Thermochemical Biofuels: Challenges and Opportunities June 14, 2012

Size: px
Start display at page:

Download "Thermochemical Biofuels: Challenges and Opportunities June 14, 2012"

Transcription

1 Thermochemical Biofuels: Challenges and pportunities June 14, 2012 Brent Shanks Steffenson Professor Chemical & Biological Engineering Department

2 Some Context Petroleum at $90/bbl Gasoline, wholesale & untaxed ~$2.70/gal Diesel, wholesale & untaxed ~$3.00/gal Grain Ethanol, corn at $3 & $6.50/bu $2.40 & $3.80/gge Biofuels Digest, May 11,

3 Technology Comparison* Requires consistent capital cost and evaluation bases Comparative economics, not business-case economics Considered commercial or near-commercial technology where possible Material and energy balances by Aspen Plus, generally Location U.S. Gulf Coast, 2011 $ Biomass at $5.4/GJ (limit 1 million t/yr/plant) Coal at $2/GJ Estimates for N th of a kind plants (N = 5-7) Stand-alone plant: Feedstock in; Finished fuels out Comparisons are based on best available data; design basis and data are often not very complete * Jim Katzer (ExxonMobil retired, Iowa State University) Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts, NRC,

4 Biomass Properties & Fuel Cost Component Material: Grain (corn) Corn Stover Wood (poplar) Starch, wt % 72.0 n/m n/m Cellulose, wt % Hemicellulose, wt % Lignin, wt % Ash, wt % Bio-Conversion: Typical Yields: gge/dry tonne Thermal-Conversion: Gasification Yield, gge/dry tonne Pyrolysis Yield, gge/dry tonne Feedstock Cost, $/dry tonne: Feedstock Cost Component: Bioconversion, $/gge 3.50* $2.00 $1.60 Gasification, $/gge - $1.40 $1.10 Fast Pyrolysis, $/gge - $1.75 $1.30 Red numbers are first-cut indicator of feedstock cost contribution to product cost * For Corn at $6.50/bu, DDGS netback reduces this to ~$2.60/gge 4

5 HC Recovery Regenerator Thermochemical: Gasification flue gas Recycle Compr. unconverted syngas + C 1 - C 4 FT gases purge gas Power Island Some Net Electricity net export electricity coal oxygen oxygen ATR steam syngas F-T Synthesis raw FT product syncrude light ends F-T Refining Primarily Finished Gasoline & Diesel finished gasoline & diesel blendstocks Grinding & Slurry Prep water Gasification & Quench slag Syngas Scrubber oxygen steam Water Gas Shift gas expander cooling Acid Gas Removal Refinery H 2 Prod C 2 biomass Chopping & Lock hopper C 2 FB Gasifier & Cyclone dry ash Tar Cracking gas cooling Filter Refrigeration Plant Flash Flash C 2 H 2 S + C 2 To Claus/SCT methanol Coal: all components are commercially robust Biomass gasification is essentially commercial ptions: Methanol synthesis followed by MTG to produce mainly gasoline, DME Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts, NRC, 2009.

6 Fuel Component Cost, $/gge Thermochemical: Gasification Feedstock Mode Fuel Price, $/gge Coal (CTL) Vent C Coal CCS 1.90 Coal/Biomass (40%) (CBTL) Vent C Coal/Biomass (40%) CCS 3.00 Biomass (BTL) vent C Biomass CCS Co-produce Recovery C2 Disposal & M Coal Feed Biomass Feed Capital Recovery Fuel Component Cost Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts, NRC,

7 Biomass Gasification Challenges Ash management Tars conversion Scalability Reactor technology CompactGTL, Syntroleum Velocys (25 bpd, May, 2012) 7

8 Biomass Fast Pyrolysis* *Bridgwater et al. in Progress in Thermochemical Biomass Conversion, Bridgwater, ed. (2001) 977.

9 Fast Pyrolysis ~500 C + + Corn stover Gas Bio-oil Biochar (~1.5 GJ m -3 ) (~6 MJ kg -1 ) (~22 GJ m -3 ) (~21 MJ kg -1 ) HCH 2 H H CH 2 HCH 2 H H CH 2 Cellulose Gas H 2, C, CH 4, C 2 H 2 Bio-oil. c c..c c. Biochar c.

10 Composition: Fast Pyrolysis Bio-il* Wt% Water Lignin fragments: insoluble pyrolytic lignin Aldehydes: formaldehyde, acetaldehyde, hydroxyacetaldehyde, glyoxal Carboxylic acids: formic, acetic, propionic, butyric, pentanoic, hexanoic Carbohydrates: cellobiosan, levoglucosan, oligosaccharides 5-10 Phenols: phenol, cresol, guaiacols, syringols 2-5 Furfurals 1-4 Alcohols: methanol, ethanol 2-5 Ketones: acetol (1-hydroxy-2-propanone), cyclopentanone 1-5 *Bridgwater et al.; in Progress in Thermochemical Biomass Conversion, Bridgwater, ed. (2001) 977.

11 Thermal Conversion Reactions Primary Processes Secondary Processes Tertiary Processes Vapor Phase C, C 2, H 2 Primary Vapors Light HCs, Aromatics, & xygenates lefins, Aromatics C, H 2, C 2, H 2 PNA s, C, H 2, C 2, H 2, CH 4 C, H 2, C 2, H 2 Low P Liquid Phase Primary Liquids High P Condensed ils (phenols, aromatics) Low P Solid Phase Biomass High Charcoal Coke Soot P Pyrolysis Severity

12 Thermochemical: Pyrolysis Fast pyrolysis Dynamotive, ENSYN Avello Catalytic pyrolysis KIR Anellotech Hydropyrolysis GTI ENSYN, 40 tonne/day KIR, 50 ton/day 12

