Potential environmental changes in the western Arctic and the western North Pacific: their impacts on lower trophic level organisms

Size: px
Start display at page:

Download "Potential environmental changes in the western Arctic and the western North Pacific: their impacts on lower trophic level organisms"

Transcription

1 North Pacific Marine Science Organization 2016 Annual Meeting -25 years of PICES: Celebrating the past, Imagining the Future- Potential environmental changes in the western Arctic and the western North Pacific: their impacts on lower trophic level organisms Naomi Harada, Katsunori Kimoto, Masahide Wakita, Tetsuichi Fujiki, Keisuke Shimizu, Jonaotaro Onodera Japan Agency for Marine Science and Technology

2 Today s topics Monitoring sites, sub-arctic North Pacific and western Arctic Ocean New technique to quantify the response of marine calcifier to ocean acidification Time series data of shell density, pteropods from Arctic Ocean and planktic foraminifera from North Pacific Comparison of genetic diversity of pteropods between Atlantic and Pacific Outlook for future

3 Aragonite saturation in 2100 (Ω aragonite) Sub-Arctic and Polar Seas: Low CO3 2- brings low Ω Ω = [Ca 2+ ] [CO3 2- ] / K sp Saturation index (Ω) K sp : solubility product of calcite/aragonite Ω>1: precipitation(shell preserved) Ω<1: undersaturation (shell dissolved)

4 Sentinel observation: sub-arctic North Pacific WMO GREENHOUSE GAS BULLETIN The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2013 St. K2: 47N, 160E Surface ph reduction: /yr Deployment of sediment trap: 2008 ~ (ongoing) Two traps: 1000m, 4000m ISSN No November 2014 CO 2 mole fraction, ppm ph ph Trend expected from fossil-fuel burning Land and ocean sinks MUNIDA 8.05 KNOT/K DYFAMED 7.95 ph CARIACO Station P HOT BATS ESTOC 137 E section Measurements 1990 of atmospheric carbon 2005 dioxide (CO ) and oxygen (O 2 ) concentrations continue to provide Year strong insights into human-induced deviations in the global carbon cycle. The rise in atmospheric CO 2 has been well documented since 1958, when high-precision Land sink MUNIDA KNOT/K DYFAMED Institution of Oceanography, is shown in the righthand figure. Oxygen abundance is reported as Year relative changes in the oxygen/nitrogen (O 2 /N 2 ) ratio. A decrease of 100 per meg [1] corresponds to the loss of Figure 6. Time series of de-seasonalized surface seawater 100 ph O 2 and molecules respective for trendlines every million (left) O and 2 molecules of de-seasonalized in the surface pco measurements began at Mauna Loa, under the direction atmosphere. Atmospheric O 2 has decreased very slightly, of C.D. Keeling, 2 (µatm) and respective trendlines (right). Featured time series include the Bermuda Atlantic Time-series Study (BATS; blue) the as European shown in Station the left-hand for Time figure. Series The in the as Ocean it is consumed near the Canary during Islands combustion (ESTOC; of purple), fossil fuels. the Hawaii The Ocean practices Time-series applied (HOT; at grey); that time CARIACO to ensure (red); high-quality Station P (black); observed MUNIDA decrease (green); in the O 2 Kyodo is less North than Pacific predicted Time by series the (KNOT; measurements orange); the station were known adopted as the for Dynamics observations of Atmospheric by amount Fluxes of in fossil the MEDiterranean fuels combusted, Sea (DYFAMED; because, as yellow); plants the Japan Global Meteorological Atmosphere Agency Watch 137 E participants. section The repeat rise hydrographic of CO 2 take line up at CO 10 N, 2 through 137 E photosynthesis, (137 E section; pink). O 2 is returned The locations to of the concentration featured time has series been are only shown about in Figure half of 2. what Temporal would sampling the atmosphere. resolution varies The O 2 from offset monthly therefore to annually. quantifies the be expected if all the excess CO 2 from the burning of magnitude of the land CO 2 sink. The ocean CO 2 sink fossil fuels stayed in the air. The other half has been can then also be calculated based on the requirement absorbed by the land biosphere and the oceans, but that the combined sinks sum to the total established Table 2. Linear trends and standard errors for surface ph a and pco the split between land and oceans is not easily resolved from the CO 2 at the nine featured ocean time series 2 data. The O 2 data also resolve fluctuations from Time COseries 2 data alone. This is where ph O 2 (yr measurements ) pco seasonally and on other timescales, which provide 2 (µatm yr 1 ) Reference prove useful. additional information about the large-scale functioning BATS b ± ±0.08 of the Earth s biosphere that Bates complements et al., 2014 CO 2 data. One of the longest O 2 time series, from flasks collected (Figures courtesy of R. Keeling, Scripps Institution of Bates et al., 2014 at Cape ESTOC Grim, Tasmania and analysed ± at the Scripps 1.78±0.15 Oceanography, USA) González-Dávila et al., 2010 HOT b ± ±0.15 Executive summary with CO 2 at 396.0±0.1 ppm [2], CH Bates 4 et 1824±2 al., 2014 ppb [3] and N 2 O CARIACO b ± ±0.37 at 325.9±0.1 ppb. These values Astor constitute, et al., 2013respectively, The latest analysis of observations from the WMO Global 142%, 253% and 121% of pre-industrial (before 1750) levels. Atmosphere DYFAMED Watch b (GAW) Programme ± shows that the globally 2.56±0.85 The atmospheric increase Touratier of CO and 2 from Goyet, to 2013 was averaged mole fractions of carbon dioxide (CO 2 ), methane 2.9 ppm, which is the largest year Bates to et year al., 2014 change from 1984 (CH 4 ) and MUNIDA nitrous b oxide (N 2 O) reached ± new highs in 2013, 1.55±0.24 to For N 2 O the increase from 2012 to 2013 is smaller Currie et al., 2011 O 2 abundance, per meg ESTOC BATS 137 E section CARIACO HOT Station P Trend expected from fossil-fuel burning Bates et al., 2014 Dore et al., 2009 KNOT/K2 b ± ±0.67 Wakita et al., 2013 Station P c c c Wong et al., ºE section at 10ºN d ± ±0.06 Midorikawa et al., 2010 pco 2 (µatm) pco 2 (µatm) pco 2 (µatm) a b ph in total hydrogen ion concentration scale at in situ temperatures. Data of ph and pco were calculated from measurements of total dissolved inorganic carbon, total alkalinity, temperature and salinity

