Ocean Acidification the other CO2 problem..

Size: px
Start display at page:

Download "Ocean Acidification the other CO2 problem.."

Transcription

1 Ocean Acidification the other CO2 problem..

2 1. Ocean Acidification the other CO2 problem..

3 Recall: Atm CO 2 already above recent planetary history CO 2 Today: What does this do to ocean water?

4 Main Outline: 1. Brief review from last time: Chemistry (How does ocean absorb CO 2, and what happens?) 2. Ph Changes: why small is Big.. 3. Effects on ocean life

5 Recall from last lecture: CO2 is an ACID once it dissolves in water: CO 2 + H 2 O ===> H 2 CO 3 (carbonic acid)

6 Aside: Sources of Acid in Rain This is Why Natural water (and rain) is slightly acidic: CO 2 + H 2 O ===> H 2 CO 3 (carbonic acid)

7 Acid Rain has similar genesis: Much Coal: has lots of sulfur, some nitrogen burn it.. and Acid rain, ~75% due to SO 2 emissions: SO 2 + H 2 O ===> H 2 SO 4 (sulfuric acid) Acid rain, ~25% due to NOX emissions: NO 2 + H 2 O ===> HNO 3 (nitric acid)

8 Recall: Carbonate Buffer system H 2 O + CO 2 == H 2 CO 3 == H + + HCO 3 - == 2 H + + CO 3-2 Note each carbon in CO 2 that goes into the ocean as one thing, can turn into three separate forms

9 Overall: The Ocean is major Sink of CO 2 Because increasing levels of Atm CO 2 have increased the air-sea gradients.

10 BUT: there are some areas that are also sources! Oceanic concentration of CO2 depends on temperature, salinity and biological productivity. CO2 flux into/out of ocean depends on air-sea CO2 difference. CO 2 from A to O CO 2 from O to A

11 So since CO2 forms an Acid, how much is ph of ocean be affected?

12 H 2 O + CO 2 == H 2 CO 3 == H + + HCO 3 - = 2 H + + CO 3-2 Recall: ph = measure of concentration of H+ So: question becomes how much extra H+ will there be?

13 Acid-Base Buffering is Key Seawater - is slightly alkaline Average ~ 7.8 All sea life has evolved for this Ph ph is kept very constant by strong buffering -

14 Chemical Buffering A solution composed acids & salts such that addition of strong acid (or base) does not change the PH very much.. = there is lots of excess capacity to absorb a bunch of extra protons.. (sort of spreading them around to other ions.)

15 Real ocean buffering is complicated, and depends on balancing overall charge with many other salts in seawater

16 What this means: Addition of CO 2 won t be able to change the PH nearly as it would if NO buffering..

17 BUT remember: the ph scale is Logarithmic* Lower values are more acidic 1 unit decrease means 10 times more more acid (H+ ions) in the water (=1000% increase!) Just like the Richter scale for earthquakes..

18 2. So how much change has there been?

19 Steady decrease in ocean Ph with increase in CO 2 Atm - just like predictions Note units are small- due to buffering

20 Since start of industrial revolution: ~ 0.1 unit drop- & accelerating fast. BUT 0.1 unit decrease means ~26% more acid (H+ ions) in the ocean water vs s

21 Future Projections 0.3 to 0.4 unit decrease by end of current century =~ % more acid (H+ ions) vs s

22 3. What will effects be on ocean life?

23 Keep in mind: CO2 always has gone up and down with glacial cycles But: CO 2 * We are already above any CO2 level of the last million years..(and on a path to go much higher..) * There are no strong feedbacks to debate- if CO2 goes up- ph will continue to drop.. To levels life current ocean life forms have NEVER seen in their evolution

24 And RATE of change now is ~ 100x faster than any period we know of.. CO 2

25 Effects most important for animals that secrete calcium carbonate shells

26 Two basic problems 1. Obvious: Increased H+ (acid) dissolves CaCO 3 shells.. (think lemon juice and baking soda experiment in high school chem) 2. Less obvious: its harder to even make shells in the first place.. a. Carbonate Ion (CO3-) is what organisms need to make their shells b. ph drop actually decreases this, even as acid goes up (via Carbonate Buffer System equations)

27 Corals : Coupled temp and CO2 projections

28 Projected surface concentrations of CO3- ion into future vs. what corals need Aragonite saturation is a proxy for having enough CO3 ion

29 Corals : Calcification vs. CO2 projections

30 World coral zones- Calcification vs. CO2 projections

31 Shellfish?

32

33 But bigger worry by far: Open ocean plankton base of all marine ecosystems

34 In ocean ~ all plants at base of entire food chains are single celled plankton Many of these ocean algae make CaCO3 shells!

35 Saturation state for plankton CaCo3 shells ( ~ ability of plankton to make their shells) in ocean BEFORE Industrial Revolution Note important latitude (temperature) dependence all gasses dissolve better in colder water-

36 Year 2040 Important ecosystem shifts at all but tropical latitudes?

37 Year 2100 Dramatic Ecosystem changes everywhere.. Most of Arctic oceans would be totally unable to support calcareous algae?

38 Final Quiz ( no wrong answers..!) 1) All Power point vs. Power point +Board: a) which do you prefer? b) Why? 2) List your top 2 suggestions to improve this course! (more if you want..)

