Spaceflight Life Support and Biospherics

Size: px
Start display at page:

Download "Spaceflight Life Support and Biospherics"

Transcription

1 Spaceflight Life Support and Biospherics by Peter Eckart Revised and Expanded from Life Support & Biospherics, Herbert Utz Publishers, Munich, Germany, 1994 Space Technology Library Published Jointly by Microcosm Press Torrance, California Kluwer Academic Publishers Dordrecht / Boston / London

2 CONTENTS PREFACE FOREWORD XIII XV I RATIONALE 1 II BIOSPHERE 1 - THE LIFE SUPPORT SYSTEM OF THE EARTH THE TERRESTRIAL ENVIRONMENT Geology Atmosphere Gravity Radiation Magnetic Field FUNDAMENTALS OF ECOLOGY Levels of Ecological Hierarchy Ecosystems and Ecosystem Models Energetics and Photosynthesis Material Cycles Recycling Pathways and Limiting Factors The Gaia Hypothesis EARTH'S ENDANGERED LIFE SUPPORT SYSTEM 35 III THE EXTRATERRESTRIAL ENVIRONMENT RADIATION IN FREE SPACE Electromagnetic Radiation in Space Ionizing Radiation Sources in Space Solar Wind and Solar Cosmic Rays (SCR) Galactic Cosmic Radiation (GCR) The Van Allen Belts The Concept of Radiation Dose Radiation Monitoring and Dosimetry Radiation Effects 51 III. 1.6 Radiation Protection 54

3 VIII Spaceflight Life Support & Biospherics GRAVITY Gravity on the Planets and in Free Space Effects of Lower Gravity 58 Ml.2.3 Artificial Gravity VACUUM Temperature Effects The Necessity of a Pressurized Environment Material Effects MAGNETIC FIELDS LOCAL PLANETARY ENVIRONMENTS Moon 66 1II Lunar Parameters Environment of the Lunar Surface Physical Properties of the Lunar Surface Lunar Resources Mars Martian Parameters Environment of the Martian Surface Physical Properties of the Martian Surface 73 IH Martian Resources 74 IV FUNDAMENTALS OF LIFE SUPPORT SYSTEMS 79 IV.1 DEFINITIONS 79 IV.2 CLASSIFICATION OF LIFE SUPPORT SYSTEMS 80 IV.3 DESIGN AND DEVELOPMENT CONSIDERATIONS 81 IV.3.1 Human Requirements 87 IV Environmental Aspects 89 IV Food and Nutritional Aspects 95 IV Waste Production and Waste Categories 103 IV.3.2 Subsystem Interfaces and Integration 104 IV.3.3 Mission Related Aspects 108 IV Mission Duration and Location 109 IV Mass and Cost Aspects 110 IV.3.4 Development Phases 118 IV.3.5 Trade Studies and Simulation Models 120 IV.4 PHYSICO-CHEMICAL VS. BIOREGENERATIVE LIFE SUPPORT 125 IV.5 PAST AND PRESENT LIFE SUPPORT SYSTEMS 127 IV.5.1 Spacebound Systems 127 IV.5.2 Earthbound Systems 140

4 Contents IX IV.6 SPACE SUITSAND EXTRA-VEHICULAR ACTIVITIES (EVA) 155 IV.6.1 Working Outside a Spacecraft or Space Habitat 155 IV.6.2 Extra-Vehicular Mobility Units (EMU) - Requirements, Design, and Operations 157 IV.6.3 Cabin Pressure vs. Space Suit Pressure 163 IV.6.4 Past and Present Space Suits and EVA Experiences 167 IV.6.5 Trends for Future Extra-Vehicular Mobility Units 168 V PHYSICO-CHEMICAL LIFE SUPPORT SUBSYSTEMS 175 V.1 ATMOSPHERE MANAGEMENT 176 V.1.1 AirRevitalizationTechnologies 178 V Gas Storage Systems 179 V Chemical Compounds 181 V High Pressure Storage 181 V Cryogenic Storage 182 V Carbon Dioxide Removal 182 V Regenerable Processes 182 V Molecular Sieves 182 V Solid Amine Water Desorption (SAWD) 184 V Electrochemical Depolarization Concentration (E DC) 188 V Air Polarized Concentrators (APC) 189 V Membrane Removal and Other Regenerative Technologies 191 V Non-Regenerable Processes 192 V Lithium Hydroxide (LiOH) 192 V Sodasorb 193 V Superoxides 193 V Carbon Dioxide Reduction 193 V Bosch 193 V Sabatier 196 V Advanced Carbon-Formation Reactor System (ACRS) 198 V CO 2 Electrolysis 198 V Superoxides 201 V Oxygen Generation 201 V Static Feed Water Electrolysis (SFWE) 202 V Solid Polymer Water Electrolysis (SPWE) 203 V Water Vapor Electrolysis (WVE) 204 V CO 2 Electrolysis 205 V Superoxides 205 V Artificial Gill 205 V Nitrogen Generation 205 V Trace Contaminant Control (TCC) 206