5 Ω in the mixed layer at K2 Aragonite saturation horizon: 120m Calcite saturation horizon: 150m Less than 1 after ~2100? Wakita et al., in prep Largest annual reduction rate at K2

6 Sentinel observation:arctic Oceans St. NAP: 75N, 162W Deployment: 2010 ~ ongoing 2 Sed.Traps: 200m, 1300m By Arctic Monitoring & Assessment Programme Area ph Ω Nordic Seas Surface Bottom Bering Sea Surface Bottom Siberian Shelves Surface Bottom Chukchi & Beaufort shelves Surface Bottom Canadian Archipelago Surface Bottom Central Arctic Surface Bottom ~

7 Decreasing Ωar by sea ice melt (Sep. 2012) 1<Ωar Sea ice melt Ωar (5m) Salinity (5m) Trap site Undersaturated subsurface water for aragonite dissolved living pteropod shells?

8 Influence of acidification to marine ecosystem

9 Time-series mooring system with multi sensors Measurement buoy Measurement buoy ARGO Mini-FRRF セジメントトラップ Sediment trap Sensors CTD DO sensor Illuminance sensor Fast repetition rate fluorometry (FRRF) Acoustic doppler current profiler (ADCP) Remote access sampler (RAS) ph/pco 2 sensor Automatic lifting winch Mooring system with automatic lifting device Sediment trap

10 Motivation of development of new technique Ø Reducing of carbonate ions by ocean acidification will accelerate shell dissolution or to prevent the production of carbonate shelled organisms. Ø Marine plankton is the largest carbonate producer in the world. Especially, the global planktic foraminiferal flux to the ocean floor of GTC y 1 accounts for 32 80% of the total deep marine calcite budget (Schiebel, 2002). Ø Serious damage of marine plankton due to OA potentially give a negative impact on food web. Ø There is no well quantitative and comparable estimation method to evaluate impacts (damages) of the ocean acidification on marine plankton. So, we have developed new technique to quantify carbonate density. Coccolithophore 5 µm Planktic foraminifera 100 µm Pteropods 1 mm

11 Micro focus X-ray Computing Tomography method Micro X-CT (MXCT) Scan Fluoroscopic image Reconstruct a a. Specimen b c b. Standard material (Calcite) c. Position maker

12 Calcite CT Number as a shell density index relative value of X-ray attenuation coefficient in each voxels Calcite CT Number = µsample - µair µcalcite - µair x 1000 µsample: X-ray attenuation coefficient of samples µair: X-ray attenuation coefficient of the surrounding air = µcalcite: X-ray attenuation coefficient of calcite (standard material:calcite or Aragonite ) = 1000 Mean CT number vs Shell density Air (0) 600 (lower density) (reference) (higher density)

13 MXCT: 3 Dimension precise morphometry Thecosomata (Pteropod): Limacina helicina (spatial resolution:0.8 µm) High density 1200 The biggest advantages of MXCT are: Cross section image of carbonate shell Quantitative 600 Low density Nondestructive

14 Summary Micro-Focus X-ray Computing Tomography (MXCT) technique can be applied successfully to evaluate the impact of OA for marine calcifiers quantitatively. Carbonate density of marine calcifier changes seasonally and 35-40% reduction were observed in specific seasons in sub-arctic NP (winter) and Arctic Ocean (summer & beginning of sea-ice season). Further sentinel time series observation (e.g. mooring and float) is important to understand responses of marine organisms on rapid acidifying in sub-arctic and Arctic Ocean. MXCT has a potential to be common standard method to evaluate the shelled plankton responses on OA.-----more higher trophic level plankton (e.g., Copepoda---chitinous substance)

15 Outlook for future Application of carbonate density as an Essential Ocean Valuables of marine calcifier for ocean acidification To make carbonate density popular as EOV for OA, JAMSTEC can provide the technique how to analyze carbonate density by MXCT and is also preparing to receive measurement request from the world. Further connecting/networking time-series sites with basin (e.g., GACS) and global scales (e.g., Argo) observing programs to understand complicated responses of marine organisms to OA with other environmental stressors.