39 II. OCEAN CARBON SEQUESTRATION and Geo-Engineering Should we attempt to engineer the planet?

40 geo-engineering?

41 What is geo-engineering? 1) Approaches that attempt to diminish effects or concentrations of greenhouse gases Or more broadly: 2) deliberately manipulating physical, chemical, or biological aspects of the Earth system

42 Currently becoming hot topic Example: Recent conference down the road at Asilomar (~ Monterey) brought together scientists from 14 countries

43 Also an extremely contentious topic Dueling Editorials after Asilomar Conf.

44 1) Carbon Capture and Storage a) CAPTURE CO 2 from smokestacks or atmosphere directly Then: 1) Geological storage? 2) Ocean CO 2 storage? 3) Mineral carbonation?

45 capture There are lots of chemical ways you can strip CO 2 out of a gas stream (or the air!) and concentrate it as ~ pure CO 2 - all cost $.

46 Deep Ocean Storage Pump liquid CO 2 (or drop solid CO2) into the deep ocean

47 CO 2 physical form changes with depth: gas vs. rising liquid vs. sinking liquid vs. solid: all depends on DEPTH (temp and pressure) If You put it > 3km deep, turns in liquid CO2 lakes on bottom of sea floor

48 Ocean Storage: upside Positives: * easy can put in deep ocean in many places, get similar effect Models suggest at least several hundred years sequestration maybe a lot more

49 Ocean Storage: downside Negatives: 1) TEMPORARY.. It will be back..

50 Recall: Global Ocean Conveyor Belt circulation

51 Recall: total turnover time of ocean = 1000 years Surface Ocean residence time = 100 years Upwelling Deep Water Formation Deep Cold Ocean residence time ~ 1000 years Recall: Residence time is the average amount of time a substance (in this case water) spends in a reservoir

52 Ocean Storage: downside Bigger Negatives 2) Toxicity to ocean life: as it mixes into ocean, huge plumes of very acidic water..

53 2. Biological Carbon Sequestration in the ocean

54 Recall Biological pump

55 CO 2 Biological Pump Plankton SURFACE OCEAN Sinking Organic matter (reduced carbon) CHO Heterotrophic bacteria CO 2 DEEP OCEAN

56 Biological Pump C removed on time scale of plankton bloom (=weeks) C Stays down there: depends on depth of sinking Particles (100 s of yrs? )!

57 Recall: whatever you put down deep would take on 100 s to 1000 yrs to get back up Surface Ocean residence time = 100 years Upwelling Deep Water Formation Deep Cold Ocean residence time ~ 1000 years

58 Ocean uptake 1: Fe Fertilization

59 Background: Plankton blooms can be enormous, typically associated with upwelled N and P

60 BUT some large regions of world ocean have lots of N and P.. But low plankton.why? Blue and black regions are high nutrients.. But low plankton

61 Answer in many places: Trace metal nutrients plants also need trace metal nutrients to grow for example Fe, Mg Cytochrome with Heme group- (Fe) involved in chl manufacture Center of Chlorophyll A (with Mg in center)

62 IRON Fe is one of key trace nutrients for plankton (and all plants) But in ocean, supply is often VERY limited. DUST is about it in many places

63 Gulf of Alaska is one such place.. Dust plume carrying critical Fe can only occur in summer..

64 So..what if you go out and dump a plume of Fe into the ocean.. Will it work? Yes. Up to now, about a dozen experiments already conducted- causes extensive plankton blooms

65 Give me half a tanker of iron, and I ll give you an ice age John Martin 1 John Martin was one of first to predict this effect. (He was a professor at Moss Landing down the road )

66 But: Commercial Ocean Fertilization?

67 Buy Now?

68 Some Pesky Scientists always will worry..

69 Problem #1: shifts ecosystem composition.. unknown effects.. `

70 Problem #2: Will Carbon actually go down deep where you want it? Bottom line: only small fraction actually reaches deep oceanand exactly how much depends on ecosystem structure!

71 Overall: Most Oceanographers are extremely wary of Fe Fertilization ideas due to these problems.. (And the law of unintended consequences )

72 However: Artificial upwelling? Lights Please

73 Artificial upwelling An alternate fertilization approach Mimics the natural process of upwelling Big difference vs. Fe: brings natural nutrient laden water to surface Overall effects?

74 Some Other Related Ideas: Tube the Ocean? (dude)

75 Dr. Lovelock* strikes again! Similar Idea: * put couple of bzillion plastic tubes in ocean * wave motion + one way valve creates artificial upwelling * Gia hypothesis fame

76 Or: Saved by Salps?

77 Recall: The Martin curve Attenuation of sinking Particles (plankton remains ) is approximately exponential with depth POC Attenuation Most organic tissue is converted back into CO 2 by 500m Almost all (>90%) by 1000m

78 Saved by Salps? A Salp is gelatinous zooplankton..but makes largest and fastest sinking fecal pellets known to science..

79 The giant poop solution?

80 Overall: What do you think? Many, Many questions: Good ideas? Bad ideas, but necessary? Should we continue research on these things? Should we allow commercial companies to do large scale tests? Since sea is international zone, who is to say they can or can t?

