Biofuels: Hot Topics. Microbial Fuel Cells:

Size: px
Start display at page:

Download "Biofuels: Hot Topics. Microbial Fuel Cells:"

Transcription

1 Washington University in St. Louis Science Outreach July 19th, 2007 Biofuels: Hot Topics A Workshop for High School Teachers Miriam Rosenbaum (The Angenent Lab): Microbial Fuel Cells: Making Waste into Power 1

2 Introduction and Motivation The continuously growing demand for electrical power and the constantly increasing amounts of anthropogenic wastes are two main consequences of the global population growth and cumulative industrialization processes. To guarantee the worldwide energy demand and the ecologically and environmentally justified disposal of all the anthropogenic wastes are tremendous challenges for economy, science and politics. As fossil fuels will be exhausted in the near future, huge centralized power plants probably will loose importance. Instead, smaller, decentralized, tailored solutions may be designed for individual energy demands. Wastes could play a distinguished role as a resource for decentralized provision of energy as they are not useless end products as the name may imply, but valuable energy resources. The organic load of municipal wastewater is exceptionally energy-rich. Special industrial wastewaters, e.g., from food industry (dairy, brewery or sugar industry) are even richer in content. Different techniques have already been installed and approved in wastewater treatment plants to regain parts of this stored energy and to help cover the enormous power costs the treatment process itself requires. Heat pumps, biogas formation and conversion in combined heat and power plants (CHP) or biogas purification, reformation and conversion in fuel cells currently represent important elements on the way for the realization of an energy selfsufficient treatment plant. A novel concept for direct energy production from wastewater are microbial fuel cells. In the early 1970s, the first tangible ideas and studies for direct conversion of chemical into electrical energy by the exploitation of microbial processes arose. But mainly because of the low prize for fossil oil and gas it only attracted temporary attention. It was not until the mid 1990s, as interest in sustainable and renewable power sources grew, that the idea was revived and research was intensified. At present, especially two fundamental conceptions are promising the application of microbial biofilms in direct electronic interaction with an energy collecting electrode and the utilisation (oxidation) of energy rich microbial metabolites at catalytically active electrodes while early approaches, e.g., the application of synthetic mediators to facilitate the electron transfer from the microbes to an electrode, have been ruled out for ecological and economical reasons. 2

3 How does a microbial fuel cell work? (physico-chemical principles) Principle of Fuel Cells A fuel cell represents an electrochemical device for the direct conversion of chemical into electrical energy. Thereby, electrons are withdrawn from an electron-rich fuel, conducted over an external load and afterwards transferred to the oxidant. The circle is closed by an ion- or proton-exchange connection between the fuel and the oxidant chamber. In contrast to a battery with a definite fuel stock, the fuel is constantly feed into a fuel cell device. e - H + HO 2 e - anode cathode Figure 1 Schematic drawing of a fuel cell The effectiveness of the electron transfer at the electrode surface or more precisely the kinetics of fuel oxidation at the anode and the reduction of the oxidant at the cathode surface are decisively determined by the action of electrocatalysts. The differences in the standard electrode potentials the fuel, and E θ A, for the reversible anodic oxidation of E θ C, for the reversible cathodic reduction of the electron acceptor, determine the content of stored chemical energy ( Δ G, change in Gibbs energy with the complete oxidation of the fuel) and define the theoretical electromotive force, e.m.f. th., the theoretical reversible cell potential, E conditions: th. FC., or the theoretical open circuit potential, OCP th., of the cell under open circuit 3

4 th. th. th. ΔG θ θ FC C A em.. f. = E = OCP = = E E Equation 1 zf When current flows in the external circuit, activation overpotentials or polarization, η act, occur at both electrodes, which diminish the reversible potential in the following way 1 : E = E + η η Equation 2 ' th. FC FC C A The larger the difference between the individual electrode potentials and therefore the cell potential and the lower the overpotential terms, the more electrical energy can be generated. The energetic performance of a fuel cell may be characterized by the electrical power representing the gained electrical energy per time. The electrical power, P, can be calculated as product of cell potential and related current: P = E i Equation 3 ' FC Figure 2 illustrates a typical fuel cell performance plot with a schematic drawing of this mathematical relationship. The cell potential (left axis) can be measured at specific current densities by changing defined external resistance loads cell potential in mv power density in mw cm current density in ma cm -2 Figure 2 Schematic drawing of the cell potential (left axis) and the power density (right axis) of a typical fuel cell experiment. The dotted line represents ideal potential or theoretical e.m.f.. 1 Williams, K. R. (1966). An Introduction to Fuel Cells. Amsterdam: Elsevier 4

5 The schematic curve depicts the characteristic three phases of a fuel cell polarization curve. The actual potential is decreased from its ideal equilibrium potential (dotted line) by irreversible losses. At high resistance and low current flow (for the illustrated case ma cm -2 ) a short, sharp drop of the OCP (1000 mv to 800 mv) indicates the activation polarization, η act, of the electrodes which is directly related to the rates of electrochemical kinetics of the electrode reaction. Between 0.25 and 2 ma cm -2 an ohmic polarization (following Ohm s law) caused by the internal resistance is determining as follows: η ohm = i R Equation 4 in The slope of this linear part delivers the sum value of the fuel cell systems internal resistance, including, e.g., solution and membrane resistances and electrode reaction resistances. This parameter is an important character for the estimation of the overall fuel cell performance and should be as low as possible. At current densities above 2 ma cm -2 the steep potential drop is called concentration polarization, η conc, and indicates mass transfer limitation, which means that transport processes of the reactants to the electrode surface are now rate determining 2. The power density (right axis in Figure I.2) was calculated using Equation I.3. For this case, the maximum power point (MPP) is reached just before diffusion limitation comes into play. Ideally, mass transfer should limit the performance only at (very) high current densities and thus, the drop of the power density curve should be observed most asymmetrically at high current densities. Since, the losses by internal resistance are currently still the main constraints of microbial fuel cell performance, most of the real performance curves are more symmetrically with a MPP at lower current densities. Principles of Biofuel Cells In a biofuel cell, electrons are made accessible from a non-electroactive fuel by the use of biocatalysts. On one hand enzymes or enzyme complexes can be used as biocatalyst in enzymatic fuel cells. On the other hand whole living organisms are used in microbial fuel cells (MFCs). Enzymatic fuel cells usually employ immobilized enzymes (commonly redox enzymes) as catalysts to accelerate highly specific reactions. Purely enzymatic fuel cells have the great advantage of being very small scaled. Due to the small size of the enzymes and the 2 Fuel Cell Handbook, EG&G Technical Service, Inc.; US Dept. of Energy, November

