RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

Size: px
Start display at page:

Download "RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07"

Transcription

1 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of Technology Finland David Danielyan Obninsk Institute for Nuclear Power Engineering Russia 1. INTRODUCTION Primary-to-secondary leaks form a significant class of the loss-of-coolant accidents. In a primary-tosecondary leak, the damage is at a place where the containment will be bypassed if the safety valve of the broken steam generator opens. Eventually that can lead to a release of radioactive coolant to the atmosphere. Also, the emergency core-cooling water can escape from the system, which can become a serious problem because it prevents ECC water recirculation. Primary-to-secondary leaks can be divided into three categories; small, medium, and large PRISE. Usually a rupture of a single U-tube (small PRISE) causes the incidents, but the possibility of multiple-tube ruptures (medium PRISE) cannot be ignored completely. The VVER-type reactors have horizontal steam generators where the primary collectors are inside the secondary pool. Construction like that makes also large PRISE's possible. Multiple-tube ruptures and collector breaks may cause the core to be uncovered if sufficient ECC water is unavailable. With certain operator intervention, the flow from the primary to the secondary side may reverse. In such a case, a plug of partially diluted or completely unborated water may be formed on the primary side. If the mixing on the primary side is poor the plug can reach the core and lead to a reactivity accident. Data from several experimental and analytical studies exist for both single- and multiple-tube ruptures. However, the published experiments have focused on the facilities modeling western-type reactors. For the VVER reactors the only published experiment is the SPE on the Hungarian PMK-NVH test facility. The first series of steam generator multiple-tube rupture experiments on PACTEL was carried out in June Those three experiments focused on a possibility of the leak flow reversal occurring as a consequence of operator intervention. The results showed that the reversal is possible under suitable conditions. In the first series, the facility included two steam generators and one accumulator. A new set of experiments was carried out in February 1996 with three steam generators and two accumulators. The main goal was to find the worst possible conditions during which the leak flow reversal can occur. 2. DESCRIPTION OF THE PACTEL FACILITY PACTEL is a volumetrically scaled (1:35) integral test facility modeling the VVER4 reactors used in Finland. The facility includes all the main components of the reference reactor (Fig.1). The reactor vessel is simulated by an U-tube construction consisting of separate core and downcomer sections. The core is comprised of 144 electrically heated fuel rod simulators. The geometry and the pitch of the rods are the same as in the reference reactor. The rods are divided into three roughly triangular-shaped parallel channels, which represent the intersection of the corners of three hexagonal VVER rod bundles. The maximum total core power is 1 MW or 22% of the scaled nominal power. The rods have a nine-step chopped-cosine axial power distribution. The maximum primary pressure is 8. MPa compared to 12.3 MPa of the reference reactor. The component heights and the relative elevations (Fig.2) correspond to those of the full-scale reactor to match the natural circulation pressure heads in the reference system. The hot and cold leg elevations of the power plant have been reproduced. This is particularly important for the correct simulation of loop seal behavior. Unlike other PWRs, there is a loop seal in the hot legs of a VVER4. This is a consequence of the steam generator location, which is almost at the same elevation as the hot leg connection to the upper plenum. The primary collector of the steam generator is connected to the hot leg at the bottom of the steam generator. A roughly U-shaped pipe is needed to complete the connection. The cold leg loop seal is formed by the elevation difference of the inlet and outlet of the reactor 227

2 Figure 1. The PACTEL facility Figure 2. Elevations of the components coolant pump. The number of loops has been reduced from the six of the reference system to three in PACTEL. Thus, one PACTEL steam generator corresponds to two in the power plant. The steam generators have vertical primary collectors and horizontal heat exchanging tubes. The 118 U-shaped heat exchanging tubes are arranged in 14 layers and 9 vertical columns. The average length of the tubes (2.8 m) is about one-third of that in the fullscale steam generator (9. m). The outer diameter of the tubes is 16 mm, which corresponds to the reference system. The inner diameter is 13 mm (in the power plant 13.2 mm). To have a higher tube bundle, the pitch in the vertical direction has been increased to 48 mm instead of the 24mm of the reference steam generator. The pitch in the horizontal direction has been maintained. The outer diameter of the shell is 1. m (in the power plant 3.34 m). Because of the higher vertical pitch, the secondary side is about three times larger than the scaled-down secondary volume. That distorts the time-scale of secondary side transients. Two compartments have been built on each side of the steam generator to decrease the mass of water directly involved in the primary-to-secondary heat transfer process. The compartments are not isolated totally from the rest of the secondary side. The coolant has several flow paths in and out of the compartments. A more detailed description of the facility is in the references. 3. EXPERIMENT PROCEDURE Three new experiments were carried out. The experiments were based on the current instructions for operator intervention during an emergency in the Loviisa nuclear power plant. The first experiment (PSL5) contained primary bleed-and-feed. The bleed-and-feed was realized by opening the pressurizer relief valve and using the HPIS. The second experiment (PSL6) was similar to the first one, but it included a total failure of the HPIS. In the last experiment (PSL7), neither the primary bleed-and-feed nor the HPIS was used. Each experiment had all three steam generators, two intact and one broken (Fig. 3). The main isolation valves were presumed to stick open. That prevented broken loop isolation. 228

3 ORIFICE VALVE Figure 3. The break assembly in the broken SG Table 1. PSL5 PSL6 PSL7 Primary pressure 73.5 bar 75 bar 75 bar Core power 85 kw 85 kw 85 kw Primary mass flow rate 17 kg/s 17 kg/s 17 kg/s Pressurizer heating power 6 kw 6 kw 2 kw Secondary pressure 43 bar 43 bar 43 bar SG feed water mass flow rate 6.5 l/min 6.6 l/min 6.6 l/min SG feed water temperature ~5 o C ~4 o C ~4 o C HPI water temperature ~5 o C ~4 o C ~4 o C Accumulator pressure 53/55 bar 53/54 bar 53/55 bar Accumulator temperature (UP) 17 o C 18 o C 16 o C Accumulator temperature (DC) 18 o C 21 o C 24 o C SIGNAL t = s Lprz < 2.8 m Lprz < 2.3 m Lprz > 7.5 m LSG > 8 cm Lsec < 35 bar Lpri < 54 bar Lprz > 7.5 m ACTIONS Break valve opens Scram Table 2. Pressurizer heaters off, MCPs off, HPI on HPI off - Close MSIV and stop SGFW into broken SG - Open RV and increase SGFW into intact SG - Open pressurizer relief valve Start pressurizer spray Accumulator injection starts Interrupt pressurizer spray 229