81 end

82 Focus on Atm and Ocean CO 2 boxes ATM CO2 CO 2 dissolved in ocean water Is > 50 x all CO2 in atmosphere! Dissolved CO 2 Why? Because chemistry of ocean water can hold so much.. Not to scale..

83 But Recall: there is more chemistry 1) CO 2 dissolves in sea water forming Carbonic Acid: CO 2 + H 2 O => H 2 CO 3 2) Carbonic acids yields BIcarbonate and hydrogen ions: H 2 CO 3 => H + + HCO 3-3) Bicarbonate dissociates to another Hydrogen react and Carbonate ion: HCO 3- =>H + + CO 3 2-

OCEAN CARBON SEQUESTRATION and Geo-Engineering. Should we attempt to engineer the planet?

OCEAN CARBON SEQUESTRATION and Geo-Engineering. Should we attempt to engineer the planet? OCEAN CARBON SEQUESTRATION and Geo-Engineering Should we attempt to engineer the planet? Today: If we can t (= won t) stop burning carbon.. Are there other things we CAN do? And should we try? CO 2 Atm

More information

Ocean Production and CO 2 uptake

Ocean Production and CO 2 uptake Ocean Production and CO 2 uptake Fig. 6.6 Recall: Current ocean is gaining Carbon.. OCEAN Reservoir size: 38000 Flux in: 90 Flux out: 88+0.2=88.2 90-88.2 = 1.8 Pg/yr OCEAN is gaining 1.8 Pg/yr Sum of the

More information

Ironing Out Uncertainties in Climate Engineering. Ocean Fertilization: Ken Buesseler

Ironing Out Uncertainties in Climate Engineering. Ocean Fertilization: Ken Buesseler Ocean Fertilization: Ironing Out Uncertainties in Climate Engineering Ken Buesseler Senior Scientist Marine Chemistry and Geochemistry Dept. Woods Hole Oceanographic Institution Carbon Sequestration in

More information

CO 2 is the raw material used to build biomass (reduced to form organic matter)

CO 2 is the raw material used to build biomass (reduced to form organic matter) 1. The oceanic carbon system (a) Significance (b) CO 2 speciation (c) Total CO 2 (d) Atmosphere-ocean CO 2 exchange (e) Global status of CO 2 2. Human perturbations of N and P cycling 3. Other elements:

More information

Environmental Science. Physics and Applications

Environmental Science. Physics and Applications Environmental Science 1 Environmental Science. Physics and Applications. Carbon Cycle Picture from the IPCC report on the environment. 4. Carbon cycle 4.1 Carbon cycle, introduction 4.2 The oceans 4.3

More information

Ocean Acidification: Causes and Implications of Changing Ocean Chemistry

Ocean Acidification: Causes and Implications of Changing Ocean Chemistry Ocean Acidification: Causes and Implications of Changing Ocean Chemistry Karen McLaughlin Southern California Coastal Water Research Project January 23, 2014 Today s Talk (In Two Acts ) What is ocean acidification

More information

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon

The Carbon cycle. Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The Carbon cycle Atmosphere, terrestrial biosphere and ocean are constantly exchanging carbon The oceans store much more carbon than the atmosphere and the terrestrial biosphere The oceans essentially

More information

Ocean Acidification. Bibliography:

Ocean Acidification. Bibliography: When ecosystems undergo change it can have dramatic effects on the competition between species, food web dynamics and biodiversity. Ecosystems can undergo change by the addition of carbon dioxide into

More information

The Global Water Cycle

The Global Water Cycle The Global Water Cycle Water Unusual properties Central role in biogeochemistry Agent in global weathering cycles Water Outline Most abundant molecule on earths surface (1) Water: Properties and importance

More information

Lecture Ocean Acidification

Lecture Ocean Acidification Lecture Ocean Acidification What is Ocean Acidification? Since the beginning of the Industrial Revolution, the ph of surface ocean waters has fallen by 0.1 ph units. Moving the ocean's ph from 8.179 to

More information

2.2 - Nutrient Cycles. Carbon Cycle

2.2 - Nutrient Cycles. Carbon Cycle 2.2 - Nutrient Cycles Carbon Cycle Nutrients What are nutrients? Chemicals (C,O, N, P, H...) needed for life There is a constant amount of these nutrients on Earth and they are stored in different places.

More information

WHY CARBON? The Carbon Cycle 1/17/2011. All living organisms utilize the same molecular building blocks. Carbon is the currency of life

WHY CARBON? The Carbon Cycle 1/17/2011. All living organisms utilize the same molecular building blocks. Carbon is the currency of life The Carbon Cycle WHY CARBON? Inventories: black text Fluxes: purple arrows Carbon dioxide (+4) AN = 6 (6P/6N) AW = 12.011 Oxidation: -4 to +4 Isotopes: 11 C, 12 C, 1 C, 14 C Methane (-4) Carbon is the

More information

20 1 Properties of Ocean Water (1) for walkabout notes.notebook. April 24, 2018

20 1 Properties of Ocean Water (1) for walkabout notes.notebook. April 24, 2018 Although pure water is tasteless, odorless and colorless, ocean water is not pure. Ocean water is a complex mixture of: dissolved solids and gasses, small particles of matter, tiny organisms, chemicals

