Key words: Turbidity, Total Suspended Solids, Nephelometric Tubidity Unit, Backscattering coefficient, Inherent Optical Properties, Bio-optical Model

Size: px
Start display at page:

Download "Key words: Turbidity, Total Suspended Solids, Nephelometric Tubidity Unit, Backscattering coefficient, Inherent Optical Properties, Bio-optical Model"

Transcription

1 Investigating relationship of nephelometric turbidity unit and total suspended solids with the inherent optical properties paramete derived from spectra reflectance Kai Li KWOH [1], Sai Meng NG [1], Hong Nan KUAN [1], Kean CHIA [1], Soo Chin LIEW [3], Chew Wai CHANG [2], Leong Keong KWOH [3] [1] - Hwa Chong Institution, 661 Bukit Timah Road, Singapore [2] Centre for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, S , 3 Science Drive 2, Singapore [3] - Centre of Remote Imaging, Sensing and Processing (CRISP), National Univeity of Singapore, Block SOC-1, Level 2, Lower Kent Ridge Road, Singapore cklk@nus.edu.sg Key words: Turbidity, Total Suspended Solids, Nephelometric Tubidity Unit, Backscattering coefficient, Inherent Optical Properties, Bio-optical Model ABSTRACT: In this project, the relationships between the turbidity of water measured by its total suspended solids (TSS), Nephelometric Turbidity Units (NTU) and the inherent optical properties computed from the spectral reflectance using the bio-optical model were investigated. It is hope that the results obtained could allow one to compute the water turbidity without needing to physically visit the site and take measurements. This could be extended to estimating the turbidity from remote sensing satellite imagery. Control experiments were initially carried out with a 1m deep by 0.5m x 0.5m tank. The tank was fit filled with clean water. Various types of common soil (e.g. burnt soil, riverbed and silt) were then added progressively and the TSS, NTU and reflectance measured. The different types of soils were used to study the variability of the relationships across different soil types. The experiment results were very encouraging. Linear relationships between NTU and TSS, backscattering coefficient and TSS, backscattering coefficient and NTU were obtain. More interesting, the relationship between backscattering coefficient and NTU is independent of soil type. Field verification measurements were also conducted to confirm the findings of the lab experiments. 1. INTRODUCTION Turbidity is an important measure to determine quality of water. The standard measure for turbidity commonly used by water enginee is the NTU (Nephelometric Turbidity Units). TSS (Total Suspended Solids) is another measure to define the actual amount (weight) of suspended material in a given volume of water. NTU and TSS both measure the amount of suspended solids. However, NTU is not an absolute unit but an index derived by measuring the amount of light scattered from a sample, while TSS is a physical measure. This difference between TSS and NTU becomes important when trying to calculate total quantities of material in a stream. Such calculations are possible with TSS values but not with NTU. Turbidity affects the color and brightness of water. Swimming pool water appea bluish because it has very low turbidity and river water appear brownish because it has high turbidity. These characteristics can also be seen in the water s spectral reflectance as shown in figures below.

2 : Figure 1 Bluish Swimming Pool (left) and Brownish Turbid River 0.18 Reflectance R River Swimming Pool Wave le ng th (n m ) Figure 2 Reflectance Spectrum of Swimming Pool and River water Using the established bio-optical model [Lee, 2002; Salinas, 2007; Sathyendranath, 2000], we can model the spectral reflectance of any water with a few paramete such as particle backscattering (X and Y), absorption (G and S), chlorophyll etc. 2. AIMS AND OBJECTIVES In this project, we aim to study the relationship between the particle backscattering parameter (b bp or X) of the bio-optical model and the NTU and TSS. We will start with controlled experiments with artificially created turbidity of varying degrees using 3 types of soil particles. We will then analyze the particle backscattering vs. TSS and NTU. This is followed by field verification with measurements of actual lake and river wate. We hope to be able to use this relationship to compute turbidity of water bodies from reflectance measured by remote sensing equipment such as satellite imagery, without needing to physically visit the site to take measurements. 3. EQUIPMENT, MATERIALS AND METHODS In the controlled experiment, the setting of a turbid water body is simulated by using a huge metal tank measuring about 0.5m by 0.5m by 1m. It was painted black in the interior to absorb most of the incoming light which hit the sides of the tank, preventing them from being reflected back. Clean tap water is then filled to the brim of the tank, so as to eliminate shadows cast by the tank walls. A certain quantity of a selected type of soil is then added into the tank. Water is

3 stirred gently to mimic the river s moving wate, which suspends small particles, but allows heavier particles to sink to the bottom. The TSS, NTU and reflectance spectrum for each turbidity level is then measured. To measure the TSS, suspended solids were extracted from water samples by filtering the water sample through a filter paper with 0.5 microns pores in a Buchner funnel, then dried and weighed. NTU is measured with the Eurotech TN100 NTU meter. To measure the water s reflectance, a spectroradiometer (GER 1000) was aimed at a white card. With the known reflectance from the white card, the solar irradiance (E d ) can be calculated from the measured radiance of the white card. Then the radiance of the water (L t ) and the radiance of the sky (L sky ) were taken. The surface reflection of the sky is removed from the total measured radiance to give the water radiance and the reflectance, R (λ) computed as follows: R = L rl t E d sky where r is the Fresnel reflection coefficient, which is very close to From each reflectance spectrum, R (λ), the Excel Solver is used to estimate the various paramete of X, Y, G, S and g 0 using the bio-optical model. We are particularly interested in X (particle backscattering parameter at reference wavelength of 555 nm). We will compare X with the NTU and TSS obtained earlier. The process is repeated for about 10 different turbidity levels for each soil type and the whole experiment repeated for three types of soil. 4. THEORY OF BIO-OPTICAL MODEL The bio-optical model [Lee, 2002; Salinas, 2007; Sathyendranath, 2000] worked around the absorption coefficient, a(λ), and backscattering coefficient, b b (λ). The absorption coefficient a(λ) is dependent on absorption of pure water a w (λ), absorption of colored matter a dg (λ) and absorption of chlorophyll a φ (λ). Thus: a = a + a a w dg + The backscattering coefficient b b (λ) is dependent on backscattering of pure water b bw (λ) and backscattering of suspended particles b bp (λ). Thus: b = b + b b bw While a w (λ) and b bw (λ) are experimentally measured quantities, the rest of the component absorption and backscattering coefficients are modeled as follows: bp φ