13 Bio-il Upgrading Approach Biomass Biomass Prep/Pretreatment Selective thermal depolymerization (500º C) Particulate Removal Bio-il Recovery as Stage Fractions Bioasphalt Lignin-derived chemicals Lignin oligomers Anhydro-sugars Water Wash Heavy Ends: Lignin oligomers and anhydrosugars Phenolics and Furans Catalytic deoxygenation ( º C) Ring opening/ deoxygenation ( º C) Hydrogen Steam reforming ( º C) Light Ends: Aqueous phase of low MW carbohydrate-derived compounds Hydrocarbons Hydrocarbons 13

14 Schematic of Pyrolyzer GC/MS System Pyrolyzer Feedstock ~ 500 μg He 500 o C Capillary Separation Column Mass Spectrometer (MS) Gas Chromatograph 14

15 Cellulose Pyrolysis Products Formic acid Acetic acid 3-furan methanol Acetol Furfural 2-furan methanol 5-methyl furfural 5-methyl furfural Hydroxymethylfurfural Glycolaldehyde 2-hydroxy-3-methyl cyclopenten-2-one Levoglucosenone 1,4;3,6-dianhydro-glucopyranose Anhydroxylopyranose Levoglucosan-furanose Levoglucosan Low mol. wt. species Furans/Pyrans Anhydro sugars Patwardhan, P.; et al. J. Anal. Appl. Pyrolysis 2009, 86, 323

16 Effect of Chain Length Glucose Cellobiose Maltohexaose Cellulose LMW Furans Anhydrosugars Levoglucosan All numbers are wt% LMW Low molecular weight compounds Patwardhan, P.; et al. J. Anal. Appl. Pyrolysis 2009, 86,

17 Proposed Mechanism Cellulose Depolymerized fragment Intermediate Another depolymerized fragment Fragment resulting from the Glycosidic cleavage of dextran Levoglucosan Ponder et. al., J Anal. Appl.Pyrolysis,,

18 Department of Chemical and Biological Engineering Detailed mechanism Quantum Chemistry Investigations H H CH + k mid-chain scission - H Initiation k ring closure H + Depropagation H CH + k end-chain scission H Levoglucosan Ponder et al., J. Anal. Appl. Pyrolysis 1992, 22, Mayes and Broadbelt, submitted 18

19 ΔH in kcal/mol at 773K Department of Chemical and Biological Engineering Detailed mechanism Quantum Chemistry Investigations Results Radical Ionic Concerted Concerted Mechanism ΔG in kcal/mol 773K, Implicit THF Gas Implicit THF Implicit Water Mayes and Broadbelt, Unraveling the Reactions that Unravel Cellulose, submitted. 19

20 Department of Chemical and Biological Engineering Reaction pathways included in cellulose fast pyrolysis Pyrolysis Detailed mechanism H H H H H H H H H H H H H H H H H Glucose Levoglucosan is formed by concerted, glycosidic bond cleavage reactions in the mid and end of cellulose chains H H H H H H C H H C H C H C H H H C H C H H C H C H C H C H CH All other low molecular weight products are formed from glucose through various reactions like dehydration, ring opening, ring flipping, retro aldol, retro Diels-Alder and Grob fragmentation H Buy SmartDraw!- purchased copies print this document without a watermark H. H Visit or call H H H H H Char, C 2, C, H 2 HC C H 2 H H H H HC HC HC HC C H 2 CH CH C H C HC H HC CH 2 H HC HC CH HC C H 2 C H C CH CH HC CH CH 2 H HC C H 2 HC HC 20

21 Mass yield, wt.-% Weight loss/mass yield, wt.-% Department of Chemical and Biological Engineering Mass yield, wt.-% Time evolution of products of cellulose fast pyrolysis o C 400 o C 450 o C Cellulose 500 o C 550 o C Levoglucosan T = 500 o C P = 1 atm M n = 135,554 g/mol PDI = Pyrolysis time, s Effect of temperature on cellulose fast pyrolysis products Levoglucosan 5-HMF 2-Furfural Formic acid 350 o C 400 o C 450 o C Experimental data corresponds to Patwardhan et al., Biores. Technol. 2010, 101, o C 550 o C o C 400 o C Glucose 450 o C 500 o C Expt. Model 550 o C HC Pyrolysis time, s o C Model Predictions Glycolaldehyde 400 o C H 2 H C 2 Char MW HMF 2-Furfural 450 o C o C 550 o C

22 Wt % wt % Wt % 60 Alkali/Alkaline Earth Effects Levoglucosan Formic acid 40 NaCl KCl MgCl 2 CaCl mmol of salt/g of cellulose mmol of salt/g of cellulose 4 Acetol 5 Furfural Wt % mmol of salt/g of cellulose mmol of salt/g of cellulose Patwardhan, P.; et al. Bioresource Technol. 2010, 101,

23 mol of glucose/mol of metal ion Effect of Alkali/Alkaline Earth Turnover Number NaCl Ca()2 KCl mmol of salt/g of cellulose Patwardhan, P.; et al. Bioresource Technol. 2010, 101,

24 Proposed Mechanism Ca 2+ Ca 2+ 24

25 Acetic acid Lignin Pyrolysis Low mol. wt. compounds Phenolic compounds Patwardhan, P.; et al. submitted

26 Phenol Methoxy phenol Ethyl phenol Hydroxy styrene Coniferyl alcohol Sinapyl alcohol Micropyrolysis of Lignin Monomers GC-MS Analysis of Vapors from Micropyrolysis of Lignin GC-MS Analysis of Condensed Products from Micropyrolysis of Lignin ligomers Patwardhan, P.; et al. submitted

27 Lignin Monomers coumaryl alcohol coniferyl alcohol sinapyl alcohol 27

28 Area % GPC of Lignin Monomers CCS CCS Mix Mix CCS CCS Mix Mix Py CCS Mix Py CCSA Mix Py Mol. Wt. (Da) Patwardhan, P.; et al. ChemSusChem