More information

Great Salt Lake Planktonic and Benthic Habitats

Great Salt Lake Planktonic and Benthic Habitats Great Salt Lake Planktonic and Benthic Habitats Hypersaline lakes are often regarded as "simple" ecosystems because they typically have fewer species than freshwater lakes. Although fewer species are capable

More information

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection

CO 2. and the carbonate system II. Carbon isotopes as a tracer for circulation. The (solid) carbonate connection with. The ocean climate connection CO 2 and the carbonate system II Carbon isotopes as a tracer for circulation The (solid) carbonate connection with ocean acidity Climate The ocean climate connection The carbon cycle the carbon cycle involves

More information

Advances in Our Understanding of Ocean Iron. Fertilization: What comes next? Ken Buesseler. Marine Chemistry and Geochemistry Department

Advances in Our Understanding of Ocean Iron. Fertilization: What comes next? Ken Buesseler. Marine Chemistry and Geochemistry Department Advances in Our Understanding of Ocean Iron Fertilization: What comes next? Ken Buesseler Marine Chemistry and Geochemistry Department Woods Hole Oceanographic Institution Ocean Iron Fertilization & Carbon

More information

Introduction to Oceanic-Atmospheric Carbon Dioxide Interactions

Introduction to Oceanic-Atmospheric Carbon Dioxide Interactions Introduction to Oceanic-Atmospheric Carbon Dioxide Interactions Dr. Michael J Passow, Earth2Class Guest Scientist: Dr. Jerry McManus Originally presented 14 Oct 2017 The Importance of the Carbon Cycle

More information

Oceanic CO 2 system - Significance

Oceanic CO 2 system - Significance OCN 401 Biogeochemical Systems (10.25.18) (10.30.18) (Schlesinger: Chapter 9) (11.27.18) Oceanic Carbon and Nutrient Cycling - Part 2 Lecture Outline 1. The Oceanic Carbon System 2. Nutrient Cycling in

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 623 Chemical Oceanography 31 January 2013 Reading: Libes, Chapter 15, pp. 383 394 (Remainder of chapter will be used with the lecture: Biogenic production, carbonate

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 62 Chemical Oceanography Reading: Libes, Chapter 15, pp. 8 94 (Remainder of chapter: Biogenic production, carbonate saturation and sediment distributions ) 1. CO 2

More information

Oceans OUTLINE. Reading: White, Chapter 15 Today Finish estuaries and particles, then: 1. The oceans: currents, stratification and chemistry

Oceans OUTLINE. Reading: White, Chapter 15 Today Finish estuaries and particles, then: 1. The oceans: currents, stratification and chemistry Oceans OUTLINE Reading: White, Chapter 15 Today Finish estuaries and particles, then: 1. The oceans: currents, stratification and chemistry Next Time Salinity Exercise bring something to calculate with

More information

Earth's Atmosphere. Atmospheric Layers. Atmospheric Layers

Earth's Atmosphere. Atmospheric Layers. Atmospheric Layers Earth's Atmosphere Today we will talk about the part of Earth that is most important to our survival - the atmosphere Earth's atmosphere is unique in the Solar System and has changed greatly over time

More information

Global Carbon Cycle AOSC 433/633 & CHEM 433 Ross Salawitch

Global Carbon Cycle AOSC 433/633 & CHEM 433 Ross Salawitch Global Carbon Cycle AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Goals for today: Overview of the Global Carbon Cycle scratching below the surface

More information

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at GLOBAL WARMING Global warming is evidenced by a steady rise in average global temperatures, changing climate, the fact that snow cover has decreased 10% over the past half-century and that glaciers have

More information

from volcanoes; carbonate (CaCO 3 + CO 2 + H 2 . The sinks are carbonate rock weathering + SiO2. Ca HCO

from volcanoes; carbonate (CaCO 3 + CO 2 + H 2 . The sinks are carbonate rock weathering + SiO2. Ca HCO The Carbon Cycle Chemical relations We would like to be able to trace the carbon on Earth and see where it comes and where it goes. The sources are CO 2 from volcanoes; carbonate (CaCO 3 ) formation in

More information

The Carbon Cycle. 1. The Global Carbon Budget

The Carbon Cycle. 1. The Global Carbon Budget The Carbon Cycle 1. The global carbon budget... 1 2. The oceanic carbon cycle... 7 3. The terrestrial carbon cycle and "missing sink"... 12 4. Fossil fuel emissions of CO 2... 15 1. The Global Carbon Budget

More information

Chapter 5 Water & Seawater. Chapter 5 Water & Seawater

Chapter 5 Water & Seawater. Chapter 5 Water & Seawater Chapter 5 Water & Seawater Chapter 5 Water & Seawater Chapter Overview Water has many unique thermal and dissolving properties. Seawater is mostly water molecules but has dissolved substances. Ocean water

More information

11/15. Agenda. Albedo Effect Simulator: Discussion Climate Change Notes

11/15. Agenda. Albedo Effect Simulator: Discussion Climate Change Notes Agenda 11/15 Albedo Effect Simulator: Discussion Climate Change Notes Announcements -Test (11/20) -Notebook check (tomorrow) -Lab due (11.59pm, tomorrow) -No quiz tomorrow Criteria Table of contents labeled

More information

Greenhouse Effect & Climate Change

Greenhouse Effect & Climate Change Greenhouse Effect & Climate Change Greenhouse Effect Light energy from the sun (solar radiation) is either reflected or absorbed by the Earth. Greenhouse Effect When it is absorbed by the Earth (or something

