A Study of Two-Phase Flow in a Polymer Electrolyte Fuel Cell Tang.M.Z, K.E.Birgersson

Size: px
Start display at page:

Download "A Study of Two-Phase Flow in a Polymer Electrolyte Fuel Cell Tang.M.Z, K.E.Birgersson"

Transcription

1 A Study of Two-Phase Flow in a Polymer Electrolyte Fuel Cell Tang.M.Z, K.E.Birgersson Engineering Science Programme, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Road, Singapore Abstract In this study, the single phase flow of gas in GDL is studied. The effect of porosity and regularity of geometry on the permeability of GDL is analyzed by using Incompressible Navier-Stokes model in COMSOL 3.4, in order to present study methods and modeling methods in two-phase flow. Finally, modeling method and prediction results of twophase flow in GDL is introduced. 2. Introduction to fuel cell Fuel Cell can directly transform fuel energy to electricity without combustion process, so fuel cell has better efficiency than normal energy generating method. There are many kinds of fuel cell, such as PEMFC (Polymer Electrolyte Membrane fuel cell), DMFC (Direct Methanol Fuel Cell), etc. Here PEMFC is studied PEM Fuel Cell PEMFC s Chemical reaction is2 4 4, Hydrogen is fed at the anode side and is oxidized. Oxygen is fed at the cathode side and is reduced. Proton generated at anode will be conducted to cathode through PEM (proton exchange membrane). The electron released by the hydrogen has to travel through outer circuit to cathode and electrical current is generated Advantage of Fuel cell PEMFC system is very clean. It is only run on pure hydrogen and only produces water. Fuel cell systems also have better efficiency than combustion engines, because it converts chemical energy in the fuel directly to the electricity 2.3. Disadvantage of Fuel Cell Besides its storage, support and control problems, water management is also a big problem for fuel cell. If the water is moved too fast from the fuel cell, electrolyte will dry out and performance diminishes. Not efficient remove of water will cause electrode flooding, which also affect the performance of fuel cell. The accumulation of liquid water in electrodes can severely hinder the performance of PEMFC; the accumulated water reduces the ability of reactant gas to reach the reaction zone. 1

2 3. Introduction to GDL GDL (Gas Diffusion Layer) is a porous media in PEMFC. Gas can pass through the pours of the GDL, so GDL assist distribution of gas. It is also a path that water can go through. Two materials are typically used as gas diffusion layers in PEMFC; carbon cloth and carbon paper. Both of them are fabricated from carbon fibers. This table and picture of Toray carbon paper GDL, cited from [1]. 4. Numerical Simulations The domain of interest is a pore network model L0=200μm long in x direction and L1=200μm long in y direction. The process to be simulated is movement of air through the GDL. Air is injected from the bottom boundary at y=0. The flow of gas inside the model is governed by the incompressible Navier-Stokes equations: t ρ μ ρ p 0 0 Where μ is the viscosity, u is the velocity, ρ is the density of air and p is the pressure. Darcy s law; k is permeability. Gravity force has been neglected. At y=0, inward velocity boundary condition is used: u =u0 The top boundary y=200μm P0=0 Pa The boundary at x=0 μm and x=200 μm are symmetric boundary. 2

3 Group1 This is regular uniform porosity geometry. Under this geometry, 3 cases are studied: GDLThickness, 2e -4 m Width, 2e -4 m Case1: Case2: Case3: Porosity, 66.75% Porosity, 59.6% Porosity, 52% Pore size, 5e -6 m Pore size, 5.5e -6 m Pore size, 6e -6 m T=60 o C; ρ=1.068 kg/m 3 ; μ=2.01e -5 Pa.s; Inlet velocity: 1e -6 to 1e -3 m/s Group2 Random arrangement GDLThickness, 2e -4 m Width, 2e -4 m Case 4 Case5 Porosity, 66.75% Porosity, 52% Pore size, 5e -6 m Pore size, 6e -6 m T=60 o C; ρ=1.068 kg/m 3 ; μ=2.01e -5 Pa.s; Inlet velocity: 1e -6 to 1e -3 m/s Mixture of different size of block Group3 Case 6 Porosity, 52% GDLThickness, 2e -4 m Width, 2e -4 m Pore size, 5e -6 m, 6e -6 m T=60 o C; ρ=1.068 kg/m 3 ; μ=2.01e -5 Pa.s; Inlet velocity: 1e -6 to 1e -3 m/s 3