4 a b dg bp S ( λ λ0 ) = Ge a = P a + P a φ 0 0 λ0 = X λ Y 1 1 From a(λ), and b b (λ), the underwater remote sensing reflectance r (λ) is obtained as follows: g 0 is an empirical scaling factor. r = g o bb a( λ) + bb However, what we measure is the above water remote sensing reflectance R (λ). The reflectance above water R (λ) is computed from the underwater reflectance r (λ) as follows: R 0.52r = 1 1.7r The numbe 0.52 and 1.7 are physically derived from the refractive index of water, The modeled R (λ) is then compared to the measured R (λ). By varying the various paramete (g0, G, S, X and Y), a solution is found when the modeled R (λ) and the measured R (λ) fits within acceptable tolerance. The Microsoft Excel spreadsheet, with its free add-in module Solver, is used to find the solution. 5. RESULTS AND ANALYSIS 5.1 TSS vs. NTU / Particle Backscattering Figure 3 (left) TSS vs NTU. Figure 4 (right) TSS vs Particle Backscattering

5 Figure 3 shows the results when TSS is plotted against NTU. From this graph, TSS and NTU are observed to have a linear relationship. This is consistent with scientific literature reports, since increasing the amount of suspended particles in the water will correspond to a higher turbidity level (i.e. the cloudier it is). It has been suggested that 1 mg/l TSS = 1 ~ 1.5 NTU. However our experiment shows that the range is wider than the above suggestion (1 mg/l TSS = 0.75~1.7 NTU). Figure 4 shows the results when TSS (mg/l) is plotted against the particle backscattering coefficient (m -1 ). From the results above, particle backscattering coefficient and TSS have a linear relationship. However the relationship is different for different types of soil. 5.2 NTU vs. Particle Backscattering Figure 5 NTU vs Backscattering for each soil type Figure 6 Combine relationship for all soil type From Figure 5, NTU has a linear relationship with the particle backscattering coefficient of light (m -1 ). This is within expectations since NTU is directly proportionate to TSS. It is observed that different types of soil give almost the same relationship between NTU and particle backscattering coefficient (i.e. they are independent of soil type). In Figure 6, a single straight line through all the points can be plotted and this graph shows excellent correlation (R 2 = 0.94). We can thus propose a relationship that NTU 45 X, independent of soil type. This result may be due to the fact that both NTU and particle backscattering coefficient are based on optical properties of light. 6. FIELD VERIFICATION After the ratio NTU 45X was obtained, some measurements of river and lake water samples were taken to verify the results obtained from the controlled experiments.

6 Water Source Measured NTU NTU comp from X %error Little Guilin* S. Ulu Pandan A Jurong River Kent Ridge Pond* Jurong Canal S. Ulu Pandan B S. Ulu Pandan B Avg % error 12.0 Note -- * indicate water with high amount of Chlorophyll (water appea green) Table 1 comparison of measured NTU and computed NTU Figure 7 Computed vs Measured NTU The table 1 and figure 7 above shows good agreement between the NTU measured with NTU meter and computed NTU with the measured reflectance spectra, using the relationship we established, from field verification exercise. The average error was 12.0% and the maximum error is 19.4%. The relationship is also valid for the two samples which has high amount of chlorophyll (Little Guilin and Kent Ridge Pond). 7. CONCLUSION The NTU and backscattering coefficient have correlated extremely well, thus providing a possible method of converting between the 2 values. This vital information has allowed the possibility for analysis of satellite imaging to estimate the NTU of the water. On the other hand, TSS values have instead turned out to be affected by the soil type. The controlled experiments, used to obtain the NTU vs. particle backscattering relationship, were done with chlorophyll-free water. However the field verification results showed that the relationship is also valid for water with chlorophyll. REFERENCES Lee, Z.P., Carder, K.L., and Arnone, R., Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep wate. Applied Optics. Vol 41, No 27, pp Salinas S.V, Chang C.W, Liew S.C (2007). Multiparameter Retrieval Of Water Optical Properties From Above-Water Remote-Sensing Reflectance Using The Simulated Annealing Algorithm, Applied Optics 46(14), Sathyendranath, S, Remote Sensing of Ocean Colour in Coastal, and Other Optically- Complex, Wate. Int. Ocean Colour Coordinating Group Report Number 3.

Estimation of chlorophyll-a concentration in estuarine waters:

Estimation of chlorophyll-a concentration in estuarine waters: Estimation of chlorophyll-a concentration in estuarine waters: case study of the Pearl River estuary Yuanzhi Zhang *, Chuqun Chen #, Hongsheng Zhang *, Xiaofei*, Chen Guiying Chen# *Institute of Space

More information

Zu-Tao Ou-Yang Center for Global Change and Earth Observation Michigan State University

Zu-Tao Ou-Yang Center for Global Change and Earth Observation Michigan State University Zu-Tao Ou-Yang Center for Global Change and Earth Observation Michigan State University Ocean Color: Spectral Visible Radiometry Color of the ocean contains latent information on the water qualitycdom,

More information

Measuring Ocean Color: The Basics

Measuring Ocean Color: The Basics Measuring Ocean Color: The Basics Radiation of energy from the Sun and the Earth s surface. Recall from previous lectures that the Sun (6000 K), radiates energy in three portions of the energy spectrum:

More information

Classification of algal bloom types From remote sensing reflectance

Classification of algal bloom types From remote sensing reflectance GISdevelopment.net ---> AARS ---> ACRS 2000 ---> Oceanography Print ification of algal bloom types From remote sensing reflectance Soo Chin LIEW, Leong Keong KWOH, and Hock LIM Centre for Remote Imaging,

More information

SPECTRAL REFLECTANCE SIGNATURES OF CASE II WATERS: POTENTIAL FOR TROPICAL ALGAL BLOOM MONITORING USING SATELLITE OCEAN COLOUR SENSORS

SPECTRAL REFLECTANCE SIGNATURES OF CASE II WATERS: POTENTIAL FOR TROPICAL ALGAL BLOOM MONITORING USING SATELLITE OCEAN COLOUR SENSORS Paper presented at the th JSPS/VCC Joint Seminar on Marine and Fisheries Sciences, Melaka, Malaysia, 9 Nov - Dec 999 SPECTRAL REFLECTANCE SIGNATURES OF CASE II WATERS: POTENTIAL FOR TROPICAL ALGAL BLOOM

More information

Remote sensing of total suspended sediment within lakes Onoke and Wairarapa

Remote sensing of total suspended sediment within lakes Onoke and Wairarapa Remote sensing of total suspended sediment within lakes Onoke and Wairarapa Introduction Remote sensing can provide synoptic monitoring of water quality and temperature (e.g., Kloiber et al. 2002, Dekker