16 Please contact us if you are interested in MXCT (N. Harada) (K. Kimoto)

( ) O C O + HCO H+

( ) O C O + HCO H+ C A, A -, ) AC ) (, A AC C ( ( ( ) O C O + HCO 3 - + H + 3 + /. - 1 0. : 3 2 / / : 2 : 3-12 : 3 Steffen et al., Science 347, 2015 doi:10.1126/science.1259855 Low risk Increasing risk High risk ( 02 0 1

More information

WHY CARBON? The Carbon Cycle 1/17/2011. All living organisms utilize the same molecular building blocks. Carbon is the currency of life

WHY CARBON? The Carbon Cycle 1/17/2011. All living organisms utilize the same molecular building blocks. Carbon is the currency of life The Carbon Cycle WHY CARBON? Inventories: black text Fluxes: purple arrows Carbon dioxide (+4) AN = 6 (6P/6N) AW = 12.011 Oxidation: -4 to +4 Isotopes: 11 C, 12 C, 1 C, 14 C Methane (-4) Carbon is the

More information

Ocean Acidification. Jan Newton University of Washington. Station Mauna Loa

Ocean Acidification. Jan Newton University of Washington. Station Mauna Loa Ocean Acidification Jan Newton University of Washington Station Mauna Loa Ocean Acidification: A story revealed to us by a volcano and the oyster. Station Mauna Loa Increasing CO 2 in the atmosphere Station

More information

CO 2 is the raw material used to build biomass (reduced to form organic matter)

CO 2 is the raw material used to build biomass (reduced to form organic matter) 1. The oceanic carbon system (a) Significance (b) CO 2 speciation (c) Total CO 2 (d) Atmosphere-ocean CO 2 exchange (e) Global status of CO 2 2. Human perturbations of N and P cycling 3. Other elements:

More information

Southern Ocean carbon from profiling floats equipped with ph

Southern Ocean carbon from profiling floats equipped with ph Southern Ocean carbon from profiling floats equipped with ph Nancy Williams, Laurie Juranek, Richard Feely Ken Johnson, Jorge Sarmiento, Lynne Talley, Joellen Russell, Steve Riser, Rik Wanninkhof, Alison

More information

Catlin Arctic Survey 2010 Ocean Acidification

Catlin Arctic Survey 2010 Ocean Acidification Catlin Arctic Survey 2010 Ocean Acidification What are Catlin Arctic Surveys Introduction to the issue: Ocean Acidification An Ice Base and an Exploration Team Sampling and Experiments Observational (Biochemistry,

More information

Ocean Acidification in the Southern California Bight

Ocean Acidification in the Southern California Bight Ocean Acidification in the Southern California Bight Karen McLaughlin SCCWRP Symposium March 1, 2017 What is Ocean Acidification? Ocean Acidification is the other CO 2 problem : Ocean ph decreases when

More information

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The Carbon cycle Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The oceans store much more carbon than the atmosphere and the terrestrial biosphere The oceans essentially

More information

Outline. Solubility of calcium carbonate Solution of calcium carbonate Effects of solution and precipitation

Outline. Solubility of calcium carbonate Solution of calcium carbonate Effects of solution and precipitation 7 Carbon dioxide Outline 1 Reservoirs of carbon dioxide 2 Relationships in solution 3 Calcium carbonate Solubility of calcium carbonate Solution of calcium carbonate Effects of solution and precipitation

More information

Decadal and Longer-term changes of the CO 2 in the ocean

Decadal and Longer-term changes of the CO 2 in the ocean The 2 nd GEOSS AP Symposium 15 Apr 2008, Tokyo Decadal and Longer-term changes of the CO 2 in the ocean Masao Ishii Meteorological Research Institute, JMA Background Strong air-sea interaction Distribution

More information

Announcements. What are the effects of anthropogenic CO 2 on the ocean? 12/7/2017. UN Commitment to plastics in the ocean

Announcements. What are the effects of anthropogenic CO 2 on the ocean? 12/7/2017. UN Commitment to plastics in the ocean Announcements UN Commitment to plastics in the ocean http://www.bbc.com/news/scienceenvironment-42239895 Today: Quiz on paper by Lee et al. 2009 Climate change and OA Review for final exam (Tuesday 8 AM)

More information

People, Oceans and Climate Change

People, Oceans and Climate Change People, Oceans and Climate Change A deeper look at the carbon dioxide cycle, greenhouse gases, and oceanic processes over the last 150 years OCN 623 Chemical Oceanography 18 April 2013 Reading: Libes,

More information

Answer THREE questions, at least ONE question from EACH section.

Answer THREE questions, at least ONE question from EACH section. UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series Undergraduate Examination 2012-2013 CHEMICAL OCEANOGRAPHY ENV-2A45 Time allowed: 2 hours. Answer THREE questions, at least ONE question

More information

Ocean Acidification in the Arctic: A summary from current observations. Helen Findlay, Plymouth Marine Laboratory

Ocean Acidification in the Arctic: A summary from current observations. Helen Findlay, Plymouth Marine Laboratory Ocean Acidification in the Arctic: A summary from current observations. Helen Findlay, Plymouth Marine Laboratory Ocean acidification is normally discussed in terms of global average responses the global

More information

Biomass and Biofuels

Biomass and Biofuels Biomass and Biofuels PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 11, 2014 What is bioenergy? Photosynthesis: the primary energy

More information

Taro Takahashi Ewing Lamont Research Professor Lamont-Doherty Earth Observatory, Columbia University

Taro Takahashi Ewing Lamont Research Professor Lamont-Doherty Earth Observatory, Columbia University EC2 PRESENTATION, NOVEMBER 16, 2013 Ocean Acidification: Recent Progress in Environmental Sensitivity Studies Taro Takahashi Ewing Lamont Research Professor Lamont-Doherty Earth Observatory, Columbia University

More information

WMO GREENHOUSE GAS BULLETIN

WMO GREENHOUSE GAS BULLETIN WMO GREENHOUSE GAS BULLETIN The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 213 No. 1 6 November 214 ISS78-796 42 1 mole fraction, ppm 38 36 34 32 Trend expected from

More information

A biological contribution to partial pressure of CO 2 in the western Arctic Ocean and Bering Sea

A biological contribution to partial pressure of CO 2 in the western Arctic Ocean and Bering Sea A biological contribution to partial pressure of CO 2 in the western Arctic Ocean and Bering Sea *Futsuki, R. 1, T. Hirawake 2, A. Fujiwara 2,3, T. Kikuchi 4, S. Nishino 4, D. Sasano 5,6, M. Ishii 5,6,

More information

1) The Changing Carbon Cycle

1) The Changing Carbon Cycle 1) The Changing Carbon Cycle WG1 Chapter 6, figure 1 The numbers represent carbon reservoirs in Petagrams of Carbon (PgC; 10 15 gc) and the annual exchanges in PgC/year. The black numbers and arrows show

More information

9. Ocean Carbonate Chemistry II: Ocean Distributions

9. Ocean Carbonate Chemistry II: Ocean Distributions 9. Ocean Carbonate Chemistry II: Ocean Distributions What is the distribution of CO 2 added to the ocean? - Ocean distributions - Controls on distributions 1 Takahashi (Surface Ocean) pco 2 Climatology

More information

Global Carbon Cycle - II

Global Carbon Cycle - II Global Carbon Cycle - II OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 11 1. Current status of global CO 2 2. CO 2 speciation in water 3. Atmosphere ocean interactions 4. Ocean acidification

More information

Atmosphere. The layer of gas surrounding the Earth

Atmosphere. The layer of gas surrounding the Earth Earth and Space Notes: Atmosphere Atmosphere The layer of gas surrounding the Earth Breakdown: Nitrogen (~79%) Oxygen (~21%) Argon, CO2, methane, ozone, water, nitrous oxides, sulphur dioxide, etc Gases

More information

Acidification impacts on larval shellfish

Acidification impacts on larval shellfish 4 TH ANNUAL CAPE COASTAL CONFERENCE Acidification impacts on larval shellfish Daniel C. McCorkle Senior Scientist Department of Geology and Geophysics Woods Hole Oceanographic Institution 4 TH ANNUAL CAPE

More information

Lecture Ocean Acidification

Lecture Ocean Acidification Lecture Ocean Acidification What is Ocean Acidification? Since the beginning of the Industrial Revolution, the ph of surface ocean waters has fallen by 0.1 ph units. Moving the ocean's ph from 8.179 to

More information

Ocean acidification and climate change

Ocean acidification and climate change Ocean acidification and climate change Dr Carol Turley OBE, Plymouth Marine Laboratory Castle Debates, London, February 2018 The ocean absorbs over a quarter of man-made CO 2 emissions 91% 27% Fossil fuels

More information

Ocean Acidification. Presentation to the SCCWRP Commission March 8, 2013

Ocean Acidification. Presentation to the SCCWRP Commission March 8, 2013 Ocean Acidification Presentation to the SCCWRP Commission March 8, 2013 Background At the last Commission meeting, I summarized recommendations from Washington s Blue Ribbon Panel on Ocean Acidification

More information

Atmosphere, the Water Cycle and Climate Change

Atmosphere, the Water Cycle and Climate Change Atmosphere, the Water Cycle and Climate Change OCN 623 Chemical Oceanography 16 April 2013 (Based on previous lectures by Barry Huebert) 2013 F.J. Sansone 1. The water cycle Outline 2. Climate and climate-change

More information

Essentials of Oceanography Eleventh Edition

Essentials of Oceanography Eleventh Edition Chapter Chapter 1 16 Clickers Lecture Essentials of Oceanography Eleventh Edition The Oceans and Climate Change Alan P. Trujillo Harold V. Thurman Chapter Overview Humans are adding greenhouse gases to

More information

CHAPTER 16 Oceans & Climate Change Chapter Overview Earth s Climate System Earth s Climate System Earth s Climate System Earth s Climate System

CHAPTER 16 Oceans & Climate Change Chapter Overview Earth s Climate System Earth s Climate System Earth s Climate System Earth s Climate System 1 CHAPTER 16 2 3 4 5 6 7 8 9 10 11 12 Oceans & Climate Change Chapter Overview Humans are adding greenhouse gases to Earth s atmosphere. Climate change will cause many severe problems in the ocean environment.

More information

Requirements-driven global ocean observing system for Ocean Acidification

Requirements-driven global ocean observing system for Ocean Acidification Requirements-driven global ocean observing system for Ocean Acidification Maciej Telszewski Masao Ishii, Kim Currie, Artur Palacz and Albert Fischer Biogeochemistry Panel Institute of Oceanology of Polish

More information

Feedback loops modify atmospheric processes

Feedback loops modify atmospheric processes Chapter Overview CHAPTER 16 Oceans & Climate Change Humans are adding greenhouse gases to Earth s atmosphere. Climate change will cause many severe problems in the ocean environment. It is necessary to

More information

Lecture 28: Radiative Forcing of Climate Change

Lecture 28: Radiative Forcing of Climate Change Lecture 28: Radiative Forcing of Climate Change 1. Radiative Forcing In an unperturbed state, the net incoming solar radiation at the top of the atmosphere (Sn) must be balanced by the outgoing longwave

More information

Climate and Carbon Cycle Coupling Carbon Cycle - Modern

Climate and Carbon Cycle Coupling Carbon Cycle - Modern Early Cenozoic Carbon Cycle and Climate Coupling: Evidence from δ 13 C & δ 18 O Zachos et al. (2008) Climate and Carbon Cycle Coupling Carbon Cycle - Modern Fluxes and Feedbacks Carbon Isotope Tracers

More information

Ocean Acidification: Causes and Implications of Changing Ocean Chemistry

Ocean Acidification: Causes and Implications of Changing Ocean Chemistry Ocean Acidification: Causes and Implications of Changing Ocean Chemistry Karen McLaughlin Southern California Coastal Water Research Project January 23, 2014 Today s Talk (In Two Acts ) What is ocean acidification

More information

NSTA Web Seminar: The Heat is On! Climate Change and Coral Reef Ecosystems

NSTA Web Seminar: The Heat is On! Climate Change and Coral Reef Ecosystems LIVE INTERACTIVE LEARNING @ YOUR DESKTOP NSTA Web Seminar: The Heat is On! Climate Change and Coral Reef Ecosystems Ocean Acidification Presented by Dr. Dwight Gledhill, NOAA Thursday, April 2, 2009 Ocean

More information

Ocean Production and CO 2 uptake

Ocean Production and CO 2 uptake Ocean Production and CO 2 uptake Fig. 6.6 Recall: Current ocean is gaining Carbon.. OCEAN Reservoir size: 38000 Flux in: 90 Flux out: 88+0.2=88.2 90-88.2 = 1.8 Pg/yr OCEAN is gaining 1.8 Pg/yr Sum of the

More information

Global Warming Science Solar Radiation

Global Warming Science Solar Radiation SUN Ozone and Oxygen absorb 190-290 nm. Latent heat from the surface (evaporation/ condensation) Global Warming Science Solar Radiation Turbulent heat from the surface (convection) Some infrared radiation

More information

2.2 - Nutrient Cycles. Carbon Cycle

2.2 - Nutrient Cycles. Carbon Cycle 2.2 - Nutrient Cycles Carbon Cycle Nutrients What are nutrients? Chemicals (C,O, N, P, H...) needed for life There is a constant amount of these nutrients on Earth and they are stored in different places.

More information

Inorganic Carbon Distributions and Air-Sea CO 2 Exchange in the Indian Ocean

Inorganic Carbon Distributions and Air-Sea CO 2 Exchange in the Indian Ocean Inorganic Carbon Distributions and Air-Sea CO 2 Exchange in the Indian Ocean C.L. Sabine, R.A. Feely, N. Bates, N. Metzl, R.M. Key, F.J. Millero, C. LoMonaco and C. Goyet Take home message: Each of the

More information

Chapter Overview. Earth s Climate System. Earth s Climate System. Earth s Climate System. CHAPTER 16 The Oceans and Climate Change

Chapter Overview. Earth s Climate System. Earth s Climate System. Earth s Climate System. CHAPTER 16 The Oceans and Climate Change Chapter Overview CHAPTER 16 The Oceans and Climate Humans are adding greenhouse gases to Earth s atmosphere. Climate change will cause many severe problems in the ocean environment. It is necessary to

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle Laurent Bopp LSCE, Paris 1 From NASA Website Introduction CO2 is an important greenhouse gas Contribution to Natural Greenhouse Effect Contribution to Anthropogenic Effect 2 Altitude

More information

Calcium carbonate saturation state and ocean acidification in Tokyo Bay, Japan

Calcium carbonate saturation state and ocean acidification in Tokyo Bay, Japan Calcium carbonate saturation state and ocean acidification in Tokyo Bay, Japan Michiyo Yamamoto-Kawai (TUMSAT) Natsuko Kawamura, Tsuneo Ono, Naohiro Kosugi, Atsushi Kubo, Masao Ishii, and Jota Kanda Tokyo

More information

Lecture 27: Radiative Forcing of Climate Change

Lecture 27: Radiative Forcing of Climate Change Lecture 27: Radiative Forcing of Climate Change 1. Radiative Forcing In an unperturbed state, the net incoming solar radiation at the top of the atmosphere (Sn) must be balanced by the outgoing longwave

More information

Climate Change Science Tutorial #1: Overview of Our Understanding of the Climate System and Observed Climate Impacts

Climate Change Science Tutorial #1: Overview of Our Understanding of the Climate System and Observed Climate Impacts Climate Change Science Tutorial #1: Overview of Our Understanding of the Climate System and Observed Climate Impacts September 2013 ACS Climate Science Project, OMSI Others work, collected by Prof. Julie

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Hydrographic CO 2 Data at Station KNOT

Hydrographic CO 2 Data at Station KNOT Hydrographic CO 2 Data at Station KNOT Version 2010012 December 2010 Mutsu Institute for Oceanography Japan Agency for Marine-Earth Science and Technology Contents 1. Introduction 2. Data sources and analyses

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 62 Chemical Oceanography Reading: Libes, Chapter 15, pp. 8 94 (Remainder of chapter: Biogenic production, carbonate saturation and sediment distributions ) 1. CO 2

More information

Science Update: Understanding the IPCC Findings. Lee R. Kump

Science Update: Understanding the IPCC Findings. Lee R. Kump Science Update: Understanding the IPCC Findings Lee R. Kump Most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic

More information

The Global Ocean. Ocean Features and Abiotic Conditions

The Global Ocean. Ocean Features and Abiotic Conditions The Global Ocean Ocean Features and Abiotic Conditions The Global Ocean Earth is made up of 71% water, most of that water is marine (salt). Only 3% of the Earth s water is freshwater. The Global Ocean

More information

Effects of Climate Change on Ocean Acidification. Knut Yngve Børsheim

Effects of Climate Change on Ocean Acidification. Knut Yngve Børsheim Effects of Climate Change on Ocean Acidification Knut Yngve Børsheim Ocean acidification: Increased CO 2 in the atmosphere leads to lower seawater ph. Station Mike Simultaneously, carbonate ion concentration

More information

Anthropogenic perturbed carbon cycle. Pete Strutton, UTas

Anthropogenic perturbed carbon cycle. Pete Strutton, UTas Anthropogenic perturbed carbon cycle 1. Emissions by country, per capita, intensity 2. Current sinks: Atmosphere, land, ocean 3. Impacts on ocean 4. Prospects for significant reductions Pete Strutton,

More information

Introduction. Methods -6-

Introduction. Methods -6- S/OG Dissolved Oxygen and Carbonate-Carbon Dioxide in the Sea Water of the South China Sea, Area I: Gulf of Thailand and East Coast of Peninsular Malaysia Penjan Rojana-anawat and Anond Snidvongs

More information

Climate Change. Some solar radiation is reflected by Earth and the atmosphere. Earth s Surface

Climate Change. Some solar radiation is reflected by Earth and the atmosphere. Earth s Surface Q& A n The Basics of Greenhouse gases affect Earth s energy balance and climate The Sun serves as the primary energy source for Earth s climate. Some of the incoming sunlight is reflected directly back

More information

People, Oceans and Climate Change

People, Oceans and Climate Change People, Oceans and Climate Change or the unnatural carbon dioxide cycle and oceanic processes over the last few hundred years OCN 623 Chemical Oceanography Reading: Libes, Chapter 25 (a good summary) In

More information

IMPLEMENTATION. The Global Observing System for Climate

IMPLEMENTATION. The Global Observing System for Climate The Global Observing System for Climate IMPLEMENTATION Vision and Challenges GCOS Secretariat, WMO Carolin Richter, Simon Eggleston, Katy Hill, Caterina Tassone, Valentin Aich, Tim Oakley GCOS Progress:

More information

The Carbon Cycle. the atmosphere the landmass of Earth (including the interior) all of Earth s water all living organisms

The Carbon Cycle. the atmosphere the landmass of Earth (including the interior) all of Earth s water all living organisms The Carbon Cycle Carbon is an essential part of life on Earth. About half the dry weight of most living organisms is carbon. It plays an important role in the structure, biochemistry, and nutrition of

More information

Abstract. Introduction. Methods. Results -62-

Abstract. Introduction. Methods. Results -62- S/OG Dissolved Carbonate-Carbon Dioxide in Sea Water of the South China Sea, Area II: Sabah, Sarawak and Brunei Darussalam Anond Snidvongs Marine Science Department, chulalongkorn University Abstract

More information

Ocean Acidification. Bibliography:

Ocean Acidification. Bibliography: When ecosystems undergo change it can have dramatic effects on the competition between species, food web dynamics and biodiversity. Ecosystems can undergo change by the addition of carbon dioxide into

More information

SEAWATER 101. Seawater s Amazing Physical and Chemical Properties. Introductory Oceanography Ray Rector - Instructor

SEAWATER 101. Seawater s Amazing Physical and Chemical Properties. Introductory Oceanography Ray Rector - Instructor SEAWATER 101 Seawater s Amazing Physical and Chemical Properties Introductory Oceanography Ray Rector - Instructor The Nature of Water Topics To Be Covered Elements of Water Chemical Bonding The Water

More information

Global Climate Change

Global Climate Change Global Climate Change Objective 2.2.1 Infer how human activities (including population growth, pollution, global warming, burning of fossil fuels, habitat destruction, and introduction of non-native species)

More information

On global estimates of monthly methane flux based on observational data acquired by the Greenhouse gases Observing SATellite IBUKI (GOSAT)

On global estimates of monthly methane flux based on observational data acquired by the Greenhouse gases Observing SATellite IBUKI (GOSAT) On global estimates of monthly methane flux based on observational data acquired by the Greenhouse gases Observing SATellite IBUKI (GOSAT) March 27, 2014 National Institute for Environmental Studies Ministry

More information

Human Impact on the Environment: Part I

Human Impact on the Environment: Part I Human Impact on the Environment: Part I The late Alan Gregg pointed out that human population growth within the ecosystem was closely analogous to the growth of malignant tumor cells, that man was acting

More information

Carbon Dioxide and Global Warming Case Study

Carbon Dioxide and Global Warming Case Study Carbon Dioxide and Global Warming Case Study Key Concepts: Greenhouse Gas Carbon dioxide El Niño Global warming Greenhouse effect Greenhouse gas La Niña Land use Methane Nitrous oxide Radiative forcing

More information

Environmental Science. Physics and Applications

Environmental Science. Physics and Applications Environmental Science 1 Environmental Science. Physics and Applications. Carbon Cycle Picture from the IPCC report on the environment. 4. Carbon cycle 4.1 Carbon cycle, introduction 4.2 The oceans 4.3

More information

Intro to Biogeochemical Modeling Ocean & Coupled

Intro to Biogeochemical Modeling Ocean & Coupled Intro to Biogeochemical Modeling Ocean & Coupled Keith Lindsay, NCAR/CGD NCAR is sponsored by the National Science Foundation Lecture Outline 1) Large Scale Ocean Biogeochemical Features 2) Techniques

More information

Development of an integrated ISFET ph sensor for high pressure applications in the deep-sea

Development of an integrated ISFET ph sensor for high pressure applications in the deep-sea Development of an integrated ISFET ph sensor for high pressure applications in the deep-sea Kenneth S. Johnson Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing, CA 95039 phone:

More information

The Carbon Cycle: What Goes Around Comes Around

The Carbon Cycle: What Goes Around Comes Around Earth Cycles The Carbon Cycle: What Goes Around Comes Around by John Harrison, Ph.D. Did you know? Did you know that scientists have been able to study climate data from hundreds of thousands of years

More information

SeaChange. Casadh na Taoide. Ocean Acidification: An Emerging Threat to our Marine Environment

SeaChange. Casadh na Taoide. Ocean Acidification: An Emerging Threat to our Marine Environment SeaChange Casadh na Taoide Ocean Acidification: An Emerging Threat to our Marine Environment OCEAN ACIDIFICATION MAY HAVE DIRECT AND INDIRECT IMPACTS ON MARINE LIFE OCEAN ACIDIFICATION MAY HAVE DIRECT

More information

The unnatural carbon dioxide cycle and oceanic processes over the last few hundred years. OCN 623 Chemical Oceanography

The unnatural carbon dioxide cycle and oceanic processes over the last few hundred years. OCN 623 Chemical Oceanography The unnatural carbon dioxide cycle and oceanic processes over the last few hundred years OCN 623 Chemical Oceanography In the 19th century, scientists realized that gases in the atmosphere cause a "greenhouse

More information

Structured Expert Dialogue (SED) February Observed State of the Global Climate

Structured Expert Dialogue (SED) February Observed State of the Global Climate WMO Structured Expert Dialogue (SED) February 2015 Observed State of the Global Climate Jerry Lengoasa WMO WMO Outline Observed state of the global Climate latest evidence What do we know of GHG in the

More information

25 years of Hawaii Ocean Time-series carbon flux determinations: Insights into productivity, export, and nutrient supply in the oligotrophic ocean

25 years of Hawaii Ocean Time-series carbon flux determinations: Insights into productivity, export, and nutrient supply in the oligotrophic ocean 25 years of Hawaii Ocean Time-series carbon flux determinations: Insights into productivity, export, and nutrient supply in the oligotrophic ocean MATTHEW CHURCH, ROBERT BIDIGARE, JOHN DORE, DAVID KARL,

More information

Inspire Conference. Strasbourg (France) September, 2017

Inspire Conference. Strasbourg (France) September, 2017 Inspire Conference. Strasbourg (France) September, 2017 Monitoring marine ecosystems. The role of the DIRECTIVE 2004/35/CE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 April 2004 on environmental

More information

Module Contact: Dr A Manning, ENV Copyright of the University of East Anglia Version 1

Module Contact: Dr A Manning, ENV Copyright of the University of East Anglia Version 1 UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 2013-2014 THE CARBON CYCLE AND CLIMATE CHANGE ENV-3A31 Time allowed: 2 hours Answer TWO questions, ONE question from

More information

Announcements. Homework 7 - due today Homework 8 - paper 2 topics, questions and sources due Tuesday, Nov. 13 Midterm Paper 2 - due Tuesday, Nov.

Announcements. Homework 7 - due today Homework 8 - paper 2 topics, questions and sources due Tuesday, Nov. 13 Midterm Paper 2 - due Tuesday, Nov. Tuesday, November 6th. Announcements. Homework 7 - due today Homework 8 - paper 2 topics, questions and sources due Tuesday, Nov. 13 Midterm Paper 2 - due Tuesday, Nov. 20 Lecture #17-1 For next week..homework

More information

Greenhouse Effect & Climate Change

Greenhouse Effect & Climate Change Greenhouse Effect & Climate Change Greenhouse Effect Light energy from the sun (solar radiation) is either reflected or absorbed by the Earth. Greenhouse Effect When it is absorbed by the Earth (or something

More information

3J-05 Proposed acidification indicators for the Baltic Sea

3J-05 Proposed acidification indicators for the Baltic Sea 3J-05 Proposed acidification indicators for the Baltic Sea Bo Gustafsson Gregor Rehder Jacob Carstensen 2 Proposed acidification indicators for the Baltic Sea Introductory Thoughts MSFD Proton activity

More information

A Case Study on Ocean Acidification By Sindia M. Rivera-Jiménez, Ph.D. Department of Natural Science, Santa Fe College, Gainesville Fl

A Case Study on Ocean Acidification By Sindia M. Rivera-Jiménez, Ph.D. Department of Natural Science, Santa Fe College, Gainesville Fl A Case Study on Ocean Acidification By Sindia M. Rivera-Jiménez, Ph.D. Department of Natural Science, Santa Fe College, Gainesville Fl Please read the following abstract of an article from the journal

More information

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through

More information

increase in mean winter air temperature since 1950 (Ducklow et al, 2007). The ocean

increase in mean winter air temperature since 1950 (Ducklow et al, 2007). The ocean Exploring the relationship between Chlorophyll a, Dissolved Inorganic Carbon, and Dissolved Oxygen in the Western Antarctic Peninsula Ecosystem. Katie Coupland December 3, 2013 Since the start of the industrial

More information

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection CO 2 and the carbonate system II Carbon isotopes as a tracer for circulation The (solid) carbonate connection with ocean acidity Climate The ocean climate connection The carbon cycle the carbon cycle involves

More information

The Global Water Cycle

The Global Water Cycle The Global Water Cycle Water Unusual properties Central role in biogeochemistry Agent in global weathering cycles Water Outline Most abundant molecule on earths surface (1) Water: Properties and importance

More information

Investigating the State of Acidification in the Southern California Bight

Investigating the State of Acidification in the Southern California Bight Investigating the State of Acidification in the Southern California Bight Karen McLaughlin SCCWRP Symposium February 26, 2015 What is Ocean Acidification? Ocean Acidification is the other CO 2 problem

More information

Measurements of Carbon Dioxide in the Seto Inland Sea of Japan

Measurements of Carbon Dioxide in the Seto Inland Sea of Japan Journal of Oceanography Vol. 49, pp. 559 to 569. 1993 Measurements of Carbon Dioxide in the Seto Inland Sea of Japan EIJI YAMASHITA 1, FUKUICHI FUJIWARA 2, XIAOHU LIU 3 * and EIJI OHTAKI 4 1 Environmental

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Calculation of greenhouse effect. The carbon cycle Lecture 11

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 623 Chemical Oceanography 31 January 2013 Reading: Libes, Chapter 15, pp. 383 394 (Remainder of chapter will be used with the lecture: Biogenic production, carbonate

More information

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018 1 Physics 100 Lecture 17 The Greenhouse Effect and Global Warming April 2, 2018 2 Class Quiz Ch. 7: Suppose your car burned bituminous coal instead of gasoline. How much coal would provide the same energy

More information

2 Ocean Acidification in Washington State Marine Waters

2 Ocean Acidification in Washington State Marine Waters 2 Ocean Acidification in Washington State Marine Waters 2 Ocean Acidification in Washington State Marine Waters New research seeks to describe specific responses of a wider suite of local species to ocean

More information

Chemistry that determines ph in Swedish waters Leif G. Anderson Department of Marine Sciences University of Gothenburg Sweden

Chemistry that determines ph in Swedish waters Leif G. Anderson Department of Marine Sciences University of Gothenburg Sweden Chemistry that determines ph in Swedish waters Leif G. Anderson Department of Marine Sciences University of Gothenburg Sweden CO 2 The ocean takes up CO 2 when the surface water partial pressure (pco 2

More information

Global Ocean Acidification Observing Network (GOA-ON) ON) Dr. Libby Jewett Director, NOAA Ocean Acidification Program UN ICPOLOS Panel 3, June 18

Global Ocean Acidification Observing Network (GOA-ON) ON) Dr. Libby Jewett Director, NOAA Ocean Acidification Program UN ICPOLOS Panel 3, June 18 Global Ocean Acidification Observing Network (GOA-ON) ON) Dr. Libby Jewett Director, NOAA Ocean Acidification Program UN ICPOLOS Panel 3, June 18 Aragonite Saturation State. Feely et al 2009 Ocean Acidification

More information

Introduction to Oceanic-Atmospheric Carbon Dioxide Interactions

Introduction to Oceanic-Atmospheric Carbon Dioxide Interactions Introduction to Oceanic-Atmospheric Carbon Dioxide Interactions Dr. Michael J Passow, Earth2Class Guest Scientist: Dr. Jerry McManus Originally presented 14 Oct 2017 The Importance of the Carbon Cycle

More information

Aquatic respiration and ocean metabolism

Aquatic respiration and ocean metabolism Aquatic respiration and ocean metabolism Remember what life is all about: Energy (ATP) Reducing power (NADPH) Nutrients (C, N, P, S, Fe, etc., etc.) Photosynthetic organisms use sunlight, H 2 O, and dissolved

More information

15A Carbon Dioxide and Living Things

15A Carbon Dioxide and Living Things Carbon Dioxide and Living Things Investigation 15A 15A Carbon Dioxide and Living Things How do living things exchange carbon dioxide? The carbon cycle is a series of pathways through which carbon atoms

More information

Observations of methane over the Arctic Ocean

Observations of methane over the Arctic Ocean Observations of methane over the Arctic Ocean Stephen Platt1, Cathrine Lund Myhre1, Sabine Eckhardt1, Ignacio Pisso1, Norbert Schmidbauer1, Ove Hermansen1, Andreas Stohl1, Benedicte Ferré2, Anna Silyakova2,

More information

Sea Level Change in a Warming World: An Update. Jerry X Mitrovica Department of Earth & Planetary Sciences Harvard University

Sea Level Change in a Warming World: An Update. Jerry X Mitrovica Department of Earth & Planetary Sciences Harvard University Sea Level Change in a Warming World: An Update Jerry X Mitrovica Department of Earth & Planetary Sciences Harvard University Sea Level Change in a Warming World: An Update Part 1: The Greenhouse Effect

More information

Observations of Growth Rate of Carbon Reservoirs. Keeling et al. (2000) & Marland et al. (2000)

Observations of Growth Rate of Carbon Reservoirs. Keeling et al. (2000) & Marland et al. (2000) Carbon Science A new synthesis of the present carbon budget. Building an earth system model for century time scale scenarios An examination of the long term consequences of continued fossil fuel use Scouts

More information

Answer THREE questions, at least ONE question from EACH section.

Answer THREE questions, at least ONE question from EACH section. UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series Postgraduate Examination 2012-2013 THE CARBON CYCLE AND CLIMATE CHANGE ENV-MA31 Time allowed: 2 hours. Answer THREE questions, at

More information

Carbon cycling and climate: the CO 2. connection

Carbon cycling and climate: the CO 2. connection Carbon cycling and climate: the C 2 connection Gasses in the ocean The carbonate system (and buffering in the ocean) Carbon dioxide and the climate connection. Importance of C 2 to climate C 2 acts like

More information

The September Equinox is today: Sep 23rd! It s considered the traditional end of Summer and the beginning of Fall

The September Equinox is today: Sep 23rd! It s considered the traditional end of Summer and the beginning of Fall More coming up in Topic #11 (class notes p 61) The September Equinox is today: Sep 23rd! It s considered the traditional end of Summer and the beginning of Fall The Sun s rays have greatest intensity right

More information

Climate Change Facts Last Update: 16 th May 2009 (last Section deleted Jan.2016)

Climate Change Facts Last Update: 16 th May 2009 (last Section deleted Jan.2016) Climate Change Facts Last Update: 16 th May 2009 (last Section deleted Jan.2016) Carbon Dioxide, the Atmosphere and Temperature Increase Fossil fuel burning puts 6.3 Gt of C into the atmosphere annually

More information

The role of fixed-point deep ocean observatories in a global observing system. Richard S. Lampitt, Kate E. Larkin, Sue E. Hartman, Maureen Pagnani,

The role of fixed-point deep ocean observatories in a global observing system. Richard S. Lampitt, Kate E. Larkin, Sue E. Hartman, Maureen Pagnani, The role of fixed-point deep ocean observatories in a global observing system Richard S. Lampitt, Kate E. Larkin, Sue E. Hartman, Maureen Pagnani, Global Observing System 1. Satellite remote sensing 2.

More information