4 5. Simulation Result 5.1 Regular and uniform pores Pressure Velocity Field 5.2 Irregular and single size Pores 5.3 Irregular and non-single size pores 4

5 5.4 Data analysis In this part, several graphs are plotted in order to find out how the porosity of GDL affects permeability. By Darcy s Law The graphs are plotted by using equation: The first plot is for the 3 cases in Group 1. We can see that the permeability increases with the increase of porosity. (Pa) 1.80E E E E E E E E E E E E E E 03 Series1 Case1 Series2 Case3 Series3 Case2 U (m/s) permeability 7.00E E E E E E E E+00 0% 20% 40% 60% 80% Permeability Vs. Porosity We can see that permeability is rising with the increase of porosity. 5

6 Blow is the plot for group 2, irregular and single size pore. We can see that they also follow Darcy s Law, they are straight lines. 2.00E E+01 (Pa) 1.00E E+00 Series1 Case5 Series2 Case6 0.00E E E E E E E E 03 u (m/s) Now we take out Case 3, case 5, and case 6. All the 3 cases have same porosity of 52%, graph is plotted in the same way. 30 (Pa) Series1 Case3 Series2 Case5 Series3 Case E E E E E E E 03 u (m/s) We can see from the graph above that irregularity and non-uniform will lower the permeability of GDL with same porosity. 5.5 Short Summarization 1) Permeability will decrease with the decrease of the porosity; 2) Irregular geometry also follows Darcy s Law; 3) Regular Shape has better Permeability than the irregular shape with same porosity, which means in regular geometry, effective diffusion coefficient is larger; 6

7 4) If the size of the blocks in the geometry is not uniform, the permeability will be lower than uniform geometry. 6. Introduction to two- phase flow in GDL Water management is an important factor in PEMFC. The conductivity of the proton conducting membrane is largely affected by water content. Normally the water is generated at the cathode, but it is not enough for fuel cell to keep a high conductivity. Therefore, additional water has to be supplied to cell. However, if too much water is accumulated in the porous medium, reactant transport will be hindered due to partly blocked reactant passages increases. An increased mass transfer resistance and a subsequent decrease in performance are due to partial water condensation in the porous media. The picture is cited from [1], showing water droplet formation. From the picture above, we can see images of condensation in PTFE-treated carbon paper. First, the liquid water has formed as droplets. It can be seen that over time, with greater levels of liquid water present, the droplets have connected and travelled toward areas of greater liquid accumulation. The permeability of GDL under two-phase regime is a function of time, as water will accumulate over time. Time-dependent Level Set model in COMSOL can be used to simulate the process. With level set method, we can represent boundaries and interfaces using fixed mesh. Thus we can observe the droplets formation in fuel cell. The geometry of two phase model will be similar to one phase model, but an initial interface has to be defined on the geometry. As what have been done for the one-phase flow, Darcy s Law will be studied. Permeability vs. time curve can be plotted. How the permeability change with time will be studied. Moreover, the effect of geometry and porosity on the formation of droplet will also be studied. 7

8 6.1Prediction The water will attach the wetted wall and overtime, the water droplet will be formed, according to experiments. The water droplet will change the effective geometry or the GDL, porosity will decrease, and effective diffusitivity will be changed. Further as the accumulation of the water, the regularity of the geometry will also be affected. All the effects will result in decrease in permeability and large resistivity for gas to travel. References: [1] B. Sundén, M. Faghri, Transport phenomena in Fuel cells, WIP Press [2] COMSOL 3.4 model Library. [3]N. Holmström, J. Ihonen, A. Lundblad, and G. Lindbergh, The influence of the Gas diffusion layer on water management in polymer electrolyte fuel cells, [4] Teng Zhang, E.Birgersson. Analysis of the Gas Diffusion Layer in a PEM Fuel Cell, [5] Satish Kandlikar, RITThomas Trabold, GMJeffrey Allen, Visualization of Fuel Cell Water Transport and Characterization under Freezing Conditions, MTU, Feb