4 Table 3. TIME EVENT REASON s Break opens 1 s Core power 15 kw Pressurizer level < 2.8 m 115 s Main circulation pumps stop Pressurizer heaters off Pressurizer level < 2.3 m 355 s Isolation of the broken steam generator Level of the broken steam generator > 8 cm 365 s Intact steam generator relief valve opens Feed of intact steam generators increase 575 s Accumulator injection starts Primary pressure < accumulator pressure 6 s Core power 1 kw 695 s Pressurizer spray on Intact steam generator pressure < 35 bar 134 s Pressurizer spray off Pressurizer level > 7.5 m 39 s eriment ends The experiments focused on finding the worst possible conditions during which a leak flow reversal can occur because of operator intervention. The transients began by the opening of a break (Fig. 3) in a heat-exchanging tube of the broken loop steam generator (steam generator III). The break size (2.5 mm) corresponded to a rupture of five tubes in a reference steam generator. The core power decreased when the collapsed-level in the pressurizer reached 2.8 m. The decay heat curve was followed by reducing the power first to 15 kw and later to 1 kw. When the pressurizer collapsed-level reached 2.3 m, the pressurizer heaters were switched off, and the main circulation pumps (MCPs) started to coast down. In the first experiment, the high-pressure injection (HPI) began from the low pressurizer level signal. Feed water injection into the broken steam generator stopped when the secondary side collapsed-level reached 8 cm. Simultaneously, operator intervention began. The main steam isolation valve (MSIV) of the broken steam generator was closed. The relief valve (RV) in an intact steam generator was opened, and the feed water flow (SGFW) into the intact steam generators was increased. In the PSL5 experiment the pressurizer relief valve was opened. The HPIS was used only in PSL5. The pressurizer spray (1.1 1/min) and the accumulators injected in all the experiments. The initial conditions and operator intervention in the experiments are summarized in Table 1 and 2, respectively. 4. THE EXPERIMENTAL AND CALCULATED RESULTS The general behavior of the experiments was similar at the beginning. When the break was opened in a heatexchanging tube of the broken loop steam generator, the primary pressure and the pressurizer collapsed-level began to decrease. The collapsed-level on the secondary side of the broken steam generator increased. Later, operator intervention and the different boundary conditions made some difference to the behaviour of the system. According to theory and the earlier experience from the old steam generator model, the flow reverses in the lowest tube layers of the steam generators when the facility works in the natural circulation mode. The new steam generators behave same way. The coolant flows in the normal direction at the top of the tube layer and reverses on the bottom. The new set of PRISE experiments shows that it occurs even in the broken steam generator. 4.1 PSL7 experiment Neither the primary bleed-and-feed nor the HPIS was used in this experiment (Fig. 4). As in the experiments PSL-6 and PSL-7, the core power reduced to 15 kw at 1 s. The pressurizer heaters were switched off, and the main circulation pumps began to coast down after 15 s. Then, the steam generation rate on the secondary side decreased, and the secondary side pressure dropped until the pressure control system totally closed the secondary side control valve. The pressurizer was empty at 25 s (Fig. 5). The primary side depressurized until the saturation conditions were reached on the hot side of the facility at 29 s. Then, the primary pressure stabilized at 57 bar (Fig. 6). 23

5 59/ / SPRAY ACCU ACCU / NODALIZATION OF THE PACTEL FOR THE PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENTS HEAT STRUCTURE HEAT SOURCE Figure 4. 5 nodalization scheme of the PACTEL facility VALVES CHECK CLOSING CONTROL SAFETY LEVEL in Presuriser [m] PACTEL PSL-7: Level in the PRZ PRESSURE [bar] PACTEL PSL-7: Pressures in SG (broken) (pri) (pri) (sec) (sec) TEMPERATURE [C] Fig.5. Pressurizer collapsed level PACTEL PSL-7: Temperatures at core outlet 2 Fig.7. Temperature in core inlet. TEMPERATURE [C] 4 35 Fig. 6. Primary and secondary pressures in SG PACTEL PSL-7: Temperatures at core inlet 2 Fig.8. Temperature in core outlet. 231

6 The main steam isolation valve of the broken steam generator was closed at 355 s. After 1 s, the relief valve in the intact steam generator was opened, and the feed water injection into the intact steam generator was increased. The pressure in the intact steam generator dropped, and the primary side cooled. Later, the pressure in the broken steam generator reached the opening pressure of the relief valve. After that, the cycling relief valve controlled the pressure. The accumulator injection started at 575 s. The core power was reduced again 25 s later. These actions effectively dropped the primary temperatures (Figs. 7 and 8). The pressurizer pressure decreased when the pressurizer spray was started at 695 s. To balance the pressure difference between the pressurizer and the rest of the facility, water flowed back into the pressurizer. The hot leg temperatures decreased below the secondary side temperature of the broken steam generator at 88 s. Then, the heat transfer between the primary side of the facility and the broken steam generator secondary side reversed, so the broken steam generator started to act as a heat source. The reversal did not occur in the intact steam generators. The primary pressure balanced with the broken steam generator pressure at 1135 s. Up to this moment, approximately 23 1 (2 1/min) of the primary coolant had flowed into the secondary side. 6 5 PACTEL PSL-7: Mass flow rates in the loop (intact) 6 5 PACTEL PSL-7: Mass flow rates in the loop (broken) MASS FLOW [kg/s] MASS FLOW [kg/s] Fig. 9. Mass flow rate in intact loop 2. Fig. 1. Mass flow rate in broken loop PACTEL PSL-7: Break mass flow rate 15 1 PACTEL PSL-7: Collapsed level in the SG (broken) MASS FLOW [kg/s] COLLAPSED LEVEL [cm] Fig. 11. Break mass flow rate 7 Fig.12. SG collapsed level The pressurizer level was approaching the top of the pressurizer, and the spray system was turned off at 134 s (Fig.5). Then, the flow stagnated in the broken loop, the core outlet temperatures increased, and the decreasing rate of primary pressure slowed significantly. During the rest of the experiment, the flow remained stagnated. By comparing the pressure histories, we see that between 1135 s and 139 s, the pressure difference between the primary and the secondary side of the broken steam generator was big enough for the break flow to reverse (Fig.1). During that time, only about 3 1 (2 1/min) of the coolant on the secondary side of the broken steam generator flowed back to the primary side. The pressures were almost equal during the rest of the experiment. By taking into account the accuracy of the pressure measurement, the pressure difference was too small for a reasonable estimation of the flow rate or 232