More information

CLASSIFICATION OF ALGAL BLOOM TYPES FROM REMOTE SENSING REFLECTANCE

CLASSIFICATION OF ALGAL BLOOM TYPES FROM REMOTE SENSING REFLECTANCE Proceedings of the st Asian Conference on Remote Sensing, 4-8 Dec, Taipei, Taiwan, Vol., 794-799. CLASSIFICATION OF ALGAL BLOOM TYPES FROM REMOTE SENSING REFLECTANCE Soo Chin LIEW, Leong Keong KWOH, and

More information

A Unified Approach to Remote Estimation of Chlorophyll a Concentration in Complex Inland, Estuarine, and Coastal waters

A Unified Approach to Remote Estimation of Chlorophyll a Concentration in Complex Inland, Estuarine, and Coastal waters A Unified Approach to Remote Estimation of Chlorophyll a Concentration in Complex Inland, Estuarine, and Coastal waters Wesley J. Moses 1, *, Anatoly A. Gitelson 1, Alexander A. Gilerson 2, and Daniela

More information

ANALYZING THE SPATIAL AND TEMPORAL VARIABILITY OF WATER TURBIDITY IN THE COASTAL AREAS OF THE UAE USING MODIS SATELLITE DATA

ANALYZING THE SPATIAL AND TEMPORAL VARIABILITY OF WATER TURBIDITY IN THE COASTAL AREAS OF THE UAE USING MODIS SATELLITE DATA ANALYZING THE SPATIAL AND TEMPORAL VARIABILITY OF WATER TURBIDITY IN THE COASTAL AREAS OF THE UAE USING MODIS SATELLITE DATA Muna R. Al Kaabi, Jacinto Estima and Hosni Ghedira Ocean Color Group - Earth

More information

Water property monitoring and assessment for China s inland Lake Taihu from

Water property monitoring and assessment for China s inland Lake Taihu from Water property monitoring and assessment for China s inland Lake Taihu from MODIS-Aqua measurements By Wang M, W Shi and J Tan, Remote Sensing of Environment 115 (2011) 841-854 Wei Wang 9 December 2011

More information

OCEAN COLOR PRODUCTS RETRIEVAL AND VALIDATION AROUND CHINA COAST WITH MODIS

OCEAN COLOR PRODUCTS RETRIEVAL AND VALIDATION AROUND CHINA COAST WITH MODIS OCEAN COLOR PRODUCTS RETRIEVAL AND VALIDATION AROUND CHINA COAST WITH MODIS L. Sun a, M. Guo b, X. Wang b a National Satellite Meteorological Center, China Meteorological Administration, No.46 South Avenue

More information

USING MERIS DATA FOR THE RETRIEVAL OF CHL A, CDOM AND TSS VALUES IN THE GULF OF FINLAND AND LAKE LOHJANJÄRVI

USING MERIS DATA FOR THE RETRIEVAL OF CHL A, CDOM AND TSS VALUES IN THE GULF OF FINLAND AND LAKE LOHJANJÄRVI USING MERIS DATA FOR THE RETRIEVA OF CH A, CDOM AND TSS VAUES IN THE GUF OF FINAND AND AKE OHJANJÄRVI Sampsa Koponen 1, Jenni Vepsäläinen 2, Jouni Pulliainen 1, Kari Kallio 2, Timo Pyhälahti 2, Antti indfors

More information

SURFACE REFLECTANCE AND UNDERWATER DOWNWELLING IRRADIANCE IN ALQUEVA RESERVOIR, SOUTHEAST PORTUGAL

SURFACE REFLECTANCE AND UNDERWATER DOWNWELLING IRRADIANCE IN ALQUEVA RESERVOIR, SOUTHEAST PORTUGAL SURFACE REFLECTANCE AND UNDERWATER DOWNWELLING IRRADIANCE IN ALQUEVA RESERVOIR, SOUTHEAST PORTUGAL M. Potes, R. Salgado, M. J. Costa, M. Morais, D. Bortoli and I. Kostadinov Institute of Earth Sciences

More information

ESTIMATION OF SUSPENDED SEDIMENT CONCENTRATION OF WATER BODIES USING LOW COST PORTABLE DIGITAL CAMERA

ESTIMATION OF SUSPENDED SEDIMENT CONCENTRATION OF WATER BODIES USING LOW COST PORTABLE DIGITAL CAMERA Proceedings of 3rd International Conference on Advances in Civil Engineering, 21-23 December 216, CUET, Chittagong, Bangladesh ESTIMATION OF SUSPENDED SEDIMENT CONCENTRATION OF WATER BODIES USING LOW COST

More information

What is Hydrologic Optics? Optics Attentuation Inherent properties Scatter Absorption Apparent properties

What is Hydrologic Optics? Optics Attentuation Inherent properties Scatter Absorption Apparent properties 1 of 7 3/22/2006 1:29 PM Water quality research Water quality Hydrologic optics Components of water quality SERC water research projects CISNet program What is Hydrologic Optics? Optics Attentuation Inherent

More information

The Spectral Reflectance Responses of Water with Different Levels

The Spectral Reflectance Responses of Water with Different Levels Turkish J. Eng. Env. Sci. 29 (2005), 351 360. c TÜBİTAK The Spectral Reflectance Responses of Water with Different Levels of Suspended Sediment in The Presence of Algae Murat KARABULUT Kahramanmaraş Sütçü

More information

Study of attenuation depths for MODIS bands in the Bohai Sea in China

Study of attenuation depths for MODIS bands in the Bohai Sea in China Acta Oceanologica Sinica 2009, Vol.28, No.5, p.39-48 http://www.hyxb.org.cn E-mail: hyxbe@263.net Study of attenuation depths for MODIS bands in the Bohai Sea in China LIU Ying 1,2, LI Guosheng 1 1 Institute

More information

EFFECT OF SUSPENDED SEDIMENT CONCENTRATION ON REMOTE SENSING REFLECTANCE AND LIGHT PENETRATION DEPTH ABSTRACT

EFFECT OF SUSPENDED SEDIMENT CONCENTRATION ON REMOTE SENSING REFLECTANCE AND LIGHT PENETRATION DEPTH ABSTRACT EFFECT OF SUSPENDED SEDIMENT CONCENTRATION ON REMOTE SENSING REFLECTANCE AND LIGHT PENETRATION DEPTH Asif Mumtaz Bhatti 1, Seigo Nasu 2 and Masataka Takagi 3 ABSTRACT The purpose of the research was to

More information

doi: /j.isprsjprs

doi: /j.isprsjprs doi: 10.1016/j.isprsjprs.2012.02.008 A simple method for distinguishing global Case-1 and Case-2 waters using SeaWiFS measurements Bunkei Matsushita, 1 Wei Yang,* 2,1 Peng Chang, 1 Fan Yang, 1 Takehiko

More information

Modeling of Water Quality Parameters in lakes using Hyperspectral Remote sensing Technique