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Geometrical analysis of Gas Diffusion Layer in a Direct Methanol Fuel Cell Low H.W., and Birgersson E. Engineering Science Programme National University of Singapore 10 Kent Ridge Road, Singapore 117546

More information

Analysis of the Gas Diffusion Layer in a PEM Fuel Cell Teng Zhang, E.Birgersson

Analysis of the Gas Diffusion Layer in a PEM Fuel Cell Teng Zhang, E.Birgersson Analysis of the Gas Diffusion Layer in a PEM Fuel Cell Teng Zhang, E.Birgersson Engineering Science Programme, Faculty of Engineering, National University of Singapore Kent Ridge Road, Singapore 7546 ABSTRACT

More information

An Investigation of GDL Porosity on PEM Fuel Cell Performance

An Investigation of GDL Porosity on PEM Fuel Cell Performance 37 A publication of VOL. 42, 2014 CHEMICAL ENGINEERING TRANSACTIONS Guest Editors: Petar Sabev Varbanov, Neven Duić Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-33-4; ISSN 2283-9216 The Italian

More information

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL Proceedings of FUELCELL2005 Third International Conference on Fuel Cell Science, Engineering and Technology May 23-25, 2005, Ypsilanti, Michigan FUELCELL2005-74113 VISUALIZATION STUDY OF CATHODE FLOODING

More information

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Y. Wang *1,2, J. Kowal 1,2 and D. U. Sauer 1,2,3 1 Electrochemical Energy Conversion and Storage Systems Group, Institute for Power

More information

Simulation effect of operating temperature on performance of PEMFC based on serpentine flow field design

Simulation effect of operating temperature on performance of PEMFC based on serpentine flow field design Simulation effect of operating temperature on performance of PEMFC based on serpentine flow field design Pham Hoa Binh, Doan Cong Thanh Department of Automobile Engineering, Hanoi University of Industry,

More information

HFF 17,3. H. Ene Mathematical Institute, Romanian Academy of Sciences, Bucharest, Romania

HFF 17,3. H. Ene Mathematical Institute, Romanian Academy of Sciences, Bucharest, Romania The current issue and full text archive of this journal is available at www.emeraldinsight.com/0961-5539.htm HFF 302 Received 1 January 2006 Accepted 9 July 2006 A computational fluid dynamics analysis

More information

Purdue University DURI Program Research on Two-Phase Fuel Separation in a PEM Fuel Cell

Purdue University DURI Program Research on Two-Phase Fuel Separation in a PEM Fuel Cell Purdue University DURI Program Research on Two-Phase Fuel Separation in a PEM Fuel Cell Elizabeth Peruski, Shuichiro Miwa, Shripad T. Revankar School of Mechanical Engineering, School of Nuclear Engineering

More information

Appendix A: Parameters that Used to Model PEM Fuel Cells

Appendix A: Parameters that Used to Model PEM Fuel Cells Appendix A: Parameters that Used to Model PEM Fuel Cells Name Value Description L 0.06[m] Cell 1ength H_ch 1e-3[m] Channel height W_ch 9.474e-3[m] Channel width W_rib 9.0932e-3[m] Rib width H_gdl 640e-6[m]

More information

PARAMETRIC ANALYSIS ON INTERDIGITATED FLOW CHANNEL OF PEMFC PERFORMED BY TAGUCHI METHOD

PARAMETRIC ANALYSIS ON INTERDIGITATED FLOW CHANNEL OF PEMFC PERFORMED BY TAGUCHI METHOD PARAMETRIC ANALYSIS ON INTERDIGITATED FLOW CHANNEL OF PEMFC PERFORMED BY TAGUCHI METHOD Dr. V.LAKSHMINARAYANAN Department of Mechanical Engineering, B V Raju Institute of Technology, Narsapur, Telangana-