29 wt% of biomass (wet basis) Passivating Alkali in Biomass Comparison of Different Switchgrass Pretreatments Switchgrass Control Acetic Acid Formic Acid Nitric Acid Hydrochloric Acid Phosphoric Acid Sulfuric Acid Light xygenates Anhydrosugars Furans Phenols Kuzhiyil et al. (2012) submitted 29

30 Biochar Application Increases: Nutrient Availability Microbial Activity Soil rganic Matter Water Retention & Quality Crop Yields Terra Preta xisol Decreases: Fertilizer Needs Greenhouse Gas Emissions Nutrient Leaching Soil Bulk Density 30

31 Carbon Residence Time 100 m 31

32 Biochar Average Structure Moderate Temperature High Temperature Brewer, et al. Environ. Prog. Sustainable Energy 2009, 28,

33 Key Challenges Gasification issue of scale Pyrolysis issue of product quality 33

34 Robert Brown Jim Katzer Pushkaraj Patwardhan Klaus Schmidt-Rohr Catherine Brewer Linda Broadbelt Vinu Ravikrishnan Heather Mayes Acknowledgements ConocoPhillips U.S. Department of Energy National Advanced Biofuels Consortium 34

Fast pyrolysis based biorefineries

Fast pyrolysis based biorefineries Fast pyrolysis based biorefineries Tony Bridgwater Bio-Energy Research Group Aston University, Birmingham, UK ACS, Washington DC, 31 August 2005 1 Chemicals in bio-oil The chemicals in bio-oil are derived

More information

U.S. Liquid Transport Fuels

U.S. Liquid Transport Fuels Coal (and Biomass) to Liquid Fuels James Katzer House Energy Briefing 131 Longworth House Office Bldg 3:, March 18, 9 1 U.S. Liquid Transport Fuels 4% of our total primary energy consumption comes form

More information

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass

Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Production of Heating and Transportation Fuels via Fast Pyrolysis of biomass Sanjeev K. Gajjela and Philip H. Steele Department of Forest Products College of Forest Resources Mississippi State University

More information

Coal-Biomass to Liquids + Electricity with CCS as Repowering Options for Existing Coal Power Plant Sites

Coal-Biomass to Liquids + Electricity with CCS as Repowering Options for Existing Coal Power Plant Sites Coal-Biomass to Liquids + Electricity with CCS as Repowering Options for Existing Coal Power Plant Sites Robert H. Williams Princeton Environmental Institute Princeton University Invited Presentation at

More information

Pyrolysis and Gasification

Pyrolysis and Gasification Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;

More information

Pyrolysis. 1 st Brazil-U.S. Biofuels Short Course Institute for Advanced Studies University of Sao Paulo, Brazil

Pyrolysis. 1 st Brazil-U.S. Biofuels Short Course Institute for Advanced Studies University of Sao Paulo, Brazil Pyrolysis 1 st Brazil-U.S. Biofuels Short Course Institute for Advanced Studies University of Sao Paulo, Brazil Robert C. Brown Iowa State University Ames, IA Outline General biomass processing pyrolysis

More information

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Upgrading of Bio-oil oil for Fuel Production 13 th Annual Green Chemistry & Engineering Conference Luc Moens, Ph.D June 25, 2009 NREL is a national laboratory of the U.S. Department of Energy ffice of

More information

Biomass Technologies: Overview and Future Trends. Small Wood 2004

Biomass Technologies: Overview and Future Trends. Small Wood 2004 Biomass Technologies: verview and Future Trends Small Wood 2004 Sacramento, CA May 20, 2004 John Scahill Biomass Feedstocks Forest Wood Residues Agricultural Residues Energy Crops Thinning Residues Wood

More information

Biofuels Research Opportunities in Thermochemical Conversion of Biomass

Biofuels Research Opportunities in Thermochemical Conversion of Biomass University of Massachusetts Amherst ScholarWorks@UMass Amherst Conference on Cellulosic Biofuels September 2008 Biofuels Research Opportunities in Thermochemical Conversion of Biomass Douglas Elliott PNL,

More information

Biomass Pyrolysis. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK

Biomass Pyrolysis. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass Pyrolysis Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Aston University Bioenergy Research Group IEA Bioenergy, York, 12 October 2010 2 What is pyrolysis? Biomass

More information

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Thomas D. Foust, Ph.D., P.E. Director, National Advanced Fuels Consortium NREL Bioenergy Center December 9, 2013 NREL is a national laboratory of the

More information

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II:

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II: Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries Institute for Wood Technology and Wood Biology, amburg e ECI Bioenergy-II: Fuels and Chemicals from Renewable Resources Rio

More information

Highlights of CO 2 Capture. Robert Williams CMI Annual Meeting 10 February 2008

Highlights of CO 2 Capture. Robert Williams CMI Annual Meeting 10 February 2008 Highlights of CO 2 Capture Robert Williams CMI Annual Meeting 10 February 2008 Systems Analysis for Synthetic Fuels Production the Major 2008 Activity of Energy Systems Analysis Group Impetus: request

More information

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel

Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Sulfur speciation and partitioning during thermochemical conversion of cellulosic biomass to biofuel Singfoong Cheah Daniel Carpenter Calvin Feik Shealyn Malone National Renewable Energy Laboratory Golden,

More information

Department of Forest Biomaterials, North Carolina State University. Raleigh, NC , USA 2

Department of Forest Biomaterials, North Carolina State University. Raleigh, NC , USA 2 Process Simulation of Biomass Fast- Pyrolysis into Transportation Fuels Carlos E. Aizpurua 1, Hoyong Kim 1, Stephen S. Kelley 1, Hasan Jameel 1, Mark M. Wrigth 2, and Sunkyu Park 1. 1 Department of Forest

More information

Thrust 2: Utilization of Petroleum Refinery Technology for Biofuel Production. Prof. Chunshan Song, Penn State Douglas C.