Modeling of Water Quality Parameters in lakes using Hyperspectral Remote sensing Technique Volume 02 - Issue 08 August 2017 PP. 55-61 Modeling of Water Quality Parameters in lakes using Hyperspectral Remote sensing Technique *V. Hema Sailaja 1, M. Anji Reddy 2 *1Centre for Environment, Institute

More information

A Novel Multispectral Imaging Method for Real-time Algal Culture Monitoring

A Novel Multispectral Imaging Method for Real-time Algal Culture Monitoring Solar Energy and Renewable Fuels Laboratory A Novel Multispectral Imaging Method for Real-time Algal Culture Monitoring Thomas E. Murphy, Keith B. Macon, and Halil Berberoglu Mechanical Engineering Department

More information

BIO-OPTICAL SENSORS FOR PROFILING FLOATS

BIO-OPTICAL SENSORS FOR PROFILING FLOATS BIO-OPTICAL SENSORS FOR PROFILING FLOATS J. Ronald V. Zaneveld Western Environmental Technology Laboratories, Inc. P.O. Box 518, Philomath, OR 97370, U.S.A. FAX:1-541-929-5277 e-mail:ron@wetlabs.com Introduction

More information

A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance

A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance Environ Monit Assess (2008) 145:339 347 DOI 10.1007/s10661-007-0043-2 A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance B.

More information

ASSESSING THE POTENTIAL OF REMOTELY SENSED DATA FOR WATER QUALITY MONITORING OF COASTAL AND INLAND WATERS

ASSESSING THE POTENTIAL OF REMOTELY SENSED DATA FOR WATER QUALITY MONITORING OF COASTAL AND INLAND WATERS ASSESSING THE POTENTIAL OF REMOTELY SENSED DATA FOR WATER QUALITY MONITORING OF COASTAL AND INLAND WATERS Asif Mumtaz Bhatti, Donald C. Rundquist, Seigo Nasu and Masataka Takagi Research Associate, COE,

More information

Satellite ocean color algorithms: a review of applications to the Great Lakes

Satellite ocean color algorithms: a review of applications to the Great Lakes Satellite ocean color algorithms: a review of applications to the Great Lakes Barry M. Lesht a,, Richard P. Barbiero b, Glenn J. Warren c a CSC and Department of Earth and Environmental Sciences, University

More information

Ecohab: Hyperspectral Optical Properties of Red-Tide Blooms

Ecohab: Hyperspectral Optical Properties of Red-Tide Blooms Ecohab: Hyperspectral Optical Properties of Red-Tide Blooms Helmut Maske Center for Hydro-Optics and Remote Sensing San Diego State University 6505 Alvarado Rd., Suite 206 San Diego, CA 92120 phone: (619)

More information

July 27, A NEW EPA APPROVED METHOD FOR TURBIDITY ANALYSIS 360 x 90, Turbidity Method TURBIDITY MEASUREMENT HISTORY

July 27, A NEW EPA APPROVED METHOD FOR TURBIDITY ANALYSIS 360 x 90, Turbidity Method TURBIDITY MEASUREMENT HISTORY A NEW EPA APPROVED METHOD FOR TURBIDITY ANALYSIS 360 x 90, Turbidity Method 10258 TURBIDITY MEASUREMENT HISTORY 2 1 TURBIDITY MEASUREMENT OVER THE LAST 50 YEARS 3 TURBIDITY MEASUREMENT Turbidity is the

More information

Inland and coastal water quality retrieval Some challenges and new opportunities

Inland and coastal water quality retrieval Some challenges and new opportunities Inland and coastal water quality retrieval Some challenges and new opportunities Els Knaeps, Dries Raymaekers, Sindy Sterckx (VITO, Belgium) Kevin Ruddick, Bouchra Nechad (MUMM, Belgium) Ana Dogliotti

More information

Fernando Gilbes 1, William Hernández, Natlee Hernández, José Martínez, and Vilmaliz Rodriguez Geological and Environmental Remote Sensing Lab Department of Geology University of Puerto Rico at Mayagüez

More information

Optical Detection and Assessment of the Harmful Alga, Karenia brevis

Optical Detection and Assessment of the Harmful Alga, Karenia brevis Optical Detection and Assessment of the Harmful Alga, Karenia brevis Steven E. Lohrenz Department of Marine Science The University of Southern Mississippi 1020 Balch Boulevard Stennis Space Center, MS

More information

EPA APPROVED METHOD FOR TURBIDITY ANALYSIS 360 x 90, Turbidity Method 10258

EPA APPROVED METHOD FOR TURBIDITY ANALYSIS 360 x 90, Turbidity Method 10258 EPA APPROVED METHOD FOR TURBIDITY ANALYSIS 360 x 90, Turbidity Method 10258 TURBIDITY MEASUREMENT HISTORY 3 TURBIDITY MEASUREMENT OVER THE LAST 50 YEARS TURBIDITY MEASUREMENT Turbidity is the interaction

More information

Monitoring water quality of the Southeastern Mediterranean sea using remote sensing

Monitoring water quality of the Southeastern Mediterranean sea using remote sensing Monitoring water quality of the Southeastern Mediterranean sea using remote sensing Tamir Caras The Remote Sensing Laboratory Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the

More information

Module 2, Add on Lesson Turbidity Sensor. Teacher. 90 minutes

Module 2, Add on Lesson Turbidity Sensor. Teacher. 90 minutes Module 2, Add on Lesson Turbidity Sensor Teacher 90 minutes Purpose Construct a sensor to measure the turbidity of water Graph data and reason about curves and linear relationships Calibrate the turbidity

More information

Remote Sensing of Water

Remote Sensing of Water Remote Sensing of Water Carolina Distinguished Professor Department of of Geography University of of South Carolina Columbia, South Carolina 29208 jrjensen@sc.edu sc.edu Earth: The Water Planet 74% of

More information

USE OF THE NEW OLCI AND SLSTR BANDS FOR ATMOSPHERIC CORRECTION OVER TURBID COASTAL AND INLAND WATERS

USE OF THE NEW OLCI AND SLSTR BANDS FOR ATMOSPHERIC CORRECTION OVER TURBID COASTAL AND INLAND WATERS USE OF THE NEW AND SLSTR BANDS FOR ATMOSPHERIC CORRECTION OVER TURBID COASTAL AND INLAND WATERS Kevin Ruddick and Quinten Vanhellemont Royal Belgian Institute for Natural Sciences (RBINS), Operational

More information

Study of Water Quality using Satellite data

Study of Water Quality using Satellite data 2nd Workshop on Parameterization of Lakes in Numerical Weather Prediction and Climate Modelling Study of Water Quality using Satellite data M. Potes, M. J. Costa (Évora Geophysics Centre, PORTUGAL) This