7 even a direction of the flow. The secondary side collapsed-level of the broken steam generator did not give any sign of the flow reversal either. The experiment was terminated at 39 s when the primary pressure was about 4 bar. The main events of the experiment are summarized in Table CONCLUSIONS The first series of PACTEL steam generator multiple-tube rupture experiments showed that the leak flow reversal is possible in suitable conditions. Because the first series was made with the old configuration of the facility, a new set of experiments was carried out in February The main goal was to find the worst possible conditions during which the leak flow reversal can occur because of operator intervention. Then, the risk of a partially diluted or completely unborated water plug forming on the primary side exists. The experiments were based on the current instructions for operator intervention during an emergency in the Loviisa nuclear power plant. Leak flow reversal was obvious in the first two experiments where a primary bleed was used. In these two experiments, the average reversed volumetric flow was almost constant. The pressurizer spray and the primary side cooling by the intact steam generators were not enough to reverse the leak flow significantly in the last experiment. The only difference between the first two experiments was the use of the HPIS. By comparing these two experiments, we see that the HPI cools the primary side, but it also slows the rate of decrease of the primary pressure. The accumulator injection has the same effect. The secondary side temperature distribution showed that temperatures are stratified strongly. The coolant was subcooled at the bottom of the steam generator. At the surface, there was a layer of saturated coolant. Hot coolant flowed into the secondary side at the beginning of the transient. Later, the primary coolant was colder than the coolant on the secondary side. However, the secondary side temperature distributions on the broken steam generator did not show any significant mixing of the primary coolant with the original content of the secondary side. The distribution was similar everywhere in the steam generator. So the lower the leakage locates, the longer unborated secondary side water might flow back to the primary side if the flow reverses. The collapsed-level measurements presume the phases are separate. The level measurements of the steam generators showed, however, that the average void fraction on the secondary side was 2 %. That causes errors in the collapsed-level. As it was mentioned earlier the main goal of these calculations was to find out if there would be some reverse flow from secondary to primary side in SG. And the calculations proved that the leak flow reversal is possible in suitable conditions. This shows that the leak flow is significant only when the primary side was actively depressurized. From one hand to minimize the leakage through the SG safety valve, primary pressure must drop as fast as possible. But from the other hand the fast depressurization reverses the leak flow and that way allows a partially diluted or completely unborated water plug to form on the primary side. So, there is a contradiction. Minimizing leakage to the atmosphere and avoiding an ECC water shortage can create conditions that can lead to another accident, which can be really severe. 6. REFERENCES [1] Vesa Riikonen: Steam Generator Multiple-Tube Rupture eriments on the PACTEL Facility with the New Steam Generators. TEKOJA 8/96. December 96. [2] Jari Tuunanen, Heikki Purhonen : General description of the PACTEL test facility. VTT Research Notes. Espoo

VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT ABSTRACT

VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT ABSTRACT VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT J. Bánáti 1 *, V. Riikonen 2 ; V. Kouhia 2, H. Purhonen 2 1 Chalmers University of Technology, SE-41296 Gothenburg, Sweden 2 Lappeenranta

More information

RELAP5/MOD3.2 ASSESSMENT STUDIES BASED ON THE PACTEL AND PMK-2 LOSS OF FEED WATER TESTS

RELAP5/MOD3.2 ASSESSMENT STUDIES BASED ON THE PACTEL AND PMK-2 LOSS OF FEED WATER TESTS Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference July 18-23, 1999, San Francisco, California FEDSM99-7009 RELAP5/MOD3.2 ASSESSMENT STUDIES BASED ON THE PACTEL AND PMK-2 LOSS OF FEED

More information

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Science and Technology Journal of BgNS, Vol. 8, 1, September 2003, ISSN 1310-8727 RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Pavlin P. Groudev, Rositsa V. Gencheva,

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Improved Accident Management of VVER Nuclear Power Plants (IMPAM-VVER) Contract FIKS-CT2001-00196 Final report Work performed as part of the European

More information

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE The Egyptian Arab Journal of Nuclear Sciences and Applications Society of Nuclear Vol 50, 3, (229-239) 2017 Sciences and Applications ISSN 1110-0451 Web site: esnsa-eg.com (ESNSA) Station Blackout Analysis

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 1/12 Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 J. Bittan¹ 1) EDF R&D, Clamart (F) Summary MAAP is a deterministic code developed by EPRI that can

More information

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria BgNS TRANSACTIONS volume 20 number 2 (2015) pp. 143 149 Comparative Analysis of Nodalization Effects and Their Influence on the Results of ATHLET Calculations of VVER-1000 Coolant Transient Benchmark Phase

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Fast-Acting Boron Injection System (FABIS) Contract No: FIKS-CT-2001-00195 Final report (short version) Work performed as part of the European Atomic

More information

AP1000 European 15. Accident Analysis Design Control Document

AP1000 European 15. Accident Analysis Design Control Document 15.2 Decrease in Heat Removal by the Secondary System A number of transients and accidents that could result in a reduction of the capacity of the secondary system to remove heat generated in the reactor

More information

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water GENES4/ANP23, Sep. 15-19, Kyoto, JAPAN Paper 116 LOCA analysis of high temperature reactor cooled and moderated by supercritical light water Yuki Ishiwatari 1*, Yoshiaki Oka 1 and Seiichi Koshizuka 1 1

More information

Keywords: Thermalhydraulics, VVER-440, safety, strainer, clogging, downstream effects, fuel element, sump, risk.

Keywords: Thermalhydraulics, VVER-440, safety, strainer, clogging, downstream effects, fuel element, sump, risk. SAFETY IMPACT OF THE INSULATION FIBERS PENETRATING SUMP STRAINERS AND ACCUMULATING IN LOVIISA VVER-440 FUEL BUNDLES Seppo Tarkiainen, Olli Hongisto, Timo Hyrsky, Heikki Kantee, Ilkka Paavola Fortum Power,

More information

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis Verification of the Code Against SCDAP/RELAP5 for Severe Accident Analysis Jennifer Johnson COLBERT 1* and Karen VIEROW 2 1 School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-2017,

More information

NSSS Design (Ex: PWR) Reactor Coolant System (RCS)

NSSS Design (Ex: PWR) Reactor Coolant System (RCS) NSSS Design (Ex: PWR) Reactor Coolant System (RCS) Purpose: Remove energy from core Transport energy to S/G to convert to steam of desired pressure (and temperature if superheated) and moisture content

