2015 ) 881 890 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) and the 3rd International

More information

Lecture No.1. Vapour Power Cycles

Lecture No.1. Vapour Power Cycles Lecture No.1 1.1 INTRODUCTION Thermodynamic cycles can be primarily classified based on their utility such as for power generation, refrigeration etc. Based on this thermodynamic cycles can be categorized

More information

INDUSTRIAL COOLING TOWER DESIGN AND OPERATION IN THE MODERATE-CONTINENTAL CLIMATE CONDITIONS

INDUSTRIAL COOLING TOWER DESIGN AND OPERATION IN THE MODERATE-CONTINENTAL CLIMATE CONDITIONS Laković, M. S., et al.: Industrial Cooling Tower Design and Operations in the S203 INDUSTRIAL COOLING TOWER DESIGN AND OPERATION IN THE MODERATE-CONTINENTAL CLIMATE CONDITIONS by Mirjana S. LAKOVI] a*,

More information

WINERY ENERGY SAVER TOOLKIT SUPPLIER CHECKLIST COMPRESSED AIR

WINERY ENERGY SAVER TOOLKIT SUPPLIER CHECKLIST COMPRESSED AIR Supplier Checklist WINERY ENERGY SAVER TOOLKIT SUPPLIER CHECKLIST COMPRESSED AIR The following checklist provides guidance on which information to collect from within the winery and from the equipment

More information

PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen. PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant

PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen. PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen PULP AND PAPER INDUSTRY Energy Recovery and Effluent Cooling at a TMP Plant PINCH ANALYSIS: For the Efficient Use of Energy, Water & Hydrogen

More information

NATIONAL CERTIFICATION EXAMINATION 2004 FOR ENERGY MANAGERS

NATIONAL CERTIFICATION EXAMINATION 2004 FOR ENERGY MANAGERS NATIONAL CERTIFICATION EXAMINATION 004 FOR ENERGY MANAGERS PAPER EM3: Energy Efficiency in Electrical Utilities Date: 3.05.004 Timings: 0930-30 HRS Duration: 3 HRS Max. Marks: 50 General instructions:

More information

Energy Balances and Numerical Methods Design Project. Production of Methyl Tertiary-Butyl Ether

Energy Balances and Numerical Methods Design Project. Production of Methyl Tertiary-Butyl Ether Energy Balances and Numerical Methods Design Project Production of Methyl Tertiary-Butyl Ether Methyl Tertiary-Butyl Ether () is a gasoline additive used to increase octane number that is produced from

More information

Ching-Huei Huang, Chuei-Tin Chang,* and Han-Chern Ling

Ching-Huei Huang, Chuei-Tin Chang,* and Han-Chern Ling 2666 Ind. Eng. Chem. Res. 1999, 38, 2666-2679 PROCESS DESIGN AND CONTROL A Mathematical Programming Model for Water Usage and Treatment Network Design Ching-Huei Huang, Chuei-Tin Chang,* and Han-Chern

More information

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis Proceedings of the 4 th BSME-ASME International Conference on Thermal Engineering 7-9 December, 008, Dhaka, Bangladesh COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan,

More information

Regn No: Name : (To be written by the candidate)

Regn No: Name : (To be written by the candidate) Regn No: Name : (To be written by the candidate) 17 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2016 PAPER 4:Energy Performance Assessment for Equipment and Utility

More information

Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases.

Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. P77 Overall nuclear power plant thermal efficiency will decrease if... A. the temperature of the steam at the turbine exhaust increases. B. additional moisture is removed from the steam entering the turbine.

More information

Wastewater Reuse in Combined Cycle Power Plants Behrang (Ben) Pakzadeh, PhD, PE

Wastewater Reuse in Combined Cycle Power Plants Behrang (Ben) Pakzadeh, PhD, PE Wastewater Reuse in Combined Cycle Power Plants Behrang (Ben) Pakzadeh, PhD, PE 2017 OUTLINE Introduction Water Use in CCGT Power Plants Reducing Water Consumption Power Plant Example 3-1x1 CCGT units

More information

Analysis, Synthesis and Optimization of Complex Cooling Water Systems

Analysis, Synthesis and Optimization of Complex Cooling Water Systems Analysis, Synthesis and Optimization of Complex Cooling Water Systems by Khunedi Vincent Gololo A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical

More information

329 - The AC-Sun, a new concept for air conditioning

329 - The AC-Sun, a new concept for air conditioning 329 - The AC-Sun, a new concept for air conditioning Søren Minds 1* and Klaus Ellehauge 2 1 AC-Sun, Rudolfgaardsvej 19, DK-8260 Viby J, Denmark 2 Ellehauge & Kildemoes, Vestergade 48 H, 2s.tv., DK-8000

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

Targeting Minimum Heat Transfer Area for Heat Recovery on Total Sites

Targeting Minimum Heat Transfer Area for Heat Recovery on Total Sites A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa.

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. Chapters 5, 6, and 7 Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. 5-1. Steam enters a steady-flow device at 16 MPa and 560 C with

More information

A New Optimisation Based Retrofit Approach for Revamping an Egyptian Crude Oil Distillation Unit

A New Optimisation Based Retrofit Approach for Revamping an Egyptian Crude Oil Distillation Unit Available online at www.sciencedirect.com ScienceDirect Energy Procedia 36 (2013 ) 454 464 TerraGreen 13 International Conference 2013 - Advancements in Renewable Energy and Clean Environment A New Optimisation

More information

Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal

Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal Home Search Collections Journals About Contact us My IOPscience Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal Field Unit III) This content has been downloaded from

More information