More information

Ocean Diurnal Variations Measured by the Korean Geostationary Ocean Color Imager

Ocean Diurnal Variations Measured by the Korean Geostationary Ocean Color Imager Ocean Diurnal Variations Measured by the Korean Geostationary Ocean Color Imager Menghua Wang 1, Lide Jiang 1,2, Seunghyun Son 1,2, & Wei Shi 1,2 1 NOAA/NESDIS Center for Satellite Applications & Research

More information

Ocean Optics XVI Conference, Santa Fe, New Mexico, November 18-22, 2002

Ocean Optics XVI Conference, Santa Fe, New Mexico, November 18-22, 2002 BIO-OPTICAL EVIDENCE OF LAND-SEA INTERACTIONS IN THE WESTERN COAST OF PUERTO RICO Fernando Gilbes 1, Roy A. Armstrong 2, Richard L. Miller 3, Carlos E. Del Castillo 3, Marcos Rosado 2, and Nazario Ramirez

More information

Time- and Irradiance-Dependent Behavior of the Quantum Yield of Chlorophyll a Fluorescence

Time- and Irradiance-Dependent Behavior of the Quantum Yield of Chlorophyll a Fluorescence Time- and Irradiance-Dependent Behavior of the Quantum Yield of Chlorophyll a Fluorescence Bruce Frost University of Washington School of Oceanography MS 35-7940 Seattle WA 98195-7940 phone: (206) 543-7186

More information

Capability of Optical Sensors for Waste Water Quality Analysis in Food-Manufacturing

Capability of Optical Sensors for Waste Water Quality Analysis in Food-Manufacturing Capability of Optical Sensors for Waste Water Quality Analysis in Food-Manufacturing Dr G. Sp. Skouteris Research Associate, Centre for SMART, Loughborough University Contents Research Aim Current Status

More information

MERIS PERFORMANCE IN THE EAST CHINA SEAS: EVALUATION OF ATMOSPHERIC CORRECTION AND OPTICAL INVERSION ALGORITHMS

MERIS PERFORMANCE IN THE EAST CHINA SEAS: EVALUATION OF ATMOSPHERIC CORRECTION AND OPTICAL INVERSION ALGORITHMS MERIS PERFORMANCE IN THE EAST CHINA SEAS: EVALUATION OF ATMOSPHERIC CORRECTION AND OPTICAL INVERSION ALGORITHMS Ming-Xia HE 1, Shuangyan He 1, Lianbo Hu 1, Yunfei Wang 1, Qian Yang 1, Tinglu Zhang 1 Wenzhong

More information

CHEMICAL MONITORING & MANAGEMENT LESSON 6: WATER QUALITY 1 SAMPLE RESOURCES

CHEMICAL MONITORING & MANAGEMENT LESSON 6: WATER QUALITY 1 SAMPLE RESOURCES YEAR 2 CHEM ISTRY CHEMICAL MONITORING & MANAGEMENT SAMPLE RESOURCES 300 008 008 www.matrix.edu.auu YEAR 2 CHEMISTRY. Water Quality Students perform first hand investigations to use qualitative and quantitative

More information

LSP: using AVHRR NDVI data and from 2003 using MODIS NBAR. Water Quality: using MSS and TM Landsat data and from 2001 using

LSP: using AVHRR NDVI data and from 2003 using MODIS NBAR. Water Quality: using MSS and TM Landsat data and from 2001 using Land cover land use change effects on surface water quality: Integrated MODIS and SeaWiFS assessment of the Dnieper and Don River basins and their reservoirs Anatoly A. Gitelson, Wesley Moses & Daniela

More information

DRAFT. DRAFT July 9, 2013 Lake-Wide Survey (No. 8) Page 1 of Cayuga Lake. Lake-Wide Seabird Profiles

DRAFT. DRAFT July 9, 2013 Lake-Wide Survey (No. 8) Page 1 of Cayuga Lake. Lake-Wide Seabird Profiles Cayuga Lake Lake-Wide Seabird Profiles July 9, Provisional Data Summary Submitted: for review; for discussion purposes only Anthony R. Prestigiacomo Research Scientist July 9, Lake-Wide Survey (No. 8)

More information

Use of remote sensing in assessing the impacts of ocean acidification

Use of remote sensing in assessing the impacts of ocean acidification Use of remote sensing in assessing the impacts of ocean acidification William M. Balch Bigelow Laboratory for Ocean Sciences W. Boothbay Harbor, ME 04575 Thanks to so many D. Drapeau, B. Bowler, E. Booth

More information

Optical classification in contrasted coastal waters for monitoring water masses and improving the assessment of ocean color products

Optical classification in contrasted coastal waters for monitoring water masses and improving the assessment of ocean color products Optical classification in contrasted coastal waters for monitoring water masses and improving the assessment of ocean color products Vantrepotte V., Loisel H., Mériaux X., and Dessailly D. LOG, CNRS-UMR

More information

FERNANDO GILBES REPORT (Performance period: October 1, 2006 to March 31, 2007)

FERNANDO GILBES REPORT (Performance period: October 1, 2006 to March 31, 2007) FERNANDO GILBES REPORT (Performance period: October 1, 2006 to March 31, 2007) 1. RESEARCH COMPONENT Thrust: Coastal Remote Sensing Area of Research within the Thrust: Bio-optical properties and ocean

More information

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 4, OCTOBER X/$ IEEE

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 4, OCTOBER X/$ IEEE IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 4, OCTOBER 2009 845 Satellite Estimation of Chlorophyll-a Concentration Using the Red and NIR Bands of MERIS The Azov Sea Case Study Wesley J. Moses,

More information

Module 2, Add on Lesson Turbidity Sensor. Student. 90 minutes

Module 2, Add on Lesson Turbidity Sensor. Student. 90 minutes Module 2, Add on Lesson Turbidity Sensor Student 90 minutes Purpose Construct a sensor to measure the turbidity of water Graph data and reason about curves and linear relationships Calibrate the turbidity

More information

Lake transparency: a window into decadal variations in dissolved organic carbon concentrations in Lakes of Acadia National Park, Maine

Lake transparency: a window into decadal variations in dissolved organic carbon concentrations in Lakes of Acadia National Park, Maine Lake transparency: a window into decadal variations in dissolved organic carbon concentrations in Lakes of Acadia National Park, Maine Collin Roesler Department of Earth and Oceanographic Science, Bowdoin

More information

Carbon. Carbon. Carbon parameters: Carbon

Carbon. Carbon. Carbon parameters: Carbon Carbon Carbon Carbon The main task of a wastewater treatment plant is to reduce the total organic load of wastewater in addition to all the progress made in nitrogen and phosphate elimination. Organic

More information

CAMPBELL SCIENTIFIC, INC.