More information

EPR: Steam Generator Tube Rupture analysis in Finland and in France

EPR: Steam Generator Tube Rupture analysis in Finland and in France EPR: Steam Generator Tube Rupture analysis in Finland and in France S. ISRAEL Institut de Radioprotection et de Sureté Nucléaire BP 17 92262 Fontenay-aux-Roses Cedex, France Abstract: Different requirements

More information

Research Article Evaluation of Heat Removal from RBMK-1500 Core Using Control Rods Cooling Circuit

Research Article Evaluation of Heat Removal from RBMK-1500 Core Using Control Rods Cooling Circuit Science and Technology of Nuclear Installations Volume 8, Article ID 378, 8 pages doi:1155/8/378 Research Article Evaluation of Heat Removal from RBMK-15 Core Using Control Rods Cooling Circuit A Kaliatka,

More information

ANALYSIS ON NON-UNIFORM FLOW IN STEAM GENERATOR DURING STEADY STATE NATURAL CIRCULATION COOLING

ANALYSIS ON NON-UNIFORM FLOW IN STEAM GENERATOR DURING STEADY STATE NATURAL CIRCULATION COOLING ANALYSIS ON NON-UNIFORM FLOW IN STEAM GENERATOR DURING STEADY STATE NATURAL CIRCULATION COOLING Susyadi 1 and T. Yonomoto 2 1 Center for Reactor Technology and Nuclear Safety - BATAN Puspiptek, Tangerang

More information

Research Article PMK-2, the First Integral Thermal-Hydraulics Tests for the Safety Evaluation of VVER-440/213 Nuclear Power Plants

Research Article PMK-2, the First Integral Thermal-Hydraulics Tests for the Safety Evaluation of VVER-440/213 Nuclear Power Plants Science and Technology of Nuclear Installations Volume 2012, Article ID 780472, 22 pages doi:10.1155/2012/780472 Research Article PMK-2, the First Integral Thermal-Hydraulics Tests for the Safety Evaluation

More information

Joint ICTP-IAEA Course on Natural Circulation Phenomena and Passive Safety Systems in Advanced Water Cooled Reactors

Joint ICTP-IAEA Course on Natural Circulation Phenomena and Passive Safety Systems in Advanced Water Cooled Reactors 2152-5 Joint ICTP-IAEA Course on Natural Circulation Phenomena and Passive Safety Systems in Advanced Water Cooled Reactors 17-21 May 2010 SELECTED EXAMPLES OF NATURAL CIRCULATION FOR SMALL BREAK LOCA

More information

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors)

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) 1.3.2016 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at

More information

Supporting Deterministic T-H Analyses for Level 1 PSA

Supporting Deterministic T-H Analyses for Level 1 PSA Supporting Deterministic T-H Analyses for Level 1 PSA ABSTRACT SLAVOMÍR BEBJAK VUJE, a.s. Okružná 5 918 64 Trnava, Slovakia slavomir.bebjak@vuje.sk TOMÁŠ KLIMENT VUJE, a.s. Okružná 5 918 64 Trnava, Slovakia

More information

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview Wilson Lam (wilson@cti-simulation.com) CTI Simulation International Corp. www.cti-simulation.com Sponsored by IAEA Modified

More information

EVALUATION OF RELAP5/MOD3.2 FOR AP1000 PASSIVE RESIDUAL HEAT REMOVAL SYSTEM

EVALUATION OF RELAP5/MOD3.2 FOR AP1000 PASSIVE RESIDUAL HEAT REMOVAL SYSTEM EVALUATION OF RELAP5/MOD3.2 FOR AP1000 PASSIVE RESIDUAL HEAT REMOVAL SYSTEM Houjun Gong, Zhao Xi, Wenbin Zhuo, Yanping Huang* CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Chengdu,

More information

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor FR13 - TECHNICAL SESSION 3.5: Fast reactor safety: post-fukushima lessons and goals for next-generation reactors Paper n. IAEA-CN-199/260 Safety Analysis Results of Representative DEC Accidental Transients

More information

ANALYSES OF AN UNMITIGATED STATION BLACKOUT TRANSIENT WITH ASTEC, MAAP AND MELCOR CODE

ANALYSES OF AN UNMITIGATED STATION BLACKOUT TRANSIENT WITH ASTEC, MAAP AND MELCOR CODE ANALYSES OF AN UNMITIGATED STATION BLACKOUT TRANSIENT WITH ASTEC, MAAP AND MELCOR CODE Technical Meeting on the Status and Evaluation of Severe Accident Simulation Codes for Water F. Mascari 1, J. C. De

More information

Justification of the Ignalina NPP Model on the Basis of Verification and Validation

Justification of the Ignalina NPP Model on the Basis of Verification and Validation Justification of the Ignalina NPP Model on the Basis of Verification and Validation Dr. Habil. Eugenijus Uspuras Laboratory of Nuclear Installation Safety Lithuanian Energy Institute Breslaujos 3 LT-3035

More information

INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320

INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320 International Conference 12th Symposium of AER, Sunny Beach, pp.99-105, 22-28 September, 2002. INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320

More information

Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR

Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy for Chinese Improved 1000 MWe PWR Science and Technology of Nuclear Installations Volume 3, Article ID 79437, pages http://dx.doi.org/.55/3/79437 Research Article Assessment of Severe Accident Depressurization Valve Activation Strategy

More information

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events Matthew C. Smith Dr. Richard F. Wright Westinghouse Electric Company Westinghouse Electric Company 600 Cranberry Woods

More information

Deterministic Safety Analyses for Human Reliability Analysis

Deterministic Safety Analyses for Human Reliability Analysis Deterministic Safety Analyses for Human Reliability Analysis Andrej Prošek Reactor Engineering Division Jožef Stefan Institute, Slovenia Marko Čepin Faculty of Electrical Engineering University of Ljubljana,

More information

ESA Enhancement of Safety Evaluation tools

ESA Enhancement of Safety Evaluation tools ESA Enhancement of Safety Evaluation tools SAFIR2014 Interim seminar, Hanasaari, 21.-22.3.2013 Ismo Karppinen, Seppo Hillberg, Pasi Inkinen, Jarno Kolehmainen, Joona Kurki, Ari Silde, Risto Huhtanen VTT

More information

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR HYUN-SIK PARK *, KI-YONG CHOI, SEOK CHO, SUNG-JAE YI, CHOON-KYUNG PARK and MOON-KI