Thrust 2: Utilization of Petroleum Refinery Technology for Biofuel Production. Prof. Chunshan Song, Penn State Douglas C. Thrust 2: Utilization of Petroleum Refinery Technology for Biofuel Production Prof. Chunshan Song, Penn State Douglas C. Elliott, PNNL Utilization of Petroleum Refining Technologies for Biofuels Production

More information

In situ and ex situ catalysis in biomass fast pyrolysis

In situ and ex situ catalysis in biomass fast pyrolysis Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2016 In situ and ex situ catalysis in biomass fast pyrolysis Michael Nolte Iowa State University Follow this

More information

Fischer-Tropsch Fuels from Coal and Biomass

Fischer-Tropsch Fuels from Coal and Biomass Fischer-Tropsch Fuels from Coal and Biomass Thomas G. Kreutz, Eric D. Larson, Guangjian Liu, Robert H. Williams Princeton Environmental Institute Princeton University Princeton, NJ 08544 Prepared for 25

More information

Engineering a Non-Petroleum Binder for Use in Flexible Pavements. R. Christopher Williams Mohamed Abdel Raouf

Engineering a Non-Petroleum Binder for Use in Flexible Pavements. R. Christopher Williams Mohamed Abdel Raouf College of Engineering Engineering a Non-Petroleum Binder for Use in Flexible Pavements R. Christopher Williams Mohamed Abdel Raouf Presentation Outline Production of bio-oils and characteristics Experimental

More information

Utilization of Fractionated Bio-Oil in Asphalt. R. Christopher Williams Justinus Satrio Marjorie Rover Robert C. Brown Sheng Teng

Utilization of Fractionated Bio-Oil in Asphalt. R. Christopher Williams Justinus Satrio Marjorie Rover Robert C. Brown Sheng Teng Utilization of Fractionated Bio-Oil in Asphalt R. Christopher Williams Justinus Satrio Marjorie Rover Robert C. Brown Sheng Teng Presentation Outline Background Bio-oil pilot plant production Experimental

More information

Biofuels and Biochemicals: Investment Opportunities?

Biofuels and Biochemicals: Investment Opportunities? Biofuels and Biochemicals: Investment Opportunities? Fernando Preto CanmetENERGY, Natural Resources Canada Bioenergy II Fuels and Chemicals from Renewable Resources CanmetENERGY (Natural Resources Canada)

More information

A Mild Approach for Bio-oil Stabilization and Upgrading: Electrocatalytic Hydrogenation. Using Ruthenium Supported on Activated Carbon Cloth

A Mild Approach for Bio-oil Stabilization and Upgrading: Electrocatalytic Hydrogenation. Using Ruthenium Supported on Activated Carbon Cloth Supplementary Information for: A Mild Approach for Bio-oil Stabilization and Upgrading: Electrocatalytic Hydrogenation Using Ruthenium Supported on Activated Carbon Cloth Zhenglong Li a,b, Shantanu Kelkar

More information

Energy Densification via Hydrothermal Pre-Treatment of Cellulosic Biomass

Energy Densification via Hydrothermal Pre-Treatment of Cellulosic Biomass Energy Densification via Hydrothermal Pre-Treatment of Cellulosic Biomass AWMA International Specialty Conference: Leapfrogging Opportunities for Air Quality Improvement May 10-14, 2010 Xi an, Shaanxi

More information

Catalytic Fast Pyrolysis of Lignocellulosic Biomass

Catalytic Fast Pyrolysis of Lignocellulosic Biomass Chemical Society Reviews Catalytic Fast Pyrolysis of Lignocellulosic Biomass Journal: Chemical Society Reviews Manuscript ID: CS-REV-11-2013-060414.R2 Article Type: Review Article Date Submitted by the

More information

Fossil Energy. Fossil Energy Technologies. Chapter 12, #1. Access (clean HH fuel) Coal. Air quality (outdoor)

Fossil Energy. Fossil Energy Technologies.  Chapter 12, #1. Access (clean HH fuel) Coal. Air quality (outdoor) Fossil Energy Technologies Coal steam power Gasification Power Access (clean HH fuel) Coal Direct Liquefaction Gasification liquids Air quality (outdoor) Natural Gas Biomass Power/liquids Co-production

More information

Abstract Process Economics Program Report 270 THERMOCHEMICAL CELLULOSIC ETHANOL (December 2009)

Abstract Process Economics Program Report 270 THERMOCHEMICAL CELLULOSIC ETHANOL (December 2009) Abstract Process Economics Program Report 270 THERMOCHEMICAL CELLULOSIC ETHANOL (December 2009) World ethanol production has experienced spectacular growth. This growth has been based on starch and sugar

More information

Fast pyrolysis of lignin. Elma Gyftopoulou Bio-Energy Research Group PyNe Meeting, Vicenza, 12 October 2007

Fast pyrolysis of lignin. Elma Gyftopoulou Bio-Energy Research Group PyNe Meeting, Vicenza, 12 October 2007 Fast pyrolysis of lignin Elma Gyftopoulou Bio-Energy Research Group PyNe Meeting, Vicenza, 12 ctober 2007 1 Lignin Lignin is usually considered as a polyphenolic material having an amorphous structure,

More information

September Paolo Taddei Pardelli Spike Renewables Srl RE-CORD Consortium Florence, Italy

September Paolo Taddei Pardelli Spike Renewables Srl RE-CORD Consortium Florence, Italy September 2017 Spike Renewables Srl -SME Partner Profile Engineering and Prototyping Activities Paolo Taddei Pardelli Spike Renewables Srl RE-CORD Consortium Florence, Italy Spike Renewables SrL Spike

More information

Biomass and Biofuels. Biomass

Biomass and Biofuels. Biomass and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert

More information

Sixth Annual Conference on Carbon Capture & Sequestration

Sixth Annual Conference on Carbon Capture & Sequestration Sixth Annual Conference on Carbon Capture & Sequestration Session Title: Coal to Liquids and Sequestration ZERO-CARBON FT LIQUIDS VIA GASIFICATION OF COAL AND BIOMASS WITH CCS Eric D. Larson a, Haiming

More information

Valerie Reed Ph.D. Acting Program Manager Office of Biomass Programs Department of Energy. 1 Office of the Biomass Program eere.energy.