6 high specificity of the anode and cathode reactions, high turnover rates and thus high power densities can be realized (and a membrane separation of the electrodes is often unnecessary). Therefore, they give the chance to construct low energy power supply units for in vivo applications, e.g., medical implantations. But currently, the immobilization and long-term stability of the enzymes still remain great challenges. An excellent review on the state of the art of enzymatic fuel cells is given by Dr. Shelley Minteer from St. Louis University 3. Figure 3 Schematic drawing of a biofuel cell Microbial fuel cells exploiting whole living cells aim to gain energy in a much larger scale. In the early times of MFC research, chemical redox-mediators (often dyes as methylene blue or neutral red) have been used to shuttle metabolic energy (reducing equivalents in the form of electrons) from the cytoplasma of bacteria to an anode electrode. Today, these dyes play no longer play a role for the development of practical MFCs, mainly because in continuous systems these mediators would have to be added and recycled permanently. But mediators still are a very good academic device to study electron transfer processes of microorganisms. As already mentioned in the introduction, the recent research may be classified into two basic concepts which will be introduced subsequently: I) the evolution of microbial biofilms in direct electronic interaction with electrodes and II) the in situ oxidation of microbial metabolites at highly active electrocatalytic anodes. 3 Minteer, S. D., Liaw, B. Y. & Cooney, M. J. (2007). Curr. Opin. Biotechnol. 18,

7 Biological principles in MFCs Considered chemically, every biological degradation of organic matter is an oxidation process. However, if we keep the degradation anaerobic we get the chance to exploit this process for electron recovery (= power production). Anaerobic conversion of, e.g., sugars is realized either by bacterial fermentation leading to the formation of small, reduced energy-rich metabolic products as ethanol, acetate or hydrogen or by anaerobic respiration using another terminal electron acceptor instead of oxygen to take up the electrons coming from the sugar. Different MFC techniques allow us to utilize both of these anaerobic metabolic processes: One approach aims at the development of biocatalytic electrodes, which are based on direct physical and electronic interaction between the microorganisms and the anode surface. Figure 4 Showing bacteria fixed in a biofilm on a MFC anode. Electrons might be transferred directly, via conductive pili (protein filaments) or via redox active shuttling molecules (mediators) to the electrode. from: 4 For the development of power supply devices in marine sediments mainly iron, manganese and sulphate reducing microbes are exploited 5. For energy generation from wastewater, biofilm forming microbial consortia, enriched directly from the wastewater at the electrodes, represent a successful strategy 6. The initially low current densities have been overcome by establishing multilayer biofilms that are capable of using very different mechanisms to discharge their 4 Rosenbaum, M., Zhao, F., Schröder, U. & Scholz, F. (2006 ). Angew. Chem. int. Ed. 45, Lovley, D. R. (2006). Nat. Rev. Microbiol. 4, Logan, B. E. (2005). Water Sci. Technol. 52, Rabaey, K., Lissens, G., Siciliano, S. D. & Verstraete, W. (2003). Biotechnol. Lett 25, He, Z., Minteer, S. D. & Angenent, L. T. (2005). Environ. Sci. Technol. 39,

8 electrons to the electrode (as final metabolic electron acceptor). The different electron transfer pathways that are known up to now are illustrated in Figure 1. Undoubtedly, future will bring out a lot of further discoveries and new insights into inter-bacterial and bacteria-electrode interaction processes. from: 7 Figure 5 Sediment microbial fuel cell: Iron, manganese and sulphate reducing sediment bacteria are using an embedded anode as electron acceptor. The oxygen reduction cathode is placed in the overlaying aerobic water phase. Because of the natural separation between aerobic water and anaerobic sediment, no membrane is required. Figure 6 Tubular microbial fuel cell (a,b): Wastewater flows though outer anode chamber, which is separated from the inner cathode tube by an ionexchange membrane. from: 8 7 Lovley, D. R. (2006). Curr. Opin. Biotechnol. 17, Rabaey, K. & Verstraete, W. (2005). Trends Biotechnol. 23,

9 from: 9 Figure 7 Upflow microbial fuel cell: In accordance to the upflow anaerobic digestion technology, high loaded wastewater is entering the anode side of the reactor at the bottom. The cathode is placed above the anode chamber. This concept also realizes an active flow of ions towards the exchange membrane. The second highly promising approach is based on the preparation and investigation of electrocatalytic anodes, capable of an efficient and direct electro-oxidation of bacterial metabolites under the diverse and complex microbial growth conditions. Figure 8 Transformation of a primary substrate (wastewater) into a secondary fuel for the direct (in situ) electro-oxidation at catalytically active electrodes. from: 4 With this attempt not only electricity generation from wastewater is possible, but also individual devices for decentralized power supply, e.g. microbial solar cells or gastrobots 10, can be designed using suitable specific microbial populations. Up to that point, primarily platinum is used as catalyst for the utilisation of molecular hydrogen produced by 9 He, Z., Minteer, S. D. & Angenent, L. T. (2005). Environ. Sci. Technol. 39, Wilkinson, S. (2000). Autonomous Robots 9,