CAMPBELL SCIENTIFIC, INC. APPLICATION NOTE App. Note Code: 2Q-V Written by John Downing Effects of Water Color on OBS Measurements CAMPBELL SCIENTIFIC, INC. W H E N M E A S U R E M E N T S M A T T E R Copyright (C) April 2008 Campbell

More information

Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models

Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models Curtis D. Mobley Sequoia Scientific, Inc. 2700 Richards Road, Suite 107 Bellevue, WA 98005 phone: 425-641-0944 x 109

More information

REAL-TIME CONCENTRATION AND GRAIN SIZE MEASUREMENT OF SUSPENDED SEDIMENT USING MULTI-FREQUENCY BACKSCATTERING TECHNIQUES ABSTRACT

REAL-TIME CONCENTRATION AND GRAIN SIZE MEASUREMENT OF SUSPENDED SEDIMENT USING MULTI-FREQUENCY BACKSCATTERING TECHNIQUES ABSTRACT REAL-TIME CONCENTRATION AND GRAIN SIZE MEASUREMENT OF SUSPENDED SEDIMENT USING MULTI-FREQUENCY BACKSCATTERING TECHNIQUES T. HIES 1, H. H. NGUYEN 2, J. SKRIPALLE 3 1,2 HydroVision Asia Pte Ltd, 1 Cleantech

More information

Harmful Algal Blooms (HABs) 2 methods

Harmful Algal Blooms (HABs) 2 methods Harmful Algal Blooms (HABs) 2 methods Richard P. Stumpf NOAA, National Ocean Service HAB occurrences worldwide Image from whoi.edu/redtide Remote Sensing for HAB Detection: Does the Bloom Change Water

More information

Application of Geostationary Satellite Images to the monitoring of dynamic variations

Application of Geostationary Satellite Images to the monitoring of dynamic variations The 1 st International Ocean Colour Science Meeting Darmstadt, Germany, 6-8 May 2013 Application of Geostationary Satellite Images to the monitoring of dynamic variations Jong-Kuk Choi, Young Je Park and

More information

Distribution and Cycling of Dissolved Organic Carbon and Colored Dissolved Organic Carbon on the West Florida Shelf

Distribution and Cycling of Dissolved Organic Carbon and Colored Dissolved Organic Carbon on the West Florida Shelf Distribution and Cycling of Dissolved Organic Carbon and Colored Dissolved Organic Carbon on the West Florida Shelf Dr. Paula Coble College of Marine Science University of South Florida 10 7 th Ave South

More information

A Discussion on the paper Surface Albedo in Cities: Case Study in Sapporo and Tokyo, Japan

A Discussion on the paper Surface Albedo in Cities: Case Study in Sapporo and Tokyo, Japan A Discussion on the paper Surface Albedo in Cities: Case Study in Sapporo and Tokyo, Japan By Hirofumi Sugawara Tamio Takamura Boundary-Layer Meteorology Zhang Xue 2014-10-10 Outline Introduction Materials

More information

PROCESS OPTIMIZATION USING SPECTROPHOTOMETERS

PROCESS OPTIMIZATION USING SPECTROPHOTOMETERS www.zapstechnologies.com PROCESS OPTIMIZATION USING SPECTROPHOTOMETERS By Bud Dunbar ZAPS Technologies 617-448-0440 robert.dunbar@zapstechnologies.com 1 2 WHAT S CHANGED? INEXPENSIVE & POWERFUL PHOTON

More information

Quick Select Guide. 6-Series. products

Quick Select Guide. 6-Series. products Quick Select Guide 6-Series products 6-Series instruments Premier Instruments The YSI 6-Series is a full line of multiparameter instruments and accessories for most unattended monitoring, water quality

More information

Beyond the two cases of water

Beyond the two cases of water 44 th Intl. Liège Colloquium on Ocean Dynamics 11 May 2012 Beyond the two cases of water Water constituent retrieval algorithms and their validity ranges Odermatt, D. 1,2, Gitelson, A. 3, Brando, V.E.

More information

INHERENT OPTICAL PROPERTIES IN NEW ENGLAND COASTAL WATERS: DECOMPOSITION INTO CONTRIBUTIONS FROM OPTICALLY IMPORTANT CONSTITUENTS

INHERENT OPTICAL PROPERTIES IN NEW ENGLAND COASTAL WATERS: DECOMPOSITION INTO CONTRIBUTIONS FROM OPTICALLY IMPORTANT CONSTITUENTS ABSTRACT INHERENT OPTICAL PROPERTIES IN NEW ENGLAND COASTAL WATERS: DECOMPOSITION INTO CONTRIBUTIONS FROM OPTICALLY IMPORTANT CONSTITUENTS Morrison, J. R. and Sosik, H. M. Woods Hole Oceanographic Institution,

More information

Monitoring Turbidity in Prai River Estuary Using Digital Camera Imagery

Monitoring Turbidity in Prai River Estuary Using Digital Camera Imagery Monitoring Turbidity in Prai River Estuary Using Digital Camera Imagery H. S. Lim, M. Z. MatJafri, and K. Abdullah School of Physics, Universiti Sains Malaysia, 800 Penang, Malaysia. Tel: +604-6566, Fax:

More information

Supplementary Information

Supplementary Information Supplementary Information Oxygen-Deficient Zirconia (ZrO2-x): A New Material for Solar Light Absorption Apurba Sinhamahapatra 1, Jong-Pil Jeon 1, Joonhee Kang 1, Byungchan Han 2, * and Jong-Sung Yu 1,

More information

HI EPA Compliant Turbidity Meter HI EPA Compliant Turbidity and Chlorine Meter

HI EPA Compliant Turbidity Meter HI EPA Compliant Turbidity and Chlorine Meter HI 98703 EPA Compliant Turbidity Meter HI 93414 EPA Compliant Turbidity and Chlorine Meter SPECIFICATIONS Turbidity (HI 93414 & HI 98703) Range Range Selection ACCESSORIES HI 710005 Voltage adapter HI

More information

EPA Compliant Turbidity & Chlorine Meter

EPA Compliant Turbidity & Chlorine Meter EPA Compliant Turbidity & Chlorine Meter New Turbidity Technology from HANNA HANNA s new HI 98703 and HI 93414 utilize an EPA compliant tungsten light source and state-of-the-art optical system that allow

More information

Airborne Hyperspectral Potential for Coastal Biogeochemistry of the Scheldt Estuary and Plume