More information

BEMUSE PHASE II: COMPARISON AND ANALYSIS OF THE RESULTS REV. 1

BEMUSE PHASE II: COMPARISON AND ANALYSIS OF THE RESULTS REV. 1 DIPARTIMENTO DI INGEGNERIA MECCANICA, NUCLEARE E DELLA PRODUZIONE - UNIVERSITA' DI PISA 56100 PISA - ITALY BEMUSE PHASE II: COMPARISON AND ANALYSIS OF THE RESULTS REV. 1 A. Petruzzi, F. D Auria Workshop

More information

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007

SMR/1848-T21b. Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors June 2007 SMR/1848-T21b Course on Natural Circulation Phenomena and Modelling in Water-Cooled Nuclear Reactors 25-29 June 2007 T21b - Selected Examples of Natural Circulation for Small Break LOCA and Som Severe

More information

Influence of Coolant Phase Separation on Event Timing During a Severe Core Damage Accident in a Generic CANDU 6 Plant

Influence of Coolant Phase Separation on Event Timing During a Severe Core Damage Accident in a Generic CANDU 6 Plant Influence of Coolant Phase Separation on Event Timing During a Severe Core Damage Accident in a Generic CANDU 6 Plant M.J. Brown, S.M. Petoukhov and P.M. Mathew Atomic Energy of Canada Limited Fuel & Fuel

More information

LBLOCA Analyses with APROS to Improve Safety and Performance of Loviisa NPP

LBLOCA Analyses with APROS to Improve Safety and Performance of Loviisa NPP OECD/CSNI Workshop on Advanced Thermal-Hydraulic and Neutronic Codes: Current and Future Applications Barcelona, Spain, 10-13 April 2000 LBLOCA Analyses with APROS to Improve Safety and Performance of

More information

Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor

Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor G. Bandini (ENEA/Bologna) E. Bubelis, M. Schikorr (KIT/Karlsruhe) A. Alemberti, L. Mansani (Ansaldo Nucleare/Genova) Consultants Meeting:

More information

Available online at ScienceDirect. Procedia Engineering 157 (2016 )

Available online at   ScienceDirect. Procedia Engineering 157 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 157 (2016 ) 333 340 IX International Conference on Computational Heat and Mass Transfer, ICCHMT2016 Loss of coolant accident

More information

Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor

Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor Science and Technology of Nuclear Installations, Article ID 18182, 6 pages http://dx.doi.org/1.1155/214/18182 Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the

More information

The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA J. R. Wang, W. Y. Li, H. T. Lin, J. H. Yang, C. Shih, S. W. Chen Abstract Fuel rod analysis program transient (FRAPTRAN) code

More information

BARC BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA. A.K. Nayak, PhD

BARC BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA. A.K. Nayak, PhD BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA A.K. Nayak, PhD Reactor Engineering Division Bhabha Atomic Research Centre Trombay, Mumbai 400085, India INPRO Consultancy Meeting

More information

Profile SFR-52 SWAT JAPAN. Japan Atomic Energy Agency, 4002 Narita, Oarai-machi, Ibaraki, Japan.

Profile SFR-52 SWAT JAPAN. Japan Atomic Energy Agency, 4002 Narita, Oarai-machi, Ibaraki, Japan. Profile SFR-52 SWAT JAPAN GENERAL INFORMATION NAME OF THE FACILITY ACRONYM COOLANT(S) OF THE FACILITY LOCATION (address): OPERATOR CONTACT PERSON (name, address, institute, function, telephone, email):

More information

MAJOR FINDINGS OF PMK-2 TEST RESULTS AND VALIDATION OF THERMOHYDRAULIC SYSTEM CODES FOR VVER SAFETY STUDIES

MAJOR FINDINGS OF PMK-2 TEST RESULTS AND VALIDATION OF THERMOHYDRAULIC SYSTEM CODES FOR VVER SAFETY STUDIES FINAL REPORT ON THE PMK-2 PROJECTS VOLUME II. MAJOR FINDINGS OF PMK-2 TEST RESULTS AND VALIDATION OF THERMOHYDRAULIC SYSTEM CODES FOR VVER SAFETY STUDIES By L. Szabados, Gy. Ézsöl, L. Perneczky, I. Tóth,

More information

Heat exchanger equipment of TPPs & NPPs

Heat exchanger equipment of TPPs & NPPs Heat exchanger equipment of TPPs & NPPs Lecturer: Professor Alexander Korotkikh Department of Atomic and Thermal Power Plants TPPs Thermal power plants NPPs Nuclear power plants Content Steam Generator

More information

NUMERICAL STUDY OF IN-VESSEL CORIUM RETENTION IN BWR REACTOR

NUMERICAL STUDY OF IN-VESSEL CORIUM RETENTION IN BWR REACTOR NUMERICAL STUDY OF IN-VESSEL CORIUM RETENTION IN BWR REACTOR M. VALINČIUS Lithuanian Energy Institute Kaunas, Lithuania Email: mindaugas.valincius@lei.lt A. KALIATKA Lithuanian Energy Institute Kaunas,

More information

ANALYSIS OF NATURAL CIRCULATION TESTS IN THE EXPERIMENTAL FAST REACTOR JOYO

ANALYSIS OF NATURAL CIRCULATION TESTS IN THE EXPERIMENTAL FAST REACTOR JOYO ANALYSIS OF NATURAL CIRCULATION TESTS IN THE EXPERIMENTAL FAST REACTOR JOYO Nabeshima K, Doda N, and Ohshima H Fast Reactor Computational Engineering Department Japan Atomic Energy Agency (JAEA) 4002 Narita-cho,

More information

A. Kaliatka, S. Rimkevicius, E. Uspuras Lithuanian Energy Institute (LEI) Safety Assessment of Shutdown Reactors at the Ignalina NPP

A. Kaliatka, S. Rimkevicius, E. Uspuras Lithuanian Energy Institute (LEI) Safety Assessment of Shutdown Reactors at the Ignalina NPP A. Kaliatka, S. Rimkevicius, E. Uspuras Lithuanian Energy Institute (LEI) Safety Assessment of Shutdown Reactors at the Ignalina NPP Outline Introduction Specific of heat removal from shutdown RBMK-type

More information

Oregon State University s Small Modular Nuclear Reactor Experimental Program

Oregon State University s Small Modular Nuclear Reactor Experimental Program Oregon State University s Small Modular Nuclear Reactor Experimental Program IEEE Conference on Technologies for Sustainability August 1, 2013 Portland, Oregon Brian Woods Oregon State University brian.woods@oregonstate.edu,

More information

RELAP5 Analysis of Krško Nuclear Power Plant Abnormal Event from 2011

RELAP5 Analysis of Krško Nuclear Power Plant Abnormal Event from 2011 RELAP5 Analysis of Krško Nuclear Power Plant Abnormal Event from 2011 ABSTRACT Andrej Prošek Jožef Stefan Institute Jamova cesta 39 SI-1000, Ljubljana, Slovenia andrej.prosek@ijs.si Marko Matkovič Jožef