10 fermentative 11 or phototrophic 12 microorganisms. But very recently also other, non-noble metal catalysts which are cheaper and more robust than platinum have been shown to successfully convert such metabolites as hydrogen, formate and lactate into electricity 4. Figure 9 Chew chew the gastrobot: Autonomous robot just has to be fed with grapes, all other functions are energy selfsufficient. from: 10 Figure 10 A microbial solar cell: In left (anode) chamber a purple bacterium is using organic waste and sun light to produce molecular hydrogen which is directly converted into electricity. from: 13 Further information: For information on the worldwide status of MFC research watch out at he webpage of the MFC research community: Several books on the topic are currently in preparation. 11 Schröder, U., Nießen, J. & Scholz, F. (2003). Angew. Chem. int. Ed. 115, Rosenbaum, M., Schröder, U. & Scholz, F. (2005a). Appl. Microbiol. Biot. 68, Rosenbaum, M., Schröder, U. & Scholz, F. (2005b). Environ. Sci. Technol. 39,

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Electricity Generation in Double Chamber Microbial Fuel Cell with different Salts Concentration Shikhi Shrivastava M.Tech Scholar,

More information

TREATMENT OF WASTEWATER AND ELECTRICITY GENERATION USING MICROBIAL FUEL CELL TECHNOLOGY

TREATMENT OF WASTEWATER AND ELECTRICITY GENERATION USING MICROBIAL FUEL CELL TECHNOLOGY TREATMENT OF WASTEWATER AND ELECTRICITY GENERATION USING MICROBIAL FUEL CELL TECHNOLOGY B.G. Mahendra 1, Shridhar Mahavarkar 2 1 Associate Professor, 2 M.Tech Scholar, Department of Civil Engineering,

More information

Power Generation Through Double Chamber MFC Operation By Slurry Mixed With Different Substrates

Power Generation Through Double Chamber MFC Operation By Slurry Mixed With Different Substrates Power Generation Through Double Chamber MFC Operation By Slurry Mixed With Different Substrates Shikhi Shrivastava 1, Dr.Hemlata Bundela 2 1 M.Tech Scholar, Energy Technology, Takshshila Institute of Engineering

More information

Development of electrodes for use in Microbial Fuel Cells for wastewater treatment and power generation

Development of electrodes for use in Microbial Fuel Cells for wastewater treatment and power generation Development of electrodes for use in Microbial Fuel Cells for wastewater treatment and power generation R Pranesh 1, Namrata Shanmukh Panji 2, Tarun Malhotra 3, Keshav A.V 4 and Soumen Panda 5 1,2,3,4,5

More information

Role of Mediators in Microbial Fuel Cell for Generation of Electricity and Waste Water Treatment

Role of Mediators in Microbial Fuel Cell for Generation of Electricity and Waste Water Treatment International Journal of Chemical Sciences and Applications ISSN 0976-2590, Online ISSN 2278 6015 Vol 6, Issue1, 2015, pp 6-11 http://www.bipublication.com Role of Mediators in Microbial Fuel Cell for

More information

& Publishing. Bioelectrochemical Systems. Biotechnological Application. From Extracellular Electron Transfer to

& Publishing. Bioelectrochemical Systems. Biotechnological Application. From Extracellular Electron Transfer to Bioelectrochemical Systems From Extracellular Electron Transfer to Biotechnological Application Edited by Korneel Rabaey, Largus Angenent, Uwe Schroder and Surg Keller & Publishing London New York TECHNISCHE

More information

Sustainable Wastewater Treatment through Microbial Fuel Cells (MFC) Dr. Gaurav Saini Dept. Of Civil Engg., SET

Sustainable Wastewater Treatment through Microbial Fuel Cells (MFC) Dr. Gaurav Saini Dept. Of Civil Engg., SET TSRP, 18 Feb, 2017 Sustainable Wastewater Treatment through Microbial Fuel Cells (MFC) Dr. Gaurav Saini Dept. Of Civil Engg., SET Contents Wastewater treatment & need for sustainable development MFC Mechanism,

More information

[Shrivastava, 3(2): February, 2014] ISSN: Impact Factor: 1.852

[Shrivastava, 3(2): February, 2014] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Electricity Generation by the use of Double Chamber Microbial Fuel Cell: Comparative study of the Voltage Generated by Bread Factory

More information

Microbial fuel cells for wastewater treatment

Microbial fuel cells for wastewater treatment Microbial fuel cells for wastewater treatment P. Aelterman, K. Rabaey, P. Clauwaert and W. Verstraete Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000

More information

MICROBIAL FUEL CELL OPERATED ON SLUDGE FROM SEWAGE TREATMENT PLANT - A Case Study

MICROBIAL FUEL CELL OPERATED ON SLUDGE FROM SEWAGE TREATMENT PLANT - A Case Study MICROBIAL FUEL CELL OPERATED ON SLUDGE FROM SEWAGE TREATMENT PLANT - A Case Study Rahul Gautam 1 and Arun Kumar Thalla 2 1. Asst. Professor, Civil Department, Jain College of Engineering, Belgaum, Karnataka,

More information

MICROBIAL FUEL CELLS USING MIXED CULTURES OF WASTEWATER FOR ELECTRICITY GENERATION

MICROBIAL FUEL CELLS USING MIXED CULTURES OF WASTEWATER FOR ELECTRICITY GENERATION MICROBIAL FUEL CELLS USING MIXED CULTURES OF WASTEWATER FOR ELECTRICITY GENERATION S.M. ZAIN 1, N. S. ROSLANI 1, R. HASHIM 1, F. SUJA 1, N. ANUAR 2, W.R.W. DAUD 2 & N.E.A. BASRI 1 1 Department of Civil

More information

Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration

Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration Environ. Sci. Technol. 2005, 39, 5488-5493 Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration HONG LIU, SHAOAN CHENG, AND BRUCE E.