More information

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell A. Aman, R. Gentile, Y. Chen, X. Huang, Y. Xu, N. Orlovskaya Excerpt from the Proceedings of the 2012 COMSOL Conference

More information

Microfluidic Systems for Cell Growth and Cell Migration Studies

Microfluidic Systems for Cell Growth and Cell Migration Studies Microfluidic Systems for Cell Growth and Cell Migration Studies Maria Dimaki 1, Pranjul Shah 1, Dorota Kwasny 1, Jacob Moresco 2 and Winnie E. Svendsen 1 1 DTU Nanotech Department of Micro- and Nanotechnology,

More information

GAS DIFFUSION LAYER AND REACTANT GAS CHANNEL INFLUENCE ON THE PERFORMANCE OF A HT-PEM FUEL CELL

GAS DIFFUSION LAYER AND REACTANT GAS CHANNEL INFLUENCE ON THE PERFORMANCE OF A HT-PEM FUEL CELL GAS DIFFUSION LAYER AND REACTANT GAS CHANNEL INFLUENCE ON THE PERFORMANCE OF A HT-PEM FUEL CELL V. IONESCU Department of Physics and Electronics, Ovidius University, Constanta, 900527, Romania, E-mail:

More information

PEM fuel cell geometry optimisation using mathematical modeling

PEM fuel cell geometry optimisation using mathematical modeling Int. Jnl. of Multiphysics Volume 2 Number 3 2008 313 PEM fuel cell geometry optimisation using mathematical modeling Elena Carcadea 1, Ioan Stefanescu 2, Roxana E. Ionete 3, Horia Ene 4, Derek B. Ingham

More information

International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:15 No:05 83

International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:15 No:05 83 International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:15 No:05 83 The Model Development of Gas Diffusion Layer for PEM Fuel Cell Dahiyah Mohd Fadzillah, Chin Lee Nee & Masli Irwan

More information

1. Introduction. Nomenclature

1. Introduction. Nomenclature Available online at www.sciencedirect.com ScienceDirect Energy Procedia 145 (2018) 64 69 www.elsevier.com/locate/procedia Applied Energy Symposium and Forum, Renewable Energy Integration with Mini/Microgrids,

More information

Investigations on polarization losses in planar Solid Oxide Fuel Cells

Investigations on polarization losses in planar Solid Oxide Fuel Cells Investigations on polarization losses in planar Solid Oxide Fuel Cells S.Senthil Kumar, Akshay Iyer, B. ShriPrakash, S.T. Aruna CSIR National Aerospace Laboratories Bangalore-560017 Presentation at COMSOL

More information

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry Sethuraman, Vijay Anand I. AIM: The aim of this study is to calculate the adsorption and desorption rate constants

More information

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach and My Research in General Martin Andersson Division of Heat Transfer, Department of Energy Sciences, Faculty of Engineering (LTH),

More information

Temperature profiles of an air-cooled PEM fuel cell stack under active and passive cooling operation

Temperature profiles of an air-cooled PEM fuel cell stack under active and passive cooling operation Available online at www.sciencedirect.com Procedia Engineering 41 (2012 ) 1735 1742 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) Temperature profiles of an air-cooled PEM

More information

The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the Nonlinear Material

The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the Nonlinear Material Int. J. Electrochem. Sci., 10 (2015) 2564-2579 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the

More information

Multiphysics Modeling of Assembly Pressure Effects on Proton Exchange Membrane Fuel Cell Performance

Multiphysics Modeling of Assembly Pressure Effects on Proton Exchange Membrane Fuel Cell Performance Y. Zhou G. Lin A. J. Shih S. J. Hu e-mail: jackhu@umich.edu Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 4809-225 Multiphysics Modeling of Assembly Pressure Effects on