More information

FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie

FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie The BWR reactor vessel spray(core spray) and feed water spray systems are designed to inject water into

More information

Thermal-Hydraulic Analysis of Single and Multiple Steam Generator Tube Ruptures in a Typical 3-Loop PWR

Thermal-Hydraulic Analysis of Single and Multiple Steam Generator Tube Ruptures in a Typical 3-Loop PWR Open Access Journal Journal of Power Technologies 95 (3) (2015) 175 182 journal homepage:papers.itc.pw.edu.pl Thermal-Hydraulic Analysis of Single and Multiple Steam Generator Tube Ruptures in a Typical

More information

Research Article The Investigation of Nonavailability of Passive Safety Systems Effects on Small Break LOCA Sequence in AP1000 Using RELAP5 MOD 4.

Research Article The Investigation of Nonavailability of Passive Safety Systems Effects on Small Break LOCA Sequence in AP1000 Using RELAP5 MOD 4. Science and Technology of Nuclear Installations Volume 1, Article ID 79151, 11 pages http://dx.doi.org/1.1155/1/79151 Research Article The Investigation of Nonavailability of Passive Safety Systems Effects

More information

Thermal and Stability Analyses on Supercritical Water-cooled Fast Reactor during Power-Raising Phase of Plant Startup

Thermal and Stability Analyses on Supercritical Water-cooled Fast Reactor during Power-Raising Phase of Plant Startup Thermal and Stability Analyses on Supercritical Water-cooled Fast Reactor during Power-Raising Phase of Plant Startup Jiejin Cai, Yuki Ishiwatari, Satoshi Ikejiri and Yoshiaki Oka The University of Tokyo

More information

System Analysis of Pb-Bi Cooled Fast Reactor PEACER

System Analysis of Pb-Bi Cooled Fast Reactor PEACER OE-INES-1 International Symposium on Innovative Nuclear Energy Systems for Sustainable Development of the World Tokyo, Japan, October 31 - November 4, 2004 System Analysis of Pb-Bi ooled Fast Reactor PEAER

More information

TOPIC: KNOWLEDGE: K1.01 [2.5/2.5]

TOPIC: KNOWLEDGE: K1.01 [2.5/2.5] KNOWLEDGE: K1.01 [2.5/2.5] P283 The transfer of heat from the reactor fuel pellets to the fuel cladding during normal plant operation is primarily accomplished via heat transfer. A. conduction B. convection

More information

The ESBWR an advanced Passive LWR

The ESBWR an advanced Passive LWR 1 IAEA PC-Based Simulators Workshop Politecnico di Milano, 3-14 October 2011 The ES an advanced Passive LWR Prof. George Yadigaroglu, em. ETH-Zurich and ASCOMP yadi@ethz.ch 2 Removal of decay heat from

More information

Passive Cooldown Performance of Integral Pressurized Water Reactor

Passive Cooldown Performance of Integral Pressurized Water Reactor Energy and Power Engineering, 2013, 5, 505-509 doi:10.4236/epe.2013.54b097 Published Online July 2013 (http://www.scirp.org/journal/epe) Passive Cooldown Performance of Integral Pressurized Water Reactor

More information

Workgroup Thermohydraulics. The thermohydraulic laboratory

Workgroup Thermohydraulics. The thermohydraulic laboratory Faculty of Mechanical Science and Engineering Institute of Power Engineering Professorship of Nuclear Energy and Hydrogen Technology Workgroup Thermohydraulics The thermohydraulic laboratory Dr.-Ing. Christoph

More information

In Vessel Retention Strategy VVER 1000/320 VVER 2013 Conference

In Vessel Retention Strategy VVER 1000/320 VVER 2013 Conference ÚJV Řež, a. s. In Vessel Retention Strategy VVER 1000/320 VVER 2013 Conference J. Zdarek Presentation content Background of SA issues VVER 1000/320 Containment and RPV Cavity Configuration IVR Strategy

More information

Lecture 7 Heat Removal &

Lecture 7 Heat Removal & Containment Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University Containment R4 vgs 1 Where We Are (still) Deterministic Requirements Experience Chapter 3 Chapter 1 Safety Goals Chapter 6 Probabilistic

More information

ACR Safety Systems Safety Support Systems Safety Assessment

ACR Safety Systems Safety Support Systems Safety Assessment ACR Safety Systems Safety Support Systems Safety Assessment By Massimo Bonechi, Safety & Licensing Manager ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor

More information

UKEPR Issue 05

UKEPR Issue 05 Title: PCER Sub-chapter 1.3 Comparison with reactors of similar design Total number of pages: 12 Page No.: I / II Chapter Pilot: P. KRUSE Name/Initials Date 10-10-2012 Approved for EDF by: A. MARECHAL

More information

LFW-SG ACCIDENT SEQUENCE IN A PWR 900: CONSIDERATIONS CONCERNING RECENT MELCOR / CALCULATIONS

LFW-SG ACCIDENT SEQUENCE IN A PWR 900: CONSIDERATIONS CONCERNING RECENT MELCOR / CALCULATIONS LFW-SG ACCIDENT SEQUENCE IN A PWR 900: CONSIDERATIONS CONCERNING RECENT MELCOR 1.8.5 / 1.8.6 CALCULATIONS F. DE ROSA ENEA FIS NUC - Bologna 1 st EUROPEAN MELCOR USERS GROUP Villigen, Switzerland 15-16

More information

Elena Dinca CNCAN Daniel Dupleac - UPB Ilie Prisecaru UPB. Politehnica University of Bucharest, Romania (UPB)

Elena Dinca CNCAN Daniel Dupleac - UPB Ilie Prisecaru UPB. Politehnica University of Bucharest, Romania (UPB) RELAP/SCDAP Sensitivity Study on the Efficiency in Severe Core Degradation Prevention of Depressurization and Water Injection into Steam Generators following SBO at a CANDU-6 NPP National Commission for

More information

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES VTT Jukka Ylijoki, Ismo Karppinen, Eija-Karita Puska, Ari Silde May, 2015 FORTUM Kari Porkholm, Harri Kontio APROS VALIDATION SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES and TRAINING SIMULATORS

More information

Research Article Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case of Station Blackout in RBMK-1500