More information

Microbial Fuel Cells: Carbohydrates to Electricity in a Single Step. Korneel Rabaey, Peter Aelterman, Peter Clauwaert, Willy Verstraete

Microbial Fuel Cells: Carbohydrates to Electricity in a Single Step. Korneel Rabaey, Peter Aelterman, Peter Clauwaert, Willy Verstraete Microbial Fuel Cells: Carbohydrates to Electricity in a Single Step Korneel Rabaey, Peter Aelterman, Peter Clauwaert, Willy Verstraete GHENT UNIVERSITY Wastewater treatment Electricity out of biomass

More information

IN 1910, M. C. Potter first observed the ability of E. coli to produce electricity [1]. Ever since,

IN 1910, M. C. Potter first observed the ability of E. coli to produce electricity [1]. Ever since, I. INTRODUCTION IN 1910, M. C. Potter first observed the ability of E. coli to produce electricity [1]. Ever since, scientists have studied the ability of microbes to produce electric potentials in depth,

More information

GCEP Technical Progress Report April 2012

GCEP Technical Progress Report April 2012 GCEP Technical Progress Report April 2012 Project: Capturing Electrical Current via Mechanisms Used for Interspecies Electron Transfer to Produce Methane Alfred M. Spormann, Professor, Departments of Chemical

More information

Bioelectricity Production from Microbial Fuel using Escherichia Coli (Glucose and Brewery Waste)

Bioelectricity Production from Microbial Fuel using Escherichia Coli (Glucose and Brewery Waste) International Research Journal of Biological Sciences ISSN 2278-3202 Bioelectricity Production from Microbial Fuel using Escherichia Coli (Glucose and Brewery Waste) Abstract D souza Rohan 1, Verma Deepa

More information

GCEP Technical Progress Report April Project: Capturing Electrical Current via Microbes to Produce Methane

GCEP Technical Progress Report April Project: Capturing Electrical Current via Microbes to Produce Methane GCEP Technical Progress Report April 2013 Project: Capturing Electrical Current via Microbes to Produce Methane Alfred M. Spormann, Professor, Department of Chemical Engineering, and of Civil and Environmental

More information

PRODUCTION OF HYDROGEN FROM DARK FERMENTATION EFFLUENTS USING MICROBIAL ELECTROLYSIS CELLS

PRODUCTION OF HYDROGEN FROM DARK FERMENTATION EFFLUENTS USING MICROBIAL ELECTROLYSIS CELLS PRODUCTION OF HYDROGEN FROM DARK FERMENTATION EFFLUENTS USING MICROBIAL ELECTROLYSIS CELLS Prof. Dato Ir. Dr. Wan Ramli Wan Daud FASc Former Founding Director, Fuel Cell Institute Professor of Chemical

More information

Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap Source of Catholyte

Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap Source of Catholyte JASEM ISSN 1119-836 All rights reserved Full-text Available Online at www.bioline.org.br/ja J. Appl. Sci. Environ. Manage. June, 010 Vol. 14 () 1-7 Generation of Electricity from Abattoir Waste Water with

More information

Using household food waste as a source of energy in a single-chamber microbial fuel cell

Using household food waste as a source of energy in a single-chamber microbial fuel cell Using household food waste as a source of energy in a single-chamber microbial fuel cell Antonopoulou G. 1,2, Ntaikou I. 1,2, Alexandropoulou M. 1,2, Tremouli A. 1, Pastore C. 3, Bitonto L. 3, Bebelis

More information

Scale-up of membrane-free single-chamber microbial fuel cells

Scale-up of membrane-free single-chamber microbial fuel cells Available online at www.sciencedirect.com Journal of Power Sources 179 (2008) 274 279 Short communication Scale-up of membrane-free single-chamber microbial fuel cells Hong Liu a,, Shaoan Cheng b, Liping

More information

MICROBIAL FUEL CELLS FOR SUSTAINABLE FOOD WASTE DISPOSAL

MICROBIAL FUEL CELLS FOR SUSTAINABLE FOOD WASTE DISPOSAL MICROBIAL FUEL CELLS FOR SUSTAINABLE FOOD WASTE DISPOSAL 1.0 Problem Statement The disposal of municipal solid wastes is one of the most serious problems facing the 21st century. Waste generation is on

More information

Reaction mechanism on anode filled with activated carbon in microbial fuel cell

Reaction mechanism on anode filled with activated carbon in microbial fuel cell Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(5):333-339 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Reaction mechanism on anode filled with activated

More information

Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing

Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing Environ. Sci. Technol. 2006, 40, 2426-2432 Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing SHAOAN CHENG, HONG LIU, AND BRUCE

More information

Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater

Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater Available online at www.sciencedirect.com ScienceDirect Energy Procedia 79 (2015 ) 646 650 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies Performance

More information

Algal-Microbial Desalination System for Clean Energy, Water and Biomass Production

Algal-Microbial Desalination System for Clean Energy, Water and Biomass Production Algal-Microbial Desalination System for Clean Energy, Water and Biomass Production Veera Gnaneswar Gude, Ph.D., P.E. Mississippi State University National Environmental Monitoring Conference 2012 6-10

More information

Generation of Bio-Electricity from Sewage Sludge Using Single Chamber Microbial Fuel Cell

Generation of Bio-Electricity from Sewage Sludge Using Single Chamber Microbial Fuel Cell Journal of Environmental Science and Public Health doi: 10.26502/JESPH.007 Volume 1, Issue 2 Research Article Generation of Bio-Electricity from Sewage Sludge Using Single Chamber Microbial Fuel Cell Kumar

More information

Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species

Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species Zainab Z. Ismail * Department of Environmental Engineering, Baghdad University Baghdad, Iraq and Ali J. Jaeel

More information

Brewery wastewater treatment using air-cathode microbial fuel cells

Brewery wastewater treatment using air-cathode microbial fuel cells Appl Microbiol Biotechnol (28) 78:873 88 DOI 1.17/s253-8-136-2 ENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode microbial fuel cells Yujie Feng & Xin Wang & Bruce E. Logan & He

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

A combined system of microbial fuel cell and intermittently aerated. biological filter for energy self-sufficient wastewater treatment