Valerie Reed Ph.D. Acting Program Manager Office of Biomass Programs Department of Energy. 1 Office of the Biomass Program eere.energy. Valerie Reed Ph.D. Acting Program Manager Office of Biomass Programs Department of Energy 1 Office of the Biomass Program eere.energy.gov Program Focus U.S. Department of Energy Biomass Program Cellulosic

More information

The production of biochar and byproducts. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK

The production of biochar and byproducts. Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK The production of biochar and byproducts Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Aston University Bioenergy Research Group IBI2010 Rio de Janeiro September 2010

More information

The National Bioenergy Center and Biomass R&D Overview

The National Bioenergy Center and Biomass R&D Overview The National Bioenergy Center and Biomass R&D verview Dr. Michael A. Pacheco Director of National Bioenergy Center National Renewable Energy Laboratory May 20, 2004 National Bioenergy Center Announced

More information

Ofei D. Mante* and FA Agblevor Biological Engineering, Utah State University, Logan UT; *RTI International, Research Triangle, NC

Ofei D. Mante* and FA Agblevor Biological Engineering, Utah State University, Logan UT; *RTI International, Research Triangle, NC Physicochemical properties of biomass catalytic pyrolysis oils: A 13 C NMR spectroscopic investigation of the effects of functional groups on oil properties. Ofei D. Mante* and FA Agblevor Biological Engineering,

More information

Thermal Processes in Biorefineries the Dibanet Example

Thermal Processes in Biorefineries the Dibanet Example Thermal Processes in Biorefineries the Dibanet Example Tony Bridgwater Presented by Daniel Nowakowski Bioenergy Research Group Aston University, Birmingham B4 7ET, UK DIBANET WP4 Tasks Task 4.1 Pyrolysis

More information

Gasification Research at OSU

Gasification Research at OSU Gasification Research at OSU Ajay Kumar, Assistant Professor Biobased Products and Energy Center (BioPEC), Biosystems and Agricultural Engineering, Oklahoma State University OK EPSCoR Annual State Conference

More information

NAPHTHA FROM COAL A POTENTIAL NEW FEEDSTOCK CONDENSATE AND NAPHTHA FORUM MARCH 2012

NAPHTHA FROM COAL A POTENTIAL NEW FEEDSTOCK CONDENSATE AND NAPHTHA FORUM MARCH 2012 NAPHTHA FROM COAL A POTENTIAL NEW FEEDSTOCK CONDENSATE AND NAPHTHA FORUM MARCH 2012 DUNCAN SEDDON & ASSOCIATES PTY. LTD. 116 KOORNALLA CRESCENT MOUNT ELIZA VICTORIA 3930 AUSTRALIA (T) 61-3-9787-4793 (F)

More information

Biomass Processes & Technologies Adding Value to Home Grown Resources

Biomass Processes & Technologies Adding Value to Home Grown Resources FRONTLINE BIOENERGY, LLC Renewable Fuels & Products Biomass Processes & Technologies Adding Value to Home Grown Resources Jerod Smeenk Frontline BioEnergy, LLC Home Grown Energy Conference Morris, MN February

More information

PyNe -- Innsbruck WP 2A Pyrolysis Biorefinery

PyNe -- Innsbruck WP 2A Pyrolysis Biorefinery PyNe -- Innsbruck WP 2A Pyrolysis Biorefinery Doug Elliott September 28, 2005 Presentation Organization Biorefinery basics U.S. Department of Energy program Earlier PyNe efforts Other Biorefinery concepts

More information

Mikko Hupa Åbo Akademi Turku, Finland

Mikko Hupa Åbo Akademi Turku, Finland Åbo Akademi Chemical Engineering Department Course The Forest based Biorefinery Chemical and Engineering Challenges and Opportunities May 3-7, 2010 Thermal conversion of biomass Mikko Hupa Åbo Akademi

More information

Effect of Pressure and Heating Rates on Biomass Pyrolysis and Gasification

Effect of Pressure and Heating Rates on Biomass Pyrolysis and Gasification Effect of Pressure and Heating Rates on Biomass Pyrolysis and Gasification Pradeep K. Agrawal School of Chemical and Biomolecular Engineering Georgia Institute of Technology June 15, 2012 Auburn University

More information

Fast Pyrolysis of Agricultural Residues from Cassava Plantation for Bio-oil Production

Fast Pyrolysis of Agricultural Residues from Cassava Plantation for Bio-oil Production Fast Pyrolysis of Agricultural Residues from Cassava Plantation for Bio-oil Production 1. INTRODUCTION Biomass as a source of sustainable energy is widely accepted for its potential to satisfy environmental

More information

Novel Ni-based catalysts for the hydrotreatment of fast pyrolysis oil

Novel Ni-based catalysts for the hydrotreatment of fast pyrolysis oil Engineering Conferences International ECI Digital Archives BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals Proceedings Spring 6-11-2013 Novel Ni-based catalysts for

More information

Biofuels Presentation. Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011

Biofuels Presentation. Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011 22.033 Biofuels Presentation Alex, Lizzy, Ogie, Matt, and Kathryn October 3, 2011 1 Overview Our Goal House of Quality Comparison of Biomass Sources Possible Uses & Processes Comparison of Inputs Comparison

More information

Biorefinery.nl. Opportunities for the (petro)chemical industry. Wolter Prins BTG Biomass Technology Group BV

Biorefinery.nl. Opportunities for the (petro)chemical industry. Wolter Prins BTG Biomass Technology Group BV Biorefinery.nl Opportunities for the (petro)chemical industry Wolter Prins BTG Biomass Technology Group BV Low density, hard to handle, non-uniform solid A versatile liquid 1 Contents 1. Resources 2. Biomass

More information

HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION. Alain Quignard / IFPEN

HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION. Alain Quignard / IFPEN Flash Pyrolysis Flash Pyrolysis Flash Pyrolysis 2 step HDT 1) Stabilization 2) Hydroconversion Flash Pyrolysis HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION

More information

Analysis of sugars and phenolic compounds in biooil

Analysis of sugars and phenolic compounds in biooil Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2013 Analysis of sugars and phenolic compounds in biooil Marjorie Ruth Rover Iowa State University Follow this

More information

Thermochemical Technologies for Conversion of Biomass to Fuels and Chemicals

Thermochemical Technologies for Conversion of Biomass to Fuels and Chemicals Thermochemical Technologies for Conversion of Biomass to Fuels and Chemicals Presented by Dr. Richard L. Bain, Principal Research Supervisor, Biorefinery Analysis and Exploratory Research Group National

More information

CREATIVITY AND EXPERTISE to develop solutions for the marine industry. Green Tech 2016 Marine fuels from forest biomass

CREATIVITY AND EXPERTISE to develop solutions for the marine industry. Green Tech 2016 Marine fuels from forest biomass CREATIVITY AND EXPERTISE to develop solutions for the marine industry Green Tech 2016 Marine fuels from forest biomass Marine fuels Marine fuels are specified according to ISO 8217:2012 Heavy fuel oil

More information

Catalysis Science & Technology

Catalysis Science & Technology Catalysis Science & Technology Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted

More information

Production of Electricity and/or Fuels from Biomass by Thermochemical Conversion

Production of Electricity and/or Fuels from Biomass by Thermochemical Conversion Production of Electricity and/or Fuels from Biomass by Thermochemical Conversion Eric D. Larson* Haiming Jin** Fuat Celik* RBAEF Meeting Washington, DC 23 February 2004 * Princeton Environmental Institute

More information

Process Modeling and Life Cycle Assessment of Biomass Conversion

Process Modeling and Life Cycle Assessment of Biomass Conversion Process Modeling and Life Cycle Assessment of Biomass Conversion Dr. Wen Zhou Department of Chemical Engineering Michigan Tech October 12, 2017 Conversion Pathways Hemicellulose-Cellulosic Substrate Comparison

More information

Mass production of chemicals from biomass-derived oil by directly atmospheric. distillation coupled with co-pyrolysis

Mass production of chemicals from biomass-derived oil by directly atmospheric. distillation coupled with co-pyrolysis Supplementary Materials Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis Xue-Song Zhang, Guang-Xi Yang, Hong Jiang*, Wu-Jun Liu & Hong-Sheng

More information

Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept

Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept Sudhakar Sagi 23 rd Nov 2010 Aston University Birmingham The scale of the UK CO 2 challenge Pyrolysis is a thermochemical decomposition

More information

Catalytic Biomass Pyrolysis Studies at Pilot-Scale

Catalytic Biomass Pyrolysis Studies at Pilot-Scale Catalytic Biomass Pyrolysis Studies at Pilot-Scale TCS2016, November 1-4, 2016, Chapel Hill, NC Ofei Mante, D. Dayton, D. Barbee, M. Carpenter, L. Shumaker, K. Wang, and J. Peters RTI International is

More information

Chapter 2 Catalytic Production of Liquid Hydrocarbon Transportation Fuels

Chapter 2 Catalytic Production of Liquid Hydrocarbon Transportation Fuels Chapter 2 Catalytic Production of Liquid Hydrocarbon Transportation Fuels Juan Carlos Serrano-Ruiz and James A. Dumesic Abstract Lignocellulosic biomass resources are abundant worldwide and have the potential

More information

HYBRID STAGED THERMOLYSIS TO VALORISE BIOMASS Paul de Wild, March 11, 2009

HYBRID STAGED THERMOLYSIS TO VALORISE BIOMASS Paul de Wild, March 11, 2009 HYBRID STAGED THERMOLYSIS TO VALORISE BIOMASS Paul de Wild, March 11, 2009 Bioenergy - II: Fuels and Chemicals from Renewable Resources March 8-13, 2009, Rio de Janeiro, Brazil INTRODUCTION Lignocellulosic

More information

Cleaning biomass generated syngas: is biochar a cheaper alternative to expensive catalysts? Ajay Kumar Oklahoma State University

Cleaning biomass generated syngas: is biochar a cheaper alternative to expensive catalysts? Ajay Kumar Oklahoma State University Cleaning biomass generated syngas: is biochar a cheaper alternative to expensive catalysts? Ajay Kumar Oklahoma State University Biomass Feedstocks Biofuels through Thermochemical Conversions Characterization

More information

Liquid Fuel Production by Fast Pyrolysis of Biomass

Liquid Fuel Production by Fast Pyrolysis of Biomass Liquid Fuel Production by Fast Pyrolysis of Biomass September 2013. DTU International Energy Conference Peter Arendt Jensen, paj@kt.dtu.dk DTU, Chemical Engineering, CHEC Flash pyrolysis process Biomass

More information

Characterization studies of Waste- bio-derived feedstocks

Characterization studies of Waste- bio-derived feedstocks CENTRE FOR RESEARCH AND ΤECHNOLOGY-HELLAS CHEMICAL PROCESS ENGINEERING RESEARCH INSTITUTE Characterization studies of Waste- bio-derived feedstocks C. Michailof, E.F. Iliopoulou,K. Kalogiannis, M. Pachnos,

More information

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches Thermal Conversion of Animal Manure to Biofuel Samy Sadaka, Ph.D., P.E., P. Eng. Assistant Professor - Extension Engineer University of Arkansas Division of Agriculture - Cooperative Extension Service

More information

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11 ABE 482 Environmental Engineering in Biosystems September 29 Lecture 11 Today Gasification & Pyrolysis Waste disposal balance Solid Waste Systems Solid Waste Air Limited air No air Combustion Gasification