More information

Climate Change. Greenhouse Effect & Global Warming

Climate Change. Greenhouse Effect & Global Warming Climate Change What is climate change Greenhouse Effect & Global Warming Global Warming = World wide increase in average Temp. Cause = greenhouse effect 1 Some would argue the Global Warming trend is natural

More information

Biology 13- Marine Biology

Biology 13- Marine Biology Introductions Biology 13- Marine Biology Instructor: Dr. Kevin Raskoff Email: kraskoff@mpc.edu Phone: (831) 646-4132 Office: Life Science, 203B (upstairs) Office hours: Mon-Thurs- 10-11; Thur 5-6pm; or

More information

Atmosphere, the Water Cycle and Climate Change

Atmosphere, the Water Cycle and Climate Change Atmosphere, the Water Cycle and Climate Change OCN 623 Chemical Oceanography 16 April 2013 (Based on previous lectures by Barry Huebert) 2013 F.J. Sansone 1. The water cycle Outline 2. Climate and climate-change

More information

Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or

Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or no taste, color, or smell. Salt water water that contains

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle In a nutshell We are mining fossil CO 2 and titrating into the oceans, (buffered by acid-base chemistry) Much of the fossil CO 2 will remain in the atmosphere for thousands of years

More information

HYDROSPHERE EOG REVIEW

HYDROSPHERE EOG REVIEW HYDROSPHERE EOG REVIEW 1 Why is fresh water in short supply on Earth? A. Most of it is frozen B. Most of it is polluted C. Most of it is in the atmosphere D. Most of it is trapped underground A. About

More information

High School Climate Science Curriculum Course learning goals. October 2011

High School Climate Science Curriculum Course learning goals. October 2011 1 High School Climate Science Curriculum Course learning goals October 2011 Current Climate 1. Earth climate is determined by a balance between absorbed sunlight and emitted infrared radiation. Because

More information

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA Background Information on Organisms ALGAE Ecosphere Algae are photosynthetic organisms that occur in most habitats, ranging from marine and freshwater to desert sands and from hot boiling springs in snow

More information

Biomass and Biofuels

Biomass and Biofuels Biomass and Biofuels PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 11, 2014 What is bioenergy? Photosynthesis: the primary energy

More information

Global Climate Change

Global Climate Change Global Climate Change By Ross Stewart 8A It's not a hoax. Climate change, ocean acidification, and sea level rise are all real, and they're happening right now. If humans never existed, this would never

More information

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science CLIMATE CHANGE AND ACID RAIN Mr. Banks 7 th Grade Science COMPOSITION OF AIR? COMPOSITION OF AIR? 78% Nitrogen 21% Oxygen 0.93% Argon and other noble gases 0.04% carbon dioxide Variable amounts of water

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Global Biogeochemical cycles and Ocean Productivity

Global Biogeochemical cycles and Ocean Productivity Global Biogeochemical cycles and Ocean Productivity Biological Oceanography Recall: goal is not to understand the biology of one particular organism (or group), but to understand organisms fit into the

More information

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes!

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes! 1 2 3 Yes! 4 Yes! But Earth's climate is always changing! 5 Yes! But Earth's climate is always changing! 6 Throughout its 4.5 billion year history, Earth's climate has alternated between periods of warmth

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

Laboratory Exercise #6 - Introduction to Oceanography

Laboratory Exercise #6 - Introduction to Oceanography Laboratory Exercise #6 - Introduction to Oceanography Page # - 1 A. Introduction Oceanography is obviously the study of the oceans. However, there are many different branches within the science of oceanography

More information

What is the carbon cycle?

What is the carbon cycle? What is the carbon cycle? By NASA Earth Observatory, adapted by Newsela staff on 03.29.17 Word Count 1,454 Carbon is both the foundation of all life on Earth and the source of the majority of energy consumed

More information

yk4lm (1:26) vd_90 (4:37)

yk4lm (1:26)  vd_90 (4:37) Properties of Water Video Notes http://www.youtube.com/watch?v=2vfld5 yk4lm (1:26) http://www.youtube.com/watch?v=ivu4nl vd_90 (4:37) https://www.youtube.com/watch?v=0ens nj4zfz8#t=4.4600086 (4:58) new

More information

1) The Changing Carbon Cycle

1) The Changing Carbon Cycle 1) The Changing Carbon Cycle WG1 Chapter 6, figure 1 The numbers represent carbon reservoirs in Petagrams of Carbon (PgC; 10 15 gc) and the annual exchanges in PgC/year. The black numbers and arrows show

More information

BC Science Nutrient Cycles in Ecosystems

BC Science Nutrient Cycles in Ecosystems BC Science 10 2.2 Nutrient Cycles in Ecosystems Notes Nutrients are chemicals required for growth and other life processes. Nutrients move through the biosphere in nutrient cycles (n.c), or exchanges.