A combined system of microbial fuel cell and intermittently aerated. biological filter for energy self-sufficient wastewater treatment Supplementary Information A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment Yue Dong 1, Yujie Feng 1,*, Youpeng Qu 2,

More information

Biosensors and Bioelectronics

Biosensors and Bioelectronics Biosensors and Bioelectronics 26 (2011) 1913 1917 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Electricity generation of single-chamber

More information

1 Bioelectrochemical Fuel Cells

1 Bioelectrochemical Fuel Cells VCH Herr Schmidt REED/REHM, Vol. 10 1 Bioelectrochemical Fuel Cells DIETER SELL Frankfurt/Main, Germany 1 Introduction 6 2 History of Bioelectrochemical Fuel Cells 6 3 Global Dimensions of Bioenergetics

More information

Studies on Sewage Treatment of Industrial and Municipal Wastewater by Electrogens Isolated from Microbial Fuel Cell

Studies on Sewage Treatment of Industrial and Municipal Wastewater by Electrogens Isolated from Microbial Fuel Cell ISSN: 2319-7706 Volume 4 Number 4 (2015) pp. 118-122 http://www.ijcmas.com Original Research Article Studies on Sewage Treatment of Industrial and Municipal Wastewater by Electrogens Isolated from Microbial

More information

Bioelectricity production from various wastewaters through microbial fuel cell technology

Bioelectricity production from various wastewaters through microbial fuel cell technology J Biochem Tech () ():- ISSN: - Bioelectricity production from various s through microbial fuel cell technology Abhilasha S Mathuriya*, V N Sharma Received: November / Received in revised form: November,

More information

Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells

Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells Environ. Sci. Technol. 2007, 41, 3347-3353 Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells YI ZUO, SHAOAN CHENG, DOUG CALL, AND BRUCE E. LOGAN* Department of Civil and Environmental

More information

Voltage Generated From Mangrove Forest Sediment Microbial Fuel Cell Through MOdification Of Fuel Cell Components

Voltage Generated From Mangrove Forest Sediment Microbial Fuel Cell Through MOdification Of Fuel Cell Components Voltage Generated From Mangrove Forest Sediment Microbial Fuel Cell Through MOdification Of Fuel Cell Components D. I. Sharif 1, S. M. Monsur Musa 2, Rajiv Kumar Sah 2, Sabiha Rahman 2 Associate professor,

More information

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze.

A. Incorrect! Enzymes are not altered or consumed by the reactions they catalyze. CLEP Biology - Problem Drill 04: Enzymes and Cellular Metabolism No. 1 of 10 1. Which of the following statements about enzymes is correct? (A) Enzymes are consumed in a reaction. (B) Enzymes act by lowering

More information

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010

Aerobic and Anaerobic Biodegradation. Danny Clark ENSO Bottles LLC 06/29/2010 2010 Aerobic and Anaerobic Biodegradation Danny Clark ENSO Bottles LLC 06/29/2010 Aerobic and Anaerobic Biodegradation A look into aerobic and anaerobic biodegradation By Danny Clark ENSO Bottles, LLC

More information

Optimisation of Scale-Up of Microbial Fuel Cells for Sustainable Wastewater Treatment for Positive Net Energy Generation

Optimisation of Scale-Up of Microbial Fuel Cells for Sustainable Wastewater Treatment for Positive Net Energy Generation Optimisation of Scale-Up of Microbial Fuel Cells for Sustainable Wastewater Treatment for Positive Net Energy Generation Ourania Dimou a *, David Simpson d, John Andresen a, Veyacheslav Fedorovich b, Igor

More information

6480(Print), ISSN (Online) Volume 4, Issue 7, November December (2013), IAEME AND TECHNOLOGY (IJARET)

6480(Print), ISSN (Online) Volume 4, Issue 7, November December (2013), IAEME AND TECHNOLOGY (IJARET) International INTERNATIONAL Journal of Advanced JOURNAL Research OF ADVANCED in Engineering RESEARCH and Technology IN (IJARET), ENGINEERING ISSN 0976 AND TECHNOLOGY (IJARET) ISSN 0976-6480 (Print) ISSN

More information

GENERATION OF ELECTRICITY DURING WASTE WATER TREATMENT USING MICROBIAL FUEL CELLS

GENERATION OF ELECTRICITY DURING WASTE WATER TREATMENT USING MICROBIAL FUEL CELLS GENERATION OF ELECTRICITY DURING WASTE WATER TREATMENT USING MICROBIAL FUEL CELLS 1 B. Panneerselvam*, 2 M. Jagadeesan, 1 S. Santhosh, 1 P.R. Anuradha, 1 Dr. R. Dhandapani 1 Department of microbiology,

More information

Construction and operation of a novel mediator- and membrane-less microbial fuel cell

Construction and operation of a novel mediator- and membrane-less microbial fuel cell Process Biochemistry 39 (2004) 1007 1012 Construction and operation of a novel mediator- and membrane-less microbial fuel cell Jae Kyung Jang a,b, The Hai Pham a, In Seop Chang a, Kui Hyun Kang a, Hyunsoo

More information

ISSN (Print), ISSN (Online) Volume 5, Issue 1, January (2014), IAEME AND TECHNOLOGY (IJARET)

ISSN (Print), ISSN (Online) Volume 5, Issue 1, January (2014), IAEME AND TECHNOLOGY (IJARET) International INTERNATIONAL Journal JOURNAL of Advanced OF Research ADVANCED in Engineering RESEARCH and Technology IN ENGINEERING (IJARET), AND TECHNOLOGY (IJARET) ISSN 0976-6480 (Print) ISSN 0976-6499

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 984 Investigation of the potentials of poultry and piggery wastes for electricity generation using two configurations

More information

Laboratory Experiments in Corrosion Engineering II

Laboratory Experiments in Corrosion Engineering II Lecture - 40 Laboratory Experiments in Corrosion Engineering II Keywords: Polarization Experiments, Pitting Potentials, Microbial Corrosion. A. Electrochemical tests in a given environment Polarization