Research Article Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case of Station Blackout in RBMK-1500 Science and Technology of Nuclear Installations Volume 7, Article ID 5285, 9 pages doi:1.1155/7/5285 Research Article Relap5 Analysis of Processes in Reactor Cooling Circuit and Reactor Cavity in Case

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

Deploying Experiments to Support Internal Hazard Management

Deploying Experiments to Support Internal Hazard Management Deploying Experiments to Support Internal Hazard Management ABSTRACT Harri Tuomisto Fortum POB 100, Keilaniementie 1 FI-00048 FORTUM, Espoo, Finland harri.tuomisto@fortum.com A typical feature of internal

More information

Findings from the latest analyses using MAAP5

Findings from the latest analyses using MAAP5 Attachment 3 Findings from the latest analyses using MAAP5 1. Latest analysis of Unit-1 by MAAP5.01 1.1. Plant conditions and event chronology Table 1-1 summarizes key plant conditions, while Table 1-2

More information

Evaluation of Two Phase Natural Circulation Flow in the Reactor Cavity under IVR-ERVC for Different Thermal Power Reactors

Evaluation of Two Phase Natural Circulation Flow in the Reactor Cavity under IVR-ERVC for Different Thermal Power Reactors Evaluation of Two Phase Natural Circulation Flow in the Reactor Cavity under IVR-ERVC for Different Thermal Power Reactors Rae-Joon Park, Kwang-Soon Ha, Hwan-Yeol Kim Severe Accident & PHWR Safety Research

More information

NUCLEAR HEATING REACTOR AND ITS APPLICATION

NUCLEAR HEATING REACTOR AND ITS APPLICATION NUCLEAR HEATING REACTOR AND ITS APPLICATION Zhang Yajun* and Zheng Wenxiang INET, Tsinghua University, Beijing China *yajun@dns.inet.tsinghua.edu.cn Abstract The development of nuclear heating reactor

More information

Application of COMSOL Pipe Flow Module to Develop a High Flux Isotope Reactor System Loop Model

Application of COMSOL Pipe Flow Module to Develop a High Flux Isotope Reactor System Loop Model Application of COMSOL Pipe Flow Module to Develop a High Flux Isotope Reactor System Loop Model D. Wang *1, P. K. Jain 1, and J. D. Freels 1 1 Oak Ridge National Laboratory *1 Bethel Valley RD, Oak Ridge,

More information

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code Journal of Physics: Conference Series OPEN ACCESS Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code To cite this article: F De Rosa et al 2014 J. Phys.: Conf. Ser. 547

More information

Application of MELCOR at GRS Regarding Spent Fuel Pool Analyses and Assessment of SAMG Procedures

Application of MELCOR at GRS Regarding Spent Fuel Pool Analyses and Assessment of SAMG Procedures Application of MELCOR at GRS Regarding Spent Fuel Pool Analyses and Assessment of SAMG Procedures 7 th Meeting of the European MELCOR User Group March 17, 2015 TRACTEBEL Engineering, Brussels, Belgium

More information

Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France

Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France S. Blaine Grover Idaho National Laboratory March 12, 2007 Agenda Advanced

More information

A Research Reactor Simulator for Operators Training and Teaching. Abstract

A Research Reactor Simulator for Operators Training and Teaching. Abstract Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 A Research Reactor Simulator for Operators Training and Teaching Ricardo Pinto de Carvalho and José Rubens

More information

LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY

LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY WON-PIL BAEK *, YEON-SIK KIM and KI-YONG CHOI Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute 1045 Daedeokdaero,

More information

INTEGRAL EFFECT NON-LOCA TEST RESULTS FOR THE INTEGRAL TYPE REACTOR SMPART-P USING THE VISTA FACILITY

INTEGRAL EFFECT NON-LOCA TEST RESULTS FOR THE INTEGRAL TYPE REACTOR SMPART-P USING THE VISTA FACILITY HEFAT7 5 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 1- July 7, Sun City, South Africa CK INTEGRAL EFFECT NON-LOCA TEST RESULTS FOR THE INTEGRAL TYPE REACTOR SMPART-P

More information

ANALYSIS OF THE VVER-1000 COOLANT TRANSIENT BENCHMARK PHASE 1 WITH RELAP5/PARCS

ANALYSIS OF THE VVER-1000 COOLANT TRANSIENT BENCHMARK PHASE 1 WITH RELAP5/PARCS The 11 th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11) Paper: 255 ANALYSIS OF THE VVER-1000 COOLANT TRANSIENT BENCHMARK PHASE 1 WITH RELAP5/PARCS Sánchez Espinoza 1 Víctor

More information

Basic Engineering Solutions in the VBER-500 Power Unit for Regional Power Systems

Basic Engineering Solutions in the VBER-500 Power Unit for Regional Power Systems Basic Engineering Solutions in the VBER-500 Power Unit for Regional Power Systems A.E. Arefyev, V.V. Petrunin, Yu.P. Fadeev (JSC "Afrikantov OKBM") Yu.A. Ivanov, A.V. Yeremin (JSC "NIAEP") Yu.M. Semchenkov,

More information

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES VTT Nuclear Energy Markku Hänninen, Ismo Karppinen, Jaakko Miettinen, Eija-Karita Puska, Jukka Ylijoki, Ari Silde, Olli Tiihonen March, 2009 FORTUM Nuclear Services Ltd. Kari Porkholm, Harri Kontio APROS

More information

Shutdown and Cooldown of SEE-THRU Nuclear Power Plant for Student Performance. MP-SEE-THRU-02 Rev. 004

Shutdown and Cooldown of SEE-THRU Nuclear Power Plant for Student Performance. MP-SEE-THRU-02 Rev. 004 Student Operating Procedure Millstone Station Shutdown and Cooldown of SEE-THRU Nuclear Power Plant for Student Performance Approval Date: 10/4/2007 Effective Date: 10/4/2007 TABLE OF CONTENTS 1. PURPOSE...3

More information

Examination into the reactor pressure increase after forced depressurization at Unit-2, using a thermal-hydraulic code

Examination into the reactor pressure increase after forced depressurization at Unit-2, using a thermal-hydraulic code Attachment 2-9 Examination into the reactor pressure increase after forced depressurization at Unit-2, using a thermal-hydraulic code * This document is generated based on the evaluation upon contract

More information

4.2 DEVELOPMENT OF FUEL TEST LOOP IN HANARO

4.2 DEVELOPMENT OF FUEL TEST LOOP IN HANARO 4.2 DEVELOPMENT OF FUEL TEST LOOP IN HANARO Sungho Ahn a, Jongmin Lee a, Suki Park a, Daeyoung Chi a, Bongsik Sim a, Chungyoung Lee a, Youngki Kim a and Kyehong Lee b a Research Reactor Engineering Division,