Airborne Hyperspectral Potential for Coastal Biogeochemistry of the Scheldt Estuary and Plume Airborne Hyperspectral Potential for Coastal Biogeochemistry of the Scheldt Estuary and Plume M. Shimoni & M. Acheroy Signal and Image Centre, Royal Military Academy; D. Sirjacobs & S. Djenidi GeoHydrodynamic

More information

Use of the first and second chlorophyll absorption bands for marine biogeochemical patch recognition

Use of the first and second chlorophyll absorption bands for marine biogeochemical patch recognition Indian Journal of Marine Sciences Vol. 34(4), December 2005, pp. 387-395 Use of the first and second chlorophyll absorption bands for marine biogeochemical patch recognition Karl Heinz Szekielda Geography

More information

ScreenMaster RVG200 Paperless recorder

ScreenMaster RVG200 Paperless recorder ABB MEASUREMENT & ANALYTICS TECHNICAL DESCRIPTION ScreenMaster RVG200 Paperless recorder Online prediction of the optimum coagulant dosage for potable water treatment using the RVG200 paperless recorder

More information

Factsheet: City of West Haven Water Quality and Stormwater Summary

Factsheet: City of West Haven Water Quality and Stormwater Summary 79 Elm Street Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer Factsheet: City of West Haven Water Quality and Stormwater Summary This document was created for each

More information

Appendix A. Proposal Format. HICO Data User s Proposal

Appendix A. Proposal Format. HICO Data User s Proposal Appendix A. Proposal Format HICO Data User s Proposal Title of Proposal: A hyperspectral atmospheric correction algorithm to retrieve water-leaving radiance signal from HICO data Principal Investigator

More information

NASA Workshop for Remote Sensing of Coastal & Inland Waters

NASA Workshop for Remote Sensing of Coastal & Inland Waters NASA Workshop for Remote Sensing of Coastal & Inland Waters Madison, Wisconsin June 20-22, 2012 Dr. Robert Shuchman, MTRI George Leshkevich, NOAA GLERL Contributors: Michael Sayers, MTRI Colin Brooks,

More information

A Study on Red Tide Detection Technique by Comparison of Spectral Similarity

A Study on Red Tide Detection Technique by Comparison of Spectral Similarity , pp.137-141 http://dx.doi.org/10.14257/astl.2017.145.27 A Study on Red Tide Detection Technique by Comparison of Spectral Similarity Su-Ho Bak 1, Do-Hyun Hwang 1, Heung-Min Kim 1, Don-Hyug Kang 1 and

More information

7. Requirements for future ocean color satellite sensors. Menghua Wang, IOCCG Lecture Series Atmospheric Correction

7. Requirements for future ocean color satellite sensors. Menghua Wang, IOCCG Lecture Series Atmospheric Correction 7. Requirements for future ocean color satellite sensors Significant efforts are needed for improvements of water color products in the inland & coastal regions: Turbid Waters (violation of the NIR black

More information

ENVI Tutorial: Using SMACC to Extract Endmembers

ENVI Tutorial: Using SMACC to Extract Endmembers ENVI Tutorial: Using SMACC to Extract Endmembers Table of Contents OVERVIEW OF THIS TUTORIAL...2 INTRODUCTION TO THE SMACC ENDMEMBER EXTRACTION METHOD...3 EXTRACT ENDMEMBERS WITH SMACC...5 Open and Display

More information

OTC PP. Measuring Oil in Water: A Sanity Check Lew Brown, Mason Ide, and Peter Wolfe, Fluid Imaging Technologies, Inc.

OTC PP. Measuring Oil in Water: A Sanity Check Lew Brown, Mason Ide, and Peter Wolfe, Fluid Imaging Technologies, Inc. OTC-20192-PP Measuring Oil in Water: A Sanity Check Lew Brown, Mason Ide, and Peter Wolfe, Fluid Imaging Technologies, Inc. Copyright 2009, Offshore Technology Conference This paper was prepared for presentation

More information

Card #1/24. Describe how thermal energy is passed on in terms of ions Using these ideas explain how a convection current occurs

Card #1/24. Describe how thermal energy is passed on in terms of ions Using these ideas explain how a convection current occurs Card #1/24 Card #2/24 Topic: Conduction Topic: Convection In what state of matter does conduction occur? In what states of matter does convection occur? Explain why it needs to be in this state? Define

More information

Simultaneous atmospheric correction and quantification of suspended particulate matter in the Guadalquivir estuary from Landsat images

Simultaneous atmospheric correction and quantification of suspended particulate matter in the Guadalquivir estuary from Landsat images doi:10.5194/piahs-368-15-2015 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). 15 Simultaneous atmospheric

More information

INACCURACIES OF INPUT DATA RELEVANT FOR PV YIELD PREDICTION

INACCURACIES OF INPUT DATA RELEVANT FOR PV YIELD PREDICTION INACCURACIES OF INPUT DATA RELEVANT FOR PV YIELD PREDICTION Stefan Krauter, Paul Grunow, Alexander Preiss, Soeren Rindert, Nicoletta Ferretti Photovoltaik Institut Berlin AG, Einsteinufer 25, D-10587 Berlin,

More information

SGLI/GCOM-C1. Algorithm Theoretical Basic Document. Ocean net primary productivity (ONPP)

SGLI/GCOM-C1. Algorithm Theoretical Basic Document. Ocean net primary productivity (ONPP) SGLI/GCOM-C1 Algorithm Theoretical Basic Document Ocean net primary productivity (ONPP) Version 3.3 31 March 2016 PI: Toru Hirawake 1* Co-I: Amane Fujiwara 2, Tomonori Isada 3 and Sei-ichi Saitoh 1, 4

More information

Introduction. Equipment Required. Procedure A. Blank Measurement. Cyclops In Vivo Chlorophyll Calibration Procedure

Introduction. Equipment Required. Procedure A. Blank Measurement. Cyclops In Vivo Chlorophyll Calibration Procedure Introduction Cyclops sensors provide an analog output voltage proportional to the sample concentration being measured. This procedure describes how to calibrate Cyclops sensors to approximate chlorophyll

More information

INTERANNUAL VARIABILITY OF CHLOROPHYLL CONCENTRATION IN THE EASTERN ARABIAN SEA

INTERANNUAL VARIABILITY OF CHLOROPHYLL CONCENTRATION IN THE EASTERN ARABIAN SEA INTERANNUAL VARIABILITY OF CHLOROPHYLL CONCENTRATION IN THE EASTERN ARABIAN SEA A Summer Internship Report BY MS. Satlaj Karanje Under the guidance of Dr. S. Prasanna Kumar Scientist, NIO, Goa Department

More information

Laboratory # 1. Measurement of Water Quality Parameters

Laboratory # 1. Measurement of Water Quality Parameters CEE 311 Environmental Engineering I Fall 2015 Laboratory # 1 Dr. Jagadish Torlapati Engineering Objectives Measurement of Water Quality Parameters 1. To learn about parameters that characterize water quality

More information

ATS430 turbidity and TSS Optimize your water discharge quality through accurate turbidity and suspended solids measurement

ATS430 turbidity and TSS Optimize your water discharge quality through accurate turbidity and suspended solids measurement Application note AN/ANAINST/022-EN Rev.A ATS430 turbidity and TSS Optimize your water discharge quality through accurate turbidity and suspended solids measurement Maintain regulatory compliance and eliminate

More information

Reports. Report on the development of the Vistula river plume in the coastal waters of the Gulf ofgdańskduringthemay 2010 flood. 1.