More information

Electronic circuit model for proton exchange membrane fuel cells

Electronic circuit model for proton exchange membrane fuel cells Journal of Power Sources 142 (2005) 238 242 Short communication Electronic circuit model for proton exchange membrane fuel cells Dachuan Yu, S. Yuvarajan Electrical and Computer Engineering Department,

More information

UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI

UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI Annexure -VIII UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI 110 002 PROFORMA FOR SUBMISSION OF INFORMATION AT THE TIME OF SENDING THE FINAL REPORT OF THE WORK DONE ON THE PROJECT 1.Title

More information

Final Year Progress Report

Final Year Progress Report Final Year Progress Report Student: Stephen Mulryan Student ID: 06583725 Discipline: Electronic & computer Engineering Supervisor: Dr. Maeve Duffy Co-Supervisor: Professor Ger Hurley Project Title: Energy

More information

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 2, No 1, Copyright 2010 All rights reserved Integrated Publishing Association

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 2, No 1, Copyright 2010 All rights reserved Integrated Publishing Association INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 2, No 1, 2011 Copyright 2010 All rights reserved Integrated Publishing Association Research article ISSN 0976 4402 Treatment of distillery wastewater

More information

Bioresource Technology

Bioresource Technology Bioresource Technology 12 (211) 4468 4473 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Increasing power generation for scaling up

More information

Aerobic and Anaerobic Biodegradation

Aerobic and Anaerobic Biodegradation Polimernet Plastik San.Tic.Ltd.Şti. Tel:+90 216 393 77 46 / Email: info@polimernet.com www.polimernet.com 1 Aerobic and Anaerobic Biodegradation This document provides an in depth explanation, detailing

More information

CONSORTIUM BUILDING FOR PEM MFC USING SYNTHETIC MEDIA AS SUBSTRATE

CONSORTIUM BUILDING FOR PEM MFC USING SYNTHETIC MEDIA AS SUBSTRATE CONSORTIUM BUILDING FOR PEM MFC USING SYNTHETIC MEDIA AS SUBSTRATE Dimpal Parida, Arti Yadav and A. Muralidharan* School of Bioengineering, SRM University, Chennai 603203, India muralifly@hotmail.com Abstract:

More information

Metabolism BIOL 3702: Chapter 10

Metabolism BIOL 3702: Chapter 10 Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

Adventures in Microbial Electron Transfer and Technology Development

Adventures in Microbial Electron Transfer and Technology Development Adventures in Microbial Electron Transfer and Technology Development Charles E. Turick, Ph.D. Environmental Biotechnology Savannah River National Laboratory Progress to Technology Development Fundamental

More information

Effective Role of Multiple Electrodes on Double Chambered Microbial Fuel Cell

Effective Role of Multiple Electrodes on Double Chambered Microbial Fuel Cell Effective Role of Multiple Electrodes on Double Chambered Microbial Fuel Cell Geetha.S 1, Subha Ranjani.S 2 1 M.Sc Microbiology, Department of Microbiology, The Standard fireworks Rajaratnam College for

More information

Optimal Production of Biohydrogen Gas via Microbial Electrolysis Cells (MEC) in a Controlled Batch Reactor System

Optimal Production of Biohydrogen Gas via Microbial Electrolysis Cells (MEC) in a Controlled Batch Reactor System 727 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment Lijiao Ren, Yongtae Ahn, Bruce E. Logan

More information

Biohydrogen production from Solid Phase- Microbial Fuel Cell (SP-MFC) spent substrate: a preliminary study.

Biohydrogen production from Solid Phase- Microbial Fuel Cell (SP-MFC) spent substrate: a preliminary study. Biohydrogen production from Solid Phase- Microbial Fuel Cell (SP-MFC) spent substrate: a preliminary study. Dr.Rosa Anna Nastro Laboratory for Energy and the Environment Department of Engineering University

More information

Assignments. 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water.

Assignments. 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water. Assignments 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water. 2. Construct the Eh ph diagram for the Zn H 2 O O 2 system

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

Characterization of Electron Mediated Microbial Fuel Cell by Saccharomyces Cerevisiae

Characterization of Electron Mediated Microbial Fuel Cell by Saccharomyces Cerevisiae 337 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 43, 2015 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2015, AIDIC Servizi S.r.l., ISBN 978-88-95608-34-1; ISSN 2283-9216 The Italian

More information

The Design of Microbial fuel cell (MFC)

The Design of Microbial fuel cell (MFC) The Design of Microbial fuel cell (MFC) Author 1:Mrs. Saee Harshad Thakur Research Scholar, Department of Biotechnology Engineering, KIT s College of Engineering, Gokul Shirgaon, Kolhapur, Maharashtra,

More information

Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells

Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells BRUCE LOGAN,*,, SHAOAN CHENG,, VALERIE WATSON, AND GARETT ESTADT Department of Civil and Environmental Engineering,

More information

OEST 740. Marine Biofilms: Ecology and Impact. Spring Instructor: Kristina Mojica

OEST 740. Marine Biofilms: Ecology and Impact. Spring Instructor: Kristina Mojica OEST 740 Marine Biofilms: Ecology and Impact Spring 008 Instructor: Kristina Mojica Biocorrosion This chapter considers the issue of biofilm based bacterial assisted corrosion (i.e. biocorrosion) of metals

More information

Bioanode in MFC for Bioelectricity Generation, Desalination and Decolorization of Industrial Wastewater

Bioanode in MFC for Bioelectricity Generation, Desalination and Decolorization of Industrial Wastewater Bioanode in MFC for Bioelectricity Generation, Desalination and Decolorization of Industrial Wastewater Atieh Ebrahimi a, Ghasem Najafpour Darzi b *, Daryoush Yousefi Kebria a a Department of Civil-Environmental

More information

Acetylene as a low cost and effective inhibitor of methanogenesis in microbial electrolysis