More information

Process Analysis and Design: Objectives and Introduction

Process Analysis and Design: Objectives and Introduction Process Analysis and Design: Objectives and Introduction Presented by Dr. Richard L. Bain, Principal Research Supervisor Biorefinery Analysis, National Bioenergy Center Presented to the NSF Biomass Thermochemical

More information

Pyrolytic sugars from cellulosic biomass

Pyrolytic sugars from cellulosic biomass Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2013 Pyrolytic sugars from cellulosic biomass Najeeb M. Kuzhiyil Iowa State University Follow this and additional

More information

Different Aspects of Biomass Pyrolysis: A General Review

Different Aspects of Biomass Pyrolysis: A General Review Different Aspects of Biomass Pyrolysis: A General Review Ersan Pütün Anadolu University, Department of Materials Science and Engineering, Eskisehir, Turkey eputun@anadolu.edu.t Outline Energy needs and

More information

Prospects for the Development of Drop-in Liquid Biofuels (especially Gasoline) from Sustainable Feedstocks

Prospects for the Development of Drop-in Liquid Biofuels (especially Gasoline) from Sustainable Feedstocks Prospects for the Development of Drop-in Liquid Biofuels (especially Gasoline) from Sustainable Feedstocks Reinhard Seiser Andrew Burke Session 1: Biofuel and Biomethane Transportation Fuels - Setting

More information

Biofuel Sources and Emerging Technologies. The Future of Biofuels in Minnesota Minnesota Environmental Initiative November 13, 2008

Biofuel Sources and Emerging Technologies. The Future of Biofuels in Minnesota Minnesota Environmental Initiative November 13, 2008 Biofuel Sources and Emerging Technologies The Future of Biofuels in Minnesota Minnesota Environmental Initiative November 13, 2008 Overview: 1.Agricultural Research Station NWROC 2.Serve as Living Lab

More information

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria

More information

Biofuels and Biorefineries

Biofuels and Biorefineries Biofuels and Biorefineries Stella Bezergianni, Angelos Lappas, and Iacovos Vasalos Laboratory of Environmental Fuels and Hydrocarbons (LEFH) (www.cperi.certh.gr) Center of Research & Technology Hellas

More information

Module 3c. Transportation fuels and biorefineries

Module 3c. Transportation fuels and biorefineries Module 3c Transportation fuels and biorefineries Outline 1. Resources 2. Biomass based industries 3. Biorefinery definition 4. Biorefinery opportunities 5. From biomass sugars to residues 6. Fast pyrolysis

More information

Effect of Torrefaction on Biomass Chemistry and Hydrocarbons Production from Fast Pyrolysis

Effect of Torrefaction on Biomass Chemistry and Hydrocarbons Production from Fast Pyrolysis Effect of Torrefaction on Biomass Chemistry and Hydrocarbons Production from Fast Pyrolysis Sushil Adhikari, Ph.D., P.E. Biosystems Engineering Department Auburn University February 03, 2015 Lignocellulosic

More information

Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011)

Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011) Abstract Process Economics Program Report 280 COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES (December 2011) The use of ethanol as an alternative motor fuel has been steadily increasing around the globe

More information

CMI ANNUAL MEETING A CHALLENGE TO ETHANOL. Robert H. Williams Princeton Environmental Institute Princeton University Princeton, New Jersey

CMI ANNUAL MEETING A CHALLENGE TO ETHANOL. Robert H. Williams Princeton Environmental Institute Princeton University Princeton, New Jersey CMI ANNUAL MEETING A CHALLENGE TO ETHANOL Robert H. Williams Princeton Environmental Institute Princeton University Princeton, New Jersey 21 February 2007 DILEMMA FOR CONVENTIONAL BIOFUELS Advantages:

More information

Hydrocarbon Drop-In Biofuels Engine Research Center University of Wisconsin-Madison June 8, 2011

Hydrocarbon Drop-In Biofuels Engine Research Center University of Wisconsin-Madison June 8, 2011 PNNL-SA-77610 Hydrocarbon Drop-In Biofuels Engine Research Center University of Wisconsin-Madison June 8, 2011 John Holladay Pacific Northwest National Laboratory PO Box 999, MSIN: P8-60, Richland, WA

More information

Torrefaction to Improve Biomass for Energy and Biofuels Production and Carbon Sequestion. Chris Hopkins, Research Associate

Torrefaction to Improve Biomass for Energy and Biofuels Production and Carbon Sequestion. Chris Hopkins, Research Associate Torrefaction to Improve Biomass for Energy and Biofuels Production and Carbon Sequestion Chris Hopkins, Research Associate Funding Sources and Partners North Carolina State University Golden LEAF Foundation

More information

The potential and challenges of drop in biofuels

The potential and challenges of drop in biofuels The potential and challenges of drop in biofuels OH OH H O H H OH H HO OH H OH - O 2 H H H H H O H H H C C C C H OH H H H H H HO OH Carbohydrate Hydrocarbon Petroleum-like biofuel H OH Sergios Karatzos,

More information

Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels

Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels A Workshop to Develop the Roadmap for Making Lignocellulosic Biofuels a Practical Reality ACS Headquarters Washington, D.C. June

More information

Development of a lab-scale auger reactor for biomass fast pyrolysis and process optimization using response surface methodology

Development of a lab-scale auger reactor for biomass fast pyrolysis and process optimization using response surface methodology Graduate Theses and Dissertations Graduate College 2009 Development of a lab-scale auger reactor for biomass fast pyrolysis and process optimization using response surface methodology Jared Nathaniel Brown

More information

Carbon To X. Processes

Carbon To X. Processes World CTX Carbon To X Processes Processes and Commercial Operations World CTX: let s Optimize the Use of Carbon Resource Carbon To X Processes Carbon To X technologies are operated in more than 50 plants

More information

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU 2 0 Plastics Recycling 9 7 8 3 Datchanee Pattavarakorn Industrial Chemistry, Science, CMU Why recycle plastics? Waste emissions Industrial waste Domestic waste Why recycle plastics? Waste emissions 640