More information

Pennsylvania Senior Environment Corps. Table of Contents Part 2 Getting Started:. 21 Chemical Analysis... 22

Pennsylvania Senior Environment Corps. Table of Contents Part 2 Getting Started:. 21 Chemical Analysis... 22 Table of Contents Part 2 Getting Started:. 21 Chemical Analysis.... 22 3 Chapter 2: Getting Started 21 Chemical Analysis of the Water Dependent on your area, you may measure for several parameters. In

More information

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems Name: Teacher: Pd. Date: STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems TEK 8.11D: Recognize human dependence on ocean systems and explain how human activities such as runoff, artificial

More information

ocean-climate.org between ocean and climate 6 fact sheets for the general public

ocean-climate.org between ocean and climate 6 fact sheets for the general public The interactions between ocean and climate 6 fact sheets for the general public The role of the ocean in climate dynamics A Living Ocean, a Living Planet THE OCEAN, THE PLANET S THERMOSTAT......p.3 THE

More information

student ocean acidification Part 1: What Happens to ph? Introduction Activity Materials: Procedure:

student ocean acidification Part 1: What Happens to ph? Introduction Activity Materials: Procedure: ocean acidification Part 1: What Happens to ph? Introduction ph (potential of Hydrogen) is the measure of the acidity or alkalinity (basicity) of a substance. It is measured on a scale of 1.0 to 14.0.

More information

What is the carbon cycle?

What is the carbon cycle? What is the carbon cycle? By NASA Earth Observatory, adapted by Newsela staff on 03.29.17 Word Count 1,160 Carbon is both the foundation of all life on Earth and the source of the majority of energy consumed

More information

Carbon cycling and climate: the CO 2. connection

Carbon cycling and climate: the CO 2. connection Carbon cycling and climate: the C 2 connection Gasses in the ocean The carbonate system (and buffering in the ocean) Carbon dioxide and the climate connection. Importance of C 2 to climate C 2 acts like

More information

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ).

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ). The Nitrogen Cycle Nitrogen is essential for many processes; it is crucial for all life on Earth. It is in all amino acids, is incorporated into proteins, and is present in the bases that make up nucleic

More information

Catlin Arctic Survey 2010 Ocean Acidification

Catlin Arctic Survey 2010 Ocean Acidification Catlin Arctic Survey 2010 Ocean Acidification What are Catlin Arctic Surveys Introduction to the issue: Ocean Acidification An Ice Base and an Exploration Team Sampling and Experiments Observational (Biochemistry,

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

Nitrogen cycle Important steps

Nitrogen cycle Important steps Nitrogen cycle Nitrogen cycle Important steps Stage1 Entry and Accumulation Ammonia is introduced into the water via tropical fish waste, uneaten food, and decomposition. These will break down into ammonia

More information

Atmosphere. The layer of gas surrounding the Earth

Atmosphere. The layer of gas surrounding the Earth Earth and Space Notes: Atmosphere Atmosphere The layer of gas surrounding the Earth Breakdown: Nitrogen (~79%) Oxygen (~21%) Argon, CO2, methane, ozone, water, nitrous oxides, sulphur dioxide, etc Gases

More information

CHAPTER 5 Water and Seawater

CHAPTER 5 Water and Seawater 1 2 3 4 5 6 7 8 9 10 11 12 13 CHAPTER 5 Water and Seawater Chapter Overview Water has many unique thermal and dissolving properties. Seawater is mostly water molecules but has dissolved substances. Ocean

More information

Denitrification 2/11/2011. Energy to be gained in oxidation. Oxidized N. Reduced N

Denitrification 2/11/2011. Energy to be gained in oxidation. Oxidized N. Reduced N Oxidized N Energy to be gained in oxidation Reduced N (Sarmiento & Gruber, 2006) Denitrification The reduction of NO 3 and NO 2 to N 2 during heterotrophic respiration of organic matter. Occurs predominately

More information

CTD (CONDUCTIVITY-TEMPERATURE-DEPTH)

CTD (CONDUCTIVITY-TEMPERATURE-DEPTH) CTD (CONDUCTIVITY-TEMPERATURE-DEPTH) Related lesson plan Fresh and Seawater Density What is this sensor? CTD is an acronym for Conductivity, Temperature and Depth. However, this is somewhat misleading

More information

CHEMISTRY WESTMINSTER SCHOOL THE CHALLENGE Thursday 28 April Time allowed: 30 minutes. Please write in black or blue ink.

CHEMISTRY WESTMINSTER SCHOOL THE CHALLENGE Thursday 28 April Time allowed: 30 minutes. Please write in black or blue ink. WESTMINSTER SCHOOL THE CHLLENGE 2016 CHEMISTRY Thursday 28 pril 2016 Time allowed: 30 minutes Please write in black or blue ink. Write your answers in the spaces provided. For examiner use only Total Mark

More information

Carbon Sequestration Why and How?

Carbon Sequestration Why and How? 16 th March 2017 Carbon Sequestration Why and How? Christopher Johns Research Manager Northern Australia and Land Care Research Programme Key Points To achieve the global warming targets set by the Paris

More information

Global warming is already happening

Global warming is already happening Climate change Global warming is already happening and it is not just temperature Is the change significant? why, yes We are no longer involved in just a scientific debate over how observations fit theories

More information

Global Carbon Cycle - II

Global Carbon Cycle - II Global Carbon Cycle - II OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 11 1. Current status of global CO 2 2. CO 2 speciation in water 3. Atmosphere ocean interactions 4. Ocean acidification

More information

Seawater TA Initials: for finished Activity. 1 & 2 Or lose 10% of credit!