Acetylene as a low cost and effective inhibitor of methanogenesis in microbial electrolysis Acetylene as a low cost and effective inhibitor of methanogenesis in microbial electrolysis Stephanie Trujillo, Luguang Wang, Hong Liu, Ph. D Gilmore Hall, Department of Biological and Ecological Engineering

More information

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies Vehicle Propulsion Systems Lecture 8 Fuel Cell Vehicles Lars Eriksson Professor Vehicular Systems Linköping University May 3, 8 / 4 / 4 Deterministic Dynamic Programming Basic algorithm N J(x ) = g N (x

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

ENZYME-ENHANCED MICROBIAL FUEL CELLS. Tracie E. Ervin

ENZYME-ENHANCED MICROBIAL FUEL CELLS. Tracie E. Ervin ENZYME-ENHANCED MICROBIAL FUEL CELLS by Tracie E. Ervin A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Honors Bachelors of

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Biofuel Cells for Portable Electronic Applications

Biofuel Cells for Portable Electronic Applications for Portable Electronic Applications Nick Akers President March 29, 2007 IBE 12 th Annual Meeting Akermin History Founded in 2003 Technology invented at Saint Louis University by Nick Akers and Dr. Shelley

More information

Fuel Cell Technology: A Review

Fuel Cell Technology: A Review Fuel Cell Technology: A Review Omkar Yarguddi 1, Dr. Anjali A. Dharme 2 Senior Undergraduate student, Dept. Of Electrical Engg, College of Engg, Pune, Maharashtra, India 1 Associate Professor, Dept. Of

More information

ENVE 424 Anaerobic Treatment

ENVE 424 Anaerobic Treatment ENVE 424 Anaerobic Treatment Lecture 3 The Microbiology of Anaerobic Treatment 2012 2013 Fall 27-28 Sept 2012 Assist. Prof. A. Evren Tugtas Anaerobic Digestion Ref: Gerardi M. H. The Microbiology of Anaerobic

More information

Fuel Cells. 1 Introduction. 2 Fuel cell thermodynamics. Grolik Benno,KoppJoachim. November, 29th Temperature effects

Fuel Cells. 1 Introduction. 2 Fuel cell thermodynamics. Grolik Benno,KoppJoachim. November, 29th Temperature effects Fuel Cells Grolik Benno,KoppJoachim November, 29th 23 1 Introduction In consideration of environmental problems and several energy crisis in the 2th century, much effort has been put into research on new

More information

PHOTOSYNTHETIC FERMENTATIVE FUEL CELL USED IN A BIOFUEL PROCESSING FACILITY

PHOTOSYNTHETIC FERMENTATIVE FUEL CELL USED IN A BIOFUEL PROCESSING FACILITY PHOTOSYNTHETIC FERMENTATIVE FUEL CELL USED IN A BIOFUEL PROCESSING FACILITY E.E. Powell, G.A. Hill, R.W. Evitts, and J.C. Bolster Bioenergy II Conference, Rio de Janeiro, Brazil June 8-13, 2009 Outline

More information

Enrichment of electrochemically active bacteria using microbial fuel cell and potentiostat

Enrichment of electrochemically active bacteria using microbial fuel cell and potentiostat Enrichment of electrochemically active bacteria using microbial fuel cell and potentiostat Tim Niklas Enke ETH Zurich timenke@hotmail.com tim.enke@usys.ethz.ch Microbial Diversity 2015 Introduction Microbial

More information

Module 9: Energy Storage Lecture 34: Fuel Cell

Module 9: Energy Storage Lecture 34: Fuel Cell Module 9: Energy Storage Lecture 34: Fuel Cell In this lecture the energy storage (fuel cell) is presented. The following topics are covered in this lecture: Fuel cell Issues in fuel cell Hydrogen fuel

More information

Optimization And Energy Production By Microbial Fuel Cell

Optimization And Energy Production By Microbial Fuel Cell International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.5, pp 2193-2198, July-Sept 2013 Optimization And Energy Production By Microbial Fuel Cell Merina Paul Das* Department

More information

GCEP Technical Progress Report April Project: Capturing Electrical Current via Microbes to Produce Methane

GCEP Technical Progress Report April Project: Capturing Electrical Current via Microbes to Produce Methane GCEP Technical Progress Report April 2014 Project: Capturing Electrical Current via Microbes to Produce Methane Alfred M. Spormann, Professor, Department of Chemical Engineering, and of Civil and Environmental

More information

Recent developments in microbial fuel cells: a review

Recent developments in microbial fuel cells: a review Journal of Scientific DAS & Industrial & MANGWANI Research: RECENT DEVELOPMENTS IN MICROBIAL FUEL CELLS: A REVIEW Vol. 69, October 2010, pp. 727-731 727 Recent developments in microbial fuel cells: a review

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

The Microbial Fuel Cell: The Solution to the Global Energy and Environmental Crises?

The Microbial Fuel Cell: The Solution to the Global Energy and Environmental Crises? The Microbial Fuel Cell: The Solution to the Global Energy and Environmental Crises? John V. Nwokocha Department of Industrial Chemistry, Abia State University, Uturu e-mail: victorjohn0@gmail.com Nwaulari,

More information

Novel Fuel Cell MEA Based on Pt-C Deposited by Magnetron Sputtering

Novel Fuel Cell MEA Based on Pt-C Deposited by Magnetron Sputtering 10.1149/08008.0225ecst The Electrochemical Society Novel Fuel Cell MEA Based on Pt-C Deposited by Magnetron Sputtering A. Ostroverkh a, V. Johanek a, M. Dubau a, P. Kus a, K. Veltruska a, M. Vaclavu a,

More information

Scholars Research Library. Fundamentals and Field Application of Microbial Fuel cells (MFCs) A. Oji, C.C. Opara and M.K. Oduola