More information

ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS

ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS Popov, N.K., Santamaura, P., Shapiro, H. and Snell, V.G Atomic Energy of Canada Limited 2251 Speakman Drive, Mississauga, Ontario, Canada L5K 1B2 1. INTRODUCTION

More information

Advanced Sodium Fast Reactor Power Unit Concept

Advanced Sodium Fast Reactor Power Unit Concept International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities (FR 09) Advanced Sodium Fast Reactor Power Unit Concept V.M. Poplavsky a, A.M. Tsybulya a, Yu.E. Bagdasarov

More information

CANDU Safety #6 - Heat Removal Dr. V.G. Snell Director Safety & Licensing

CANDU Safety #6 - Heat Removal Dr. V.G. Snell Director Safety & Licensing CANDU Safety #6 - Heat Removal Dr. V.G. Snell Director Safety & Licensing 24/05/01 CANDU Safety - #6 - Heat Removal.ppt Rev. 0 vgs 1 Overview the steam and feedwater system is similar in most respects

More information

VESPA2012/SAFIR2014. SAFIR2014 Interim Seminar Hanasaari, Espoo. Niina Könönen (Mikko Patalainen, Kari Ikonen, Ilona Lindholm)

VESPA2012/SAFIR2014. SAFIR2014 Interim Seminar Hanasaari, Espoo. Niina Könönen (Mikko Patalainen, Kari Ikonen, Ilona Lindholm) VESPA2012/SAFIR2014 SAFIR2014 Interim Seminar 21-22.03.2013 Hanasaari, Espoo Niina Könönen (Mikko Patalainen, Kari Ikonen, Ilona Lindholm) 2 VESPA and the main objectives Started in January 2012 Structural

More information

CANDU Safety #12: Large Loss of Coolant Accident F. J. Doria Atomic Energy of Canada Limited

CANDU Safety #12: Large Loss of Coolant Accident F. J. Doria Atomic Energy of Canada Limited CANDU Safety #12: Large Loss of Coolant Accident F. J. Doria Atomic Energy of Canada Limited 24-May-01 CANDU Safety - #12 - Large LOCA.ppt Rev. 0 1 Overview Event sequence for a large break loss-of of-coolant

More information

STEAM GENERATOR LEAKAGE AT THE BN-350 DESALINATION PLANT

STEAM GENERATOR LEAKAGE AT THE BN-350 DESALINATION PLANT STEAM GENERATOR LEAKAGE AT THE BN-350 DESALINATION PLANT M. Ragheb 12/13/2010 INTRODUCTION The BN-350 sodium cooled fast reactor was constructed near the city of Aktau, formerly Shevchenko on the Caspian

More information

AP1000 European 6. Engineered Safety Features Design Control Document

AP1000 European 6. Engineered Safety Features Design Control Document 6.2 Containment Systems 6.2.1 Containment Functional Design 6.2.1.1 Containment Structure 6.2.1.1.1 Design Basis The containment system is designed such that for all break sizes, up to and including the

More information

ANALYSIS OF PROCESSES IN SPENT FUEL POOLS IN CASE OF LOSS OF HEAT REMOVAL DUE TO WATER LEAKAGE

ANALYSIS OF PROCESSES IN SPENT FUEL POOLS IN CASE OF LOSS OF HEAT REMOVAL DUE TO WATER LEAKAGE 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT11 8 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 11 13 July 11 Pointe Aux Piments,

More information

Advanced Methods for BWR Transient and Stability Analysis. F.Wehle,S.Opel,R.Velten Framatome ANP GmbH P.O. BOX Erlangen Germany

Advanced Methods for BWR Transient and Stability Analysis. F.Wehle,S.Opel,R.Velten Framatome ANP GmbH P.O. BOX Erlangen Germany Advanced Methods for BWR Transient and Stability Analysis F.Wehle,S.Opel,R.Velten Framatome ANP GmbH P.O. BOX 3220 91050 Erlangen Germany Advanced Methods for BWR Transient and Stability Analysis > Background

More information

Thermal-hydraulic model of the reactor facility with lead coolant in the ATHLET code

Thermal-hydraulic model of the reactor facility with lead coolant in the ATHLET code Journal of Physics: Conference Series PAPER OPEN ACCESS Thermal-hydraulic model of the reactor facility with lead coolant in the ATHLET code To cite this article: V A Chudinova and S P Nikonov 2018 J.

More information

ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS

ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS ABSTRACT DESING AND IMPLEMENTATION OF FORCED COOLING TOWERS FOR LOVIISA NPP SAFETY- AND RESIDUAL HEAT REMOVAL (RHR) COOLING CIRCUITS S.Tarkiainen, T.Hyrsky, I.Paavola, A.Teräsvirta Fortum Nuclear and Thermal

More information

Severe Accident Progression Without Operator Action

Severe Accident Progression Without Operator Action DAA Technical Assessment Review of the Moderator Subcooling Requirements Model Severe Accident Progression Without Operator Action Facility: Darlington Classification: October 2015 Executive summary After

More information

NUCLEAR ENERGY MATERIALS AND REACTORS Vol. I - Pressurized Water Reactors - J. Pongpuak

NUCLEAR ENERGY MATERIALS AND REACTORS Vol. I - Pressurized Water Reactors - J. Pongpuak PRESSURIZED WATER REACTORS J. Pongpuak Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Pressurized Water Reactors, Reactor Core, Fuel Elements, Control Rods, Steam Generators

More information

Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety

Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety IEA/SHC Task 57, Subtask B Draft proposals for new test procedures B4: Final Draft Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety HE Zinian Beijing

More information

UK ABWR - NEW NPP DESIGN FOR UK

UK ABWR - NEW NPP DESIGN FOR UK IAEA PLiM2017 [IAEA-CN-246-085] UK ABWR - NEW NPP DESIGN FOR UK 25-October-2017 Kazuhiro YOSHIKAWA Masaaki HAYASHI Yasuhiro MABUCHI Daisuke TANIGUCHI Hitachi-GE Nuclear Energy, Ltd. Contents 1. Introduction

More information

ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS. Alessandro Alemberti

ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS. Alessandro Alemberti ELFR The European Lead Fast Reactor DESIGN, SAFETY APPROACH AND SAFETY CHARACTERISTICS Alessandro Alemberti Alessandro.Alemberti@ann.ansaldo.it TECHNICAL MEETING ON IMPACT OF FUKUSHIMA EVENT ON CURRENT

More information