More information

Sustainable Biofuels A Small Step towards Carbon Management

Sustainable Biofuels A Small Step towards Carbon Management Energy Technology Division Sustainable Biofuels A Small Step towards Carbon Management Raghubir Gupta and David Dayton Energy Technology Division RTI International Research Triangle Park, NC 27709 April

More information

Pyrolysis of Low Grade Biomass and Waste

Pyrolysis of Low Grade Biomass and Waste Pyrolysis of Low Grade Biomass and Waste Dr. Marion Carrier m.carrier@aston.ac.uk Fuel and Energy Research Forum 27 th June 2017 Leeds Primary processing Biochemical conversion Thermochemical conversion

More information

The New Generation of Biofuels:

The New Generation of Biofuels: The New Generation of Biofuels: How Europe and Latin America can Work Together Daniel Hayes Carbolea Research Group University of Limerick, Ireland www.carbolea.ul.ie daniel.hayes@ul.ie LLSCIL LUIMNIGH

More information

Fast pyrolysis of guayule shrub and bagasse Colleen McMahan 1, Kwesi Boateng 2, Charles Mullin 2 Katrina Cornish 3

Fast pyrolysis of guayule shrub and bagasse Colleen McMahan 1, Kwesi Boateng 2, Charles Mullin 2 Katrina Cornish 3 Fast pyrolysis of guayule shrub and bagasse Colleen McMahan, Kwesi Boateng 2, Charles Mullin 2 Katrina Cornish 3 United States Department of Agriculture Agricultural Research Service Western Regional Research

More information

Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy

Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Paul de Wild June 2015 ECN-L--15-038 Pyrolysis of Bamboo Vulgaris for fuels, chemicals and energy Paul de Wild www.ecn.nl Contents Intro ECN

More information

Co-Production of Fuel Alcohols & Electricity via Refinery Coke Gasification Ravi Ravikumar & Paul Shepard

Co-Production of Fuel Alcohols & Electricity via Refinery Coke Gasification Ravi Ravikumar & Paul Shepard Co-Production of Fuel Alcohols & Electricity via Refinery Coke Gasification Ravi Ravikumar & Paul Shepard October 15, 2003 Gasification Technologies 2003 Conference San Francisco, CA Study Objectives Evaluate

More information

Green is Seen in Fertilizers Municipal Solid Waste Management. Carrie Farberow Kevin Bailey University of Oklahoma May 1, 2007

Green is Seen in Fertilizers Municipal Solid Waste Management. Carrie Farberow Kevin Bailey University of Oklahoma May 1, 2007 Green is Seen in Fertilizers Municipal Solid Waste Management Carrie Farberow Kevin Bailey University of Oklahoma May 1, 007 MSW Overview EPA 005 Facts and Figures U.S. Waste Produced = 45.7 million ton

More information

Challenge 2: Fargione et al; Land Use Change Penalty. CO 2 debt is created when land is cleared

Challenge 2: Fargione et al; Land Use Change Penalty. CO 2 debt is created when land is cleared Green Gasoline at NSF ACS Green Chemistry and Engineering Conference University Park, MD John R. Regalbuto Catalysis and Biocatalysis Program Directorate for Engineering National Science Foundation June

More information

Introduction: Thermal treatment

Introduction: Thermal treatment Thermal Treatment 2 Introduction: Thermal treatment Technologies using high temperatures to treat waste (or RDF) Commonly involves thermal combustion (oxidation) Reduces waste to ash (MSW c. 30% of input)

More information

Solid Carbon Conversion (Biomass & MSW) via CO 2

Solid Carbon Conversion (Biomass & MSW) via CO 2 Solid Carbon Conversion (Biomass & MSW) via CO 2 Marco J. Castaldi Department of Earth & Environmental Engineering Henry Krumb School of Mines, Columbia University Need refs and atom economy Workshop on

More information

Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass

Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass Fast Pyrolysis as Pretreatment for Further Upgrading of Biomass Gasification 2010 Feedstock, Pretreatment and Bed Material 28-29 October, Gothenburg, Sweden Anja Oasmaa, Kai Sipilä, Yrjö Solantausta VTT

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS

LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS ECN-RX--04-119 LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS Optimal gasification and gas cleaning systems H. Boerrigter A. van der Drift Presented at Congress on Synthetic Biofuels - Technologies,

More information

Energy-Crop Gasification

Energy-Crop Gasification Energy-Crop Gasification R. Mark Bricka Mississippi State University Mississippi State, MS Biomass may be obtained from many sources. Already mentioned at this conference are switchgrass, corn stover,

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Biomass to Energy

More information

Plastic to Fuel Technologies

Plastic to Fuel Technologies Plastic to Fuel Technologies Author: Mauro Capocelli, Researcher, University UCBM Rome (Italy) 1. Theme description The growth of economy and consumes, combined with the modern models of production, have

More information

Second Generation Biofuels: Technologies, Potential, and Economics

Second Generation Biofuels: Technologies, Potential, and Economics Second Generation Biofuels: Technologies, Potential, and Economics Charles E. Wyman Ford Motor Company Chair in Environmental Engineering Center for Environmental Research and Technology and Chemical and

More information

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Charles W. Forsberg Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Email: forsbergcw@ornl.gov Abstract Liquid fuels (gasoline,

More information

Biomass for Energy and Fuel

Biomass for Energy and Fuel Biomass for Energy and Fuel Reference: Donald L. Klass, Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, 1998. http://www.energy.kth.se/compedu/webcompedu/media/lectu re_notes/s1b11c2.pdf

More information

An NSF Perspective on. Next Generation Hydrocarbon Biofuels:

An NSF Perspective on. Next Generation Hydrocarbon Biofuels: An NSF Perspective on Next Generation Hydrocarbon Biofuels: Implications on Land and Water Use Atibaia, Brazil John R. Regalbuto Catalysis and Biocatalysis Program Directorate for Engineering National

More information