More information

PERFORMANCE ENHANCEMENT OF 64 cm 2 ACTIVE AREA OF PEM FC BY USING TAGUCHI METHOD

PERFORMANCE ENHANCEMENT OF 64 cm 2 ACTIVE AREA OF PEM FC BY USING TAGUCHI METHOD PERFORMANCE ENHANCEMENT OF 64 cm 2 ACTIVE AREA OF PEM FC BY USING TAGUCHI METHOD V.LAKSHMINARAYANAN Department of Mechanical Engineering, B V Raju Institute of Technology, Narsapur, Telangana, India -

More information

ESTIMATION OF RESIN FLOW FOR FRP BASE ON MPS METHOD

ESTIMATION OF RESIN FLOW FOR FRP BASE ON MPS METHOD THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 Introduction Because carbon fiber-reinforced plastics have the characteristics such as high strength and lightweight, they have been used in

More information

Simulation and Modeling for the Improvement on the Thermal Fluid Management of PEM Fuel Cell

Simulation and Modeling for the Improvement on the Thermal Fluid Management of PEM Fuel Cell Simulation and Modeling for the Improvement on the Thermal Fluid Management of PEM Fuel Cell Renwei Mei, James F. Klausner Graduate Student: Yanxia Zhao University of Florida Department of Mechanical &

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

Interdigitated micro array electrodes with standing nanostructures for micro channel electrochemical biosensors

Interdigitated micro array electrodes with standing nanostructures for micro channel electrochemical biosensors Interdigitated micro array electrodes with standing nanostructures for micro channel electrochemical biosensors Venkataramani Anandan and Guigen Zhang Department of Biological and Agricultural Engineering

More information

A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL

A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL B.Sreenivasulu a,*, S.V.Naidu b, V.Dharma Rao c, G.Vasu d a Department of Chemical Engineering,G.V.P College of Engineering, Visakhapatnam

More information

Formation of Porosities during Spot Laser Welding: Case of Tantalum Joining

Formation of Porosities during Spot Laser Welding: Case of Tantalum Joining Presented at the COMSOL Conference 2010 Paris Formation of Porosities during Spot Laser Welding: Case of Tantalum Joining C. Touvrey CEA DAM, Valduc, 21120 Is sur Tille *charline.touvrey@cea.fr VA/DFTN/SPAC/LSO

More information

Analysis of degradations of PEMFC combining Pore-Network Modelling of GDL and Performance Modelling

Analysis of degradations of PEMFC combining Pore-Network Modelling of GDL and Performance Modelling Analysis of degradations of PEMFC combining Pore-Network Modelling of GDL and Performance Modelling S. Pulloor Kuttanikkad a, b, J. Pauchet a, M. Prat b, P. Schott a a Commission for Atomic and Alternative

More information

Flow and Heat Transfer Characteristics in High Porosity Metal Foams

Flow and Heat Transfer Characteristics in High Porosity Metal Foams Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 333 Flow and Heat Transfer Characteristics in High Porosity Metal

More information

Numerical Determination of Transport Properties of Catalyst Layer, Microporous Layer and Gas Diffusion Layer

Numerical Determination of Transport Properties of Catalyst Layer, Microporous Layer and Gas Diffusion Layer Numerical Determination of Transport Properties of Catalyst Layer, Microporous Layer and Gas Diffusion Layer Jürgen Becker, Math2Market GmbH, Kaiserslautern 10 th Symposium for Fuel Cell and Battery Modelling

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

Open Archive TOULOUSE Archive Ouverte (OATAO)

Open Archive TOULOUSE Archive Ouverte (OATAO) Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Songwut Nirunsin 1, *, and Yottana Khunatorn 1

Songwut Nirunsin 1, *, and Yottana Khunatorn 1 The 23 rd Conference of the Mechanical Engineering Network of Thailand November 4 7, 29, Chiang Mai Quantification of Liquid Water Saturation in a Transparent Single-Serpentine Cathode Flow Channels of