Seawater TA Initials: for finished Activity. 1 & 2 Or lose 10% of credit! Name: Section/ TA: Seawater TA Initials: for finished Activity. 1 & 2 Or lose 10% of credit! Seawater is an unusual substance. It is pure water mixed with various salts, trace elements, and gases. The

More information

NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS. Pages ,

NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS. Pages , NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS Pages 435-437, 440-452 ENVIRONMENTAL SCIENCE The study of the interactions between humans and their own environment Earth s Layers Geosphere Earth s rock

More information

Chapter 13 The Earths Atmosphere

Chapter 13 The Earths Atmosphere Chapter 3 The Earths Atmosphere Name: Class: Date: Time: 79 minutes Marks: 79 marks Comments: Page of 28 The bar chart shows some of the gases in the atmospheres of Earth today and Mars today. (b) Complete

More information

ATM S 211 Final Examination June 4, 2007

ATM S 211 Final Examination June 4, 2007 ATM S 211 Final Examination June 4, 2007 Name This examination consists of a total of 100 points. In each of the first two sections, you have a choice of which questions to answer. Please note that you

More information

Biogeochemical cycles

Biogeochemical cycles Biogeochemical cycles MATTER CYCLING IN ECOSYSTEMS Nutrient Cycles: Global Recycling Global Cycles recycle nutrients through the earth s air, land, water, and living organisms. Nutrients are the elements

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an ecosystem involve two processes: energy flow

More information

Ocean Acidification. Presentation to the SCCWRP Commission March 8, 2013

Ocean Acidification. Presentation to the SCCWRP Commission March 8, 2013 Ocean Acidification Presentation to the SCCWRP Commission March 8, 2013 Background At the last Commission meeting, I summarized recommendations from Washington s Blue Ribbon Panel on Ocean Acidification

More information

Part A: Carbonic Acid and CO2 Equilibrium

Part A: Carbonic Acid and CO2 Equilibrium Part A: Carbonic Acid and CO2 Equilibrium https://serc.carleton.edu/eslabs/carbon/7a.html Equilibrium 1: CO2 + H2O H2CO3 What are the physical states of CO2 on Earth, Mars and Venus? How can you shift

More information

Ocean Fertilization Ironing Out Uncertainties in Climate Engineering

Ocean Fertilization Ironing Out Uncertainties in Climate Engineering Ocean Fertilization Ironing Out Uncertainties in Climate Engineering Ken Buesseler Senior Scientist Marine Chemistry and Geochemistry Dept. Woods Hole Oceanographic Institution Elisabeth and Henry Morss

More information

LECTURE #24: Mega Disasters Climate Change

LECTURE #24: Mega Disasters Climate Change GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #24: Mega Disasters Climate Change Date: 17 April 2018 I. Early Earth was more similar to present-day Venus o very high amounts of carbon dioxide

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

OCN 201 Chemical Oceanography Class Notes, Fall 2014 The origin of sea salt Chris Measures, Department of Oceanography

OCN 201 Chemical Oceanography Class Notes, Fall 2014 The origin of sea salt Chris Measures, Department of Oceanography OCN 201 Chemical Oceanography Class Notes, Fall 2014 The origin of sea salt Chris Measures, Department of Oceanography 1 Introduction Everyone knows that the sea is salty but what exactly is the salt in

More information

Chapter Overview. Water molecule. Atomic Structure. Hydrogen Bonding. Hydrogen Bonding. CHAPTER 5 Water and Seawater

Chapter Overview. Water molecule. Atomic Structure. Hydrogen Bonding. Hydrogen Bonding. CHAPTER 5 Water and Seawater Chapter Overview CHAPTER 5 Water and Seawater Water has many unique thermal and dissolving properties. Seawater is mostly water molecules but has dissolved substances. Ocean is layered by salinity and

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Calculation of greenhouse effect. The carbon cycle Lecture 11

More information

Streamwater. 1) Dissolved 2) Dissolved 3) Suspended and dissolved 4) Dissolved 5) 1) Dissolved

Streamwater. 1) Dissolved 2) Dissolved 3) Suspended and dissolved 4) Dissolved 5) 1) Dissolved Streamwater 1) Dissolved 2) Dissolved 3) Suspended and dissolved 4) Dissolved 5) 1) Dissolved TDS (Total dissolved solids) = sum of all. A general indicator of. Pass through 2 micrometer filter Much regional

More information

Starter Watch the video clip In the Field which highlights some of the challenges of collecting data in the Arctic region.

Starter Watch the video clip In the Field which highlights some of the challenges of collecting data in the Arctic region. Ocean Acidification Lesson 2: Data Analysis Key question: How can ocean acidification data be analysed and presented? Aim: To handle data collected during Dr Findlay s ocean acidification research visit

More information

The Ocean Acidification Lab IV: CO 2 Concentration/Type of Water DV: Shell Strength/Color of Water

The Ocean Acidification Lab IV: CO 2 Concentration/Type of Water DV: Shell Strength/Color of Water The Ocean Acidification Lab IV: CO 2 Concentration/Type of Water DV: Shell Strength/Color of Water Introduction The situation of the ocean s rising ph levels due to the sea s excessive absorption of carbon

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems are chemicals required for growth and other life processes. Nutrients move through the biosphere in Nutrients often accumulate in areas called Without interference, generally

More information

The Ca r bon Cycle Ga me

The Ca r bon Cycle Ga me The Ca r bon Cycle Ga me Time Required: 30 minutes Materials/Space Required: Carbon Cycle Reservoir Cards (7) Dice (6) Traveling Carbon Passport Sheets (1 per student) Felt markers or pencil crayons for

More information

Oxygen Formula: O 2 Bonding: covalent Appearance: colourless gas. Oxygen is one of the two main gases in our atmosphere, the other being nitrogen.