5 Spaceflight Life Support & Biospherics V.1.2 Atmosphere Monitoring and Control 210 V Temperature and Humidity Control (THC) 211 V Contaminant Monitoring 212 V Gas Chromatograph / Mass Spectrometer (GC/MS) 213 V FourierTransform Infrared Spectroscopy (FTIR) 215 V Ion Trap Mass Spectroscopy / Mass Spectroscopy (MS/MS) 215 V Fire Detection and Suppression 216 V.2 WATER MANAGEMENT 218 V.2.1 Urine Recovery 220 V Vapor Compression Distillation (VCD) 221 V Vapor Phase Catalytic Ammonia Removal (VAPCAR) 223 V Thermoelectric Integrated Membrane Evaporation System (TIMES) 225 V Air Evaporation Systems (AES) 226 V Aqueous Phase Catalytic Oxidation Post Treatment System (APCOS) 226 V Super Critical Water Oxidation (SCWO) 229 V.2.2 Hygiene Recovery and Potable Processing 229 V Reverse Osmosis (RO) 230 V Multifiltration (MF) 231 V Electrodialysis 234 V.2.3 Water Recovery from Condensate 234 V.2.4 Water Quality Monitoring 236 V.3 WASTE MANAGEMENT 237 V.3.1 Feces Collection and Storage 240 V.3.2 Solid Waste Treatment 241 V Super Critical Wet Oxidation 241 V WetOxidation 243 V Combustion/Incineration 244 V Electrochemical Incineration 245 V Waste Management - Water Systems (WM-WS) 245 VI BIOREGENERATIVE LIFE SUPPORT CONCEPTS 249 VI.1 BIOREGENERATIVE LIFE SUPPORT AND CELSS 249 VI.1.1 Rationale 249 VI.1.2 Modeling and Design 254 VI.1.3 System Level Problems 261

6 Contents XI VI.2 MICROBIAL SYSTEMS 267 VI.3 ALGAL SYSTEMS 270 VI.3.1 Algal Species and Attributes 271 VI.3.2 Algae for Provision of Food 272 VI.3.3 Algal Growth in Space 274 VI.4 HIGHER PLANTS 275 Vl.4.1 Plant Physiology 279 Vl Basic Plant Processes and Requirements 279 Vl Plant Physiological Parameters 280 Vl Photosynthesis 283 Vl Gravitropism and Phototropism 284 Vl Effects of the Extraterrestrial Environment 286 Vl Gravity 289 Vl Radiation 290 Vl Biological Experiments in Space 292 Vl.4.2 The Plant Selection Process 296 Vl Selection Criteria 296 Vl Attributes and Nutritional Values 300 Vl.4.3 Plant Growth in a CELSS - Design Considerations 303 Vl Growth Area 308 Vl Growth Media 309 Vl Soil 311 Vl Hydroponics 311 Vl Aeroponics 312 VI Atmosphere Requirements 315 Vl Atmosphere Composition 315 Vl Temperature and Humidity 316 Vl Lighting Analysis 317 Vl Lighting Requirements 317 Vl Solar Light 318 Vl Artificial Light 321 Vl Light Transportation and Distribution 323 Vl Hybrid Concepts 324 VI.4.4 Microorganisms 325 VI.4.5 Atmosphere Regeneration 326 VI.4.6 Water Recovery 327 Vl.4.7 Waste Processing 327 Vl.4.8 Nutrient Supply 330 Vl.4.9 Crew Time Requirements 334 Vl.4.10 Higher Plant Growth Facilities 335 VI.5 FUNGI AND CONVERSION OF INEDIBLE PLANT MATERIAL FOR FOOD PROVISION 341

7 XII Spaceflight Life Support & Biospherics VI.6 ANIMALS AS HUMAN FOOD 343 VI.7 AQUACULTURE SYSTEMS 345 VI.8 FOOD MANAGEMENT AND PROCESSING 348 VI.8.1 Food Production 350 VI.8.2 Food Storage 351 VI.8.3 Food Processing 352 VII BIOSPHERE 2 - LESSONS LEARNED FOR FUTURE CELSS RESEARCH 365 VII.1 THE RATIONALE OF BIOSPHERE VII.2 DESCRIPTION OF BIOSPHERE VII.3 THE BIOSPHERE 2TESTMODULE 378 VII.4 FIELDS OF RESEARCH 383 VII.5 INITIAL RESULTS 387 VIM FUTURE LIFE SUPPORT IN SPACE 397 VIII.1 FUTURE MANNED SPACE EXPLORATION 397 VIII.2 SPACE STATION 400 VIII.3 LUNAR BASE 402 VIII.4 MARTIAN BASE 408 IX POTENTIAL TERRESTRIAL APPLICATIONS DERIVED FROM THE DEVELOPMENT OF LIFE SUPPORT SYSTEMS 413 IX.1 INTRODUCTION 413 IX.2 BASIC ECOLOGICAL RESEARCH 413 IX.3 ATMOSPHERE, WATER.AND WASTE REGENERATION 417 IX.4 BIOMASS PRODUCTION AND RESEARCH 423 IX.5 SUPPORT OFTERRESTRIALANALOGS 424 INDEX 429