More information

Fuel Cell Stack Manifold Optimization through Modelling and Simulation

Fuel Cell Stack Manifold Optimization through Modelling and Simulation Energy and Power 2016, 6(1A): 15-21 DOI: 10.5923/c.ep.201601.03 Fuel Cell Stack Manifold Optimization through Modelling and Simulation Dheeraj N. A. *, Nishanth, Sharath Rao, Royal Steevan Vas, Rathnakar

More information

Investigation of Two-Phase Transport Phenomena in Microchannels using a Microfabricated Experimental Structure

Investigation of Two-Phase Transport Phenomena in Microchannels using a Microfabricated Experimental Structure Heat SET 05 Heat Transfer in Components and Systems for Sustainable Energy Technologies 5-7 April 05, Grenoble, France Investigation of Two-Phase Transport Phenomena in Microchannels using a Microfabricated

More information

Mathematical Modeling of Solid Oxide Fuel Cell Fed Biomass Derived Fuel

Mathematical Modeling of Solid Oxide Fuel Cell Fed Biomass Derived Fuel Applied Mathematical Sciences, Vol. 12, 2018, no. 1, 37-45 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712360 Mathematical Modeling of Solid Oxide Fuel Cell Fed Biomass Derived Fuel

More information

Performance enhancement of a PEM fuel cell through reactant gas channel and gas. diffusion layer optimisation

Performance enhancement of a PEM fuel cell through reactant gas channel and gas. diffusion layer optimisation Performance enhancement of a PEM fuel cell through reactant gas channel and gas diffusion layer optimisation S. O. Obayopo, T. Bello-Ochende and J. P. Meyer Department of Mechanical and Aeronautical Engineering,

More information

Electronic circuit model for proton exchange membrane fuel cells

Electronic circuit model for proton exchange membrane fuel cells Journal of Power Sources 142 (2005) 238 242 Short communication Electronic circuit model for proton exchange membrane fuel cells Dachuan Yu, S. Yuvarajan Electrical and Computer Engineering Department,

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

AN ANALYSIS OF POROUS MEDIA HEAT SINKS FOR NATURAL CONVECTION COOLED MICROELECTRONIC SYSTEMS. Eric R. Savery

AN ANALYSIS OF POROUS MEDIA HEAT SINKS FOR NATURAL CONVECTION COOLED MICROELECTRONIC SYSTEMS. Eric R. Savery AN ANALYSIS OF POROUS MEDIA HEAT SINKS FOR NATURAL CONVECTION COOLED MICROELECTRONIC SYSTEMS. by Eric R. Savery Engineering Project submitted in partial fulfillment of the requirements for the degree of

More information

SIMULATION OF FUEL CELL ELECTROLYTE THICKNESS AND AREA ON OHMIC LOSSES USING MATLAB

SIMULATION OF FUEL CELL ELECTROLYTE THICKNESS AND AREA ON OHMIC LOSSES USING MATLAB e-issn 2455 1392 Volume 2 Issue 5, May 2016 pp. 271 278 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com SIMULATION OF FUEL CELL ELECTROLYTE THICKNESS AND AREA ON OHMIC LOSSES USING MATLAB

More information

Module 9: Energy Storage Lecture 34: Fuel Cell

Module 9: Energy Storage Lecture 34: Fuel Cell Module 9: Energy Storage Lecture 34: Fuel Cell In this lecture the energy storage (fuel cell) is presented. The following topics are covered in this lecture: Fuel cell Issues in fuel cell Hydrogen fuel

More information

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time

FABSTRACT. Technical Overview of Fuel Cell Systems: How Computer Simulation is Used to Reduce Design Time W H I T E P A P E R - 1 2 0 FABSTRACT Fuel cells offer the means for the conversion of chemical energy in hydrogen rich fuels (fossil and renewable) directly to electricity without having to generate thermal

More information

Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization

Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization Copyright 2009 Tech Science Press FDMP, vol.5, no.4, pp.399-409, 