Scholars Research Library. Fundamentals and Field Application of Microbial Fuel cells (MFCs) A. Oji, C.C. Opara and M.K. Oduola Available online at www.scholarsresearchlibrary.com European Journal of Applied Engineering and Scientific Research, 2012, 1 (4):185-189 (http://scholarsresearchlibrary.com/archive.html) ISSN: 2278 0041

More information

Electrochemical Investigation of Aerobic Biocathodes at Different Poised Potentials: Evidence for Mediated Extracellular Electron Transfer

Electrochemical Investigation of Aerobic Biocathodes at Different Poised Potentials: Evidence for Mediated Extracellular Electron Transfer 355 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 41, 2014 Guest Editors: Simonetta Palmas, Michele Mascia, Annalisa Vacca Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-32-7; ISSN 2283-9216

More information

TOWARDS DISPOSABLE MICROBIAL FUEL CELLS: NATURAL RUBBER GLOVE MEMBRANES

TOWARDS DISPOSABLE MICROBIAL FUEL CELLS: NATURAL RUBBER GLOVE MEMBRANES TOWARDS DISPOSABLE MICROBIAL FUEL CELLS: NATURAL RUBBER GLOVE MEMBRANES JONATHAN WINFIELD LILY CHAMBERS, JONATHAN ROSSITER AND IOANNIS IEROPOULOS BRISTOL ROBOTICS LABORATORY, BRISTOL, UK OUTLINE Background

More information

Electrochemical monitoring of ammonia during anaerobic digestion

Electrochemical monitoring of ammonia during anaerobic digestion Downloaded from orbit.dtu.dk on: Nov 26, 2018 Electrochemical monitoring of ammonia during anaerobic digestion Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng Publication date: 2017 Document Version Publisher's

More information

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont.

Metabolism. BIOL 3702: Chapter 10. Introduction to Metabolism. Energy and Work. BIOL 3702: Chapter 10 AY Dr. Cooper 1. Metabolism (cont. Metabolism BIOL 3702: Chapter 10 Introduction to Metabolism u Metabolism is the sum total of all the chemical reactions occurring in a cell u Two major parts of metabolism: v Catabolism Ø Large, more complex

More information

Use of various agricultural wastes to produce bioenergy in microbial fuel cells

Use of various agricultural wastes to produce bioenergy in microbial fuel cells International Journal of Farming and Allied Sciences Available online at www.ijfas.com 2014 IJFAS Journal-2014-3-12/1243-1247/ 31 December, 2014 ISSN 2322-4134 2014 IJFAS Use of various agricultural wastes

More information

A Comparative Study On The Performance Of Four Novel Membrane Bioreactors (EMBR, MABR, RMBR, MSBR) For Wastewater Treatment

A Comparative Study On The Performance Of Four Novel Membrane Bioreactors (EMBR, MABR, RMBR, MSBR) For Wastewater Treatment International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.3, pp 1138-1142, April-June 2013 IPACT-2013[14 th 15 th March 2013] National Conference on Industrial Pollution

More information

Chapter 5: Microbial Metabolism (Part I)

Chapter 5: Microbial Metabolism (Part I) Chapter 5: Microbial Metabolism (Part I) Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Benzoquinone-Hydroquinone Couple for Flow Battery

Benzoquinone-Hydroquinone Couple for Flow Battery Mater. Res. Soc. Symp. Proc. 1491, mrsf12-1491-c08-09 doi:10.1557/opl.2012.1737 (2013) Benzoquinone-Hydroquinone Couple for Flow Battery Saraf Nawar, 1 Brian Huskinson, 2 and Michael Aziz 2 1 Harvard College,

More information

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc Anaerobic Digestion not just biogas production FARM BIOGAS Methane consulting cc Use of fire - the greatest achievement of the human race FARM BIOGAS Methane consulting cc Reduction of GHG s emission FARM

More information

Saccharomyces cerevisiae as anodic biocatalyst in microbial fuel cell: influence of redox mediator and operative conditions.

Saccharomyces cerevisiae as anodic biocatalyst in microbial fuel cell: influence of redox mediator and operative conditions. Alma Mater Studiorum Università di Bologna Dottorato di Ricerca in Scienze Biochimiche e Biotecnologiche Ciclo XXIX Settore Concorsuale: 03/D1 Settore Scientifico Disciplinare: CHIM/11 Saccharomyces cerevisiae

More information

Optimization of Microbial Fuel Cell for Treating Industrial Wastewater and Simultaneous Power Generation

Optimization of Microbial Fuel Cell for Treating Industrial Wastewater and Simultaneous Power Generation Optimization of Microbial Fuel Cell for Treating Industrial Wastewater and Simultaneous Power Generation Aswin T 1, Sabarunisha Begum S 1*, and Mohamed Yacin Sikkandar 2 1 Department of Biotechnology,

More information

Effect of type and concentration of substrate on power generation in a dual chambered microbial fuel cell

Effect of type and concentration of substrate on power generation in a dual chambered microbial fuel cell Effect of type and concentration of substrate on power generation in a dual chambered microbial fuel cell A.A. Ghoreyshi 1,*, T.Jafary 1, G.D. Najafpour 1, F.Haghparast 1 1 Chemical Engineering Department,

More information

ELECTRICITY GENERATION CHARACTERISTICS OF AN ANAEROBIC FLUIDIZED BED MICROBIAL FUEL CELL

ELECTRICITY GENERATION CHARACTERISTICS OF AN ANAEROBIC FLUIDIZED BED MICROBIAL FUEL CELL Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 21 ELECTRICITY GENERATION CHARACTERISTICS OF

More information

APPLICATION OF MODIFIED CARBON ANODES IN MICROBIAL FUEL CELLS

APPLICATION OF MODIFIED CARBON ANODES IN MICROBIAL FUEL CELLS APPLICATION OF MODIFIED CARBON ANODES IN MICROBIAL FUEL CELLS K. Scott 1,, G. A. Rimbu 1,2, K. P. Katuri 1, K. K. Prasad 1 and I. M. Head 3 1 School of Chemical Engineering & Advanced Materials, University

More information