Oxygen Formula: O 2 Bonding: covalent Appearance: colourless gas. Oxygen is one of the two main gases in our atmosphere, the other being nitrogen. Composition of the air Air is a mixture of gases. The approximate amount if each gas in dry air is shown in the pie chart (right), but you should be aware that air also contains a variable amount of water

More information

Science Update: Understanding the IPCC Findings. Lee R. Kump

Science Update: Understanding the IPCC Findings. Lee R. Kump Science Update: Understanding the IPCC Findings Lee R. Kump Most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic

More information

Def: Climate is the average weather. Averages all the local, regional and global extremes in weather. - Occurs on long time scales

Def: Climate is the average weather. Averages all the local, regional and global extremes in weather. - Occurs on long time scales Climate Change Def: Climate is the average weather. Averages all the local, regional and global extremes in weather. - Occurs on long time scales Most important factor in climate is how the Earth responds

More information

Section 3: The Hydrosphere and Biosphere

Section 3: The Hydrosphere and Biosphere Section 3: The Hydrosphere and Biosphere Preview Classroom Catalyst Objectives The Hydrosphere The Water Cycle Earth s Oceans Ocean Water Temperature Zones Section 3: The Hydrosphere and Biosphere Preview,

More information

Ocean Acidification and other Climate Change Implications

Ocean Acidification and other Climate Change Implications Ocean Acidification and other Climate Change Implications A deeper look at the effects of growing CO 2 and climate change on the ocean OCN 623 Chemical Oceanography 19 April 2018 Reading: Libes, Chapter

More information

Streamwater Chemistry

Streamwater Chemistry Streamwater Chemistry 1) Dissolved major ions 2) Suspended and dissolved organic matter 3) Dissolved nutrients and biological transformations 4) Dissolved gases 5) ph 1) Dissolved major ions TDS (Total

More information

The Global Nitrogen Cycle

The Global Nitrogen Cycle OCN 401 The Global Nitrogen Cycle (11.30.10) Fig. 12.2. Units are 10 12 g N/yr (Tg) Role of N in Biogeochemistry Bioavailability of N (and/or P) can limit NPP on land/oceans; controls size of biomass N

More information

SEAWATER 101. Seawater s Amazing Physical and Chemical Properties. Introductory Oceanography Ray Rector - Instructor

SEAWATER 101. Seawater s Amazing Physical and Chemical Properties. Introductory Oceanography Ray Rector - Instructor SEAWATER 101 Seawater s Amazing Physical and Chemical Properties Introductory Oceanography Ray Rector - Instructor The Nature of Water Topics To Be Covered Elements of Water Chemical Bonding The Water

More information

Overview of Climate Science

Overview of Climate Science 1 Overview of Climate Science This overview of climate science is written to support the development of a K- 14 climate education plan for the Pacific Islands Climate Education Partnership (PCEP). It aims

More information

Guiding Questions. What is acid rain, how is it formed, and what are some of its impacts?

Guiding Questions. What is acid rain, how is it formed, and what are some of its impacts? 2201. The atmosphere is a combination of gasses, primarily composed of nitrogen and oxygen with small amounts of other gases such as carbon dioxide, sulfur dioxide, nitrous oxides and many other trace

More information

How is the atmosphere different from outer space? a mixture of gases that surrounds the Earth

How is the atmosphere different from outer space? a mixture of gases that surrounds the Earth Chapter 15 Atmosphere Section 1 Objectives Describe the composition of Earth's atmosphere. Explain why air pressure changes with altitude. Explain how air temperature changes with atmospheric composition.

More information

Coral Reefs. 1 of 5. An Ocean of Trouble

Coral Reefs. 1 of 5. An Ocean of Trouble This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more security, comfort and the best experience on this site. Article Coral Reefs An Ocean of

More information

Climate Science 101: Warmer Things. Meghana Ranganathan and Ellen Lalk

Climate Science 101: Warmer Things. Meghana Ranganathan and Ellen Lalk Climate Science 101: Warmer Things Meghana Ranganathan and Ellen Lalk Research: methane production by microbes kilometers below the ocean floor Introductions: Ellen Lalk 1st year PhD student in Chemical

More information

Electricity. Part 5: Coal Power Plants, Particulate Mater, Flue Gasses, Carbon Capture and Storage. Original slides provided by Dr.

Electricity. Part 5: Coal Power Plants, Particulate Mater, Flue Gasses, Carbon Capture and Storage. Original slides provided by Dr. Electricity Part 5: Coal Power Plants, Particulate Mater, Flue Gasses, Carbon Capture and Storage Original slides provided by Dr. Daniel Holland Typical Coal Fired Power Plant Audio Link Stationary Source

More information