Reports. Report on the development of the Vistula river plume in the coastal waters of the Gulf ofgdańskduringthemay 2010 flood. 1. Reports Report on the development of the plume in the coastal waters of the Gulf ofgdańskduringthemay 2010 flood OCEANOLOGIA, 52(2), 2010. pp. 311 317. C 2010,byInstituteof Oceanology PAS. KEYWORDS River

More information

METODOLOGIE E APPROCCI PER OSSERVAZIONI IPERSPETTRALI IN ACQUE COSTIERE E INTERNE

METODOLOGIE E APPROCCI PER OSSERVAZIONI IPERSPETTRALI IN ACQUE COSTIERE E INTERNE Data Exploitation della missione PRISMA, precursore delle missioni iperspettrali nazionali Roma, 1-3 marzo 2017 METODOLOGIE E APPROCCI PER OSSERVAZIONI IPERSPETTRALI IN ACQUE COSTIERE E INTERNE Federica

More information

8. PYROMETRY FUNDAMENTALS

8. PYROMETRY FUNDAMENTALS 8. PYROMETRY FUNDAMENTALS Being part of a highly specialized field of measuring techniques has developed a certain mysterious aura about it. This mystery stems from the false perception that the technique

More information

Emission Spectroscopy and Nephelometry

Emission Spectroscopy and Nephelometry World Bank & Government of The Netherlands funded Training module # WQ - 35 Emission Spectroscopy and Nephelometry New Delhi, February 2000 CSMRS Building, 4th Floor, Olof Palme Marg, Hauz Khas, New Delhi

More information

Application of Gliders for Near-Real Time METOC Data Collection Capability for Battlespace Characterization

Application of Gliders for Near-Real Time METOC Data Collection Capability for Battlespace Characterization DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Application of Gliders for Near-Real Time METOC Data Collection Capability for Battlespace Characterization Charles Trees

More information

Note that approval of a data user proposal does not imply Navy S&T financial support.

Note that approval of a data user proposal does not imply Navy S&T financial support. HICO Data User Agreement Between the Naval Research Laboratory And The HICO Data User Principal Investigator Issued on: HICO-based water transparency Mapping in Pearl River Estuary (PRE) of South China

More information

A Performance Model for Bifacial PV Modules

A Performance Model for Bifacial PV Modules A Performance Model for Bifacial PV Modules Daniel Riley 1, Clifford Hansen 1, Joshua Stein 1, Matthew Lave 1, Johnson Kallickal 1, Bill Marion 2, Fatima Toor 3 1 Sandia National Laboratories, Albuquerque,

More information

Field Survey and Satellite Validation of Water Quality Parameters of Rivers in the Surroundings of Santo Domingo Metropolitan Area, Dominican Republic

Field Survey and Satellite Validation of Water Quality Parameters of Rivers in the Surroundings of Santo Domingo Metropolitan Area, Dominican Republic EMECS 9 (Baltimore, 27 31 August 2011) Field Survey and Satellite Validation of Water Quality Parameters of Rivers in the Surroundings of Santo Domingo Metropolitan Area, Dominican Republic Hiroshima University

More information

ATS430 turbidity and TSS Optimize your water discharge quality through accurate turbidity and suspended solids measurement

ATS430 turbidity and TSS Optimize your water discharge quality through accurate turbidity and suspended solids measurement A B B M E A S U R E M E N T & A N A LY T I C S A P P L I C AT I O N N OT E ATS430 turbidity and TSS Optimize your water discharge quality through accurate turbidity and suspended solids measurement Maintain

More information

25 th ACRS 2004 Chiang Mai, Thailand

25 th ACRS 2004 Chiang Mai, Thailand 16 APPLICATION OF DIGITAL CAMERA DATA FOR AIR QUALITY DETECTION H. S. Lim 1, M. Z. MatJafri, K. Abdullah, Sultan AlSultan 3 and N. M. Saleh 4 1 Student, Assoc. Prof. Dr., 4 Mr. School of Physics, University

More information

Factsheet: Town of Hamden Water Quality and Stormwater Summary

Factsheet: Town of Hamden Water Quality and Stormwater Summary 79 Elm Street Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer Factsheet: Town of Hamden Water Quality and Stormwater Summary This document was created for each town

More information

Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations

Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jc006160, 2010 Characterization of global ocean turbidity from Moderate Resolution Imaging Spectroradiometer ocean color observations Wei Shi

More information

Factsheet: Town of Deep River Water Quality and Stormwater Summary

Factsheet: Town of Deep River Water Quality and Stormwater Summary 79 Elm Street Hartford, CT 06106-5127 www.ct.gov/deep Affirmative Action/Equal Opportunity Employer Factsheet: Town of Deep River Water Quality and Stormwater Summary This document was created for each

More information

A HYBRID FACADE THAT COMBINES AN ALGAL BIOREACTOR WITH PHOTOVOLTAICS

A HYBRID FACADE THAT COMBINES AN ALGAL BIOREACTOR WITH PHOTOVOLTAICS A HYBRID FACADE THAT COMBINES AN ALGAL BIOREACTOR WITH PHOTOVOLTAICS T. Granata, M. Krehel, S. Wittkopf and M. Egli Lucerne University of Applied Sciences and Arts (HSLU), Technikumstr 21 CH-6048 Horw

More information

Triton TR8 Turbidity Analyzer

Triton TR8 Turbidity Analyzer Triton TR8 Turbidity Analyzer The Clear Choice Water to Sludge ELECTRO-CHEMICAL DEVICES What is Turbidity? Standard Methods for the Examination of Water and Wastewater describes Turbidity as an expression

More information

Remote Sensing of Water Quality in California s Water Systems. Christine M. Lee NASA Jet Propulsion Laboratory

Remote Sensing of Water Quality in California s Water Systems. Christine M. Lee NASA Jet Propulsion Laboratory Remote Sensing of Water Quality in California s Water Systems Christine M. Lee NASA Jet Propulsion Laboratory Overall vision. To advance the capability of multiple stakeholders in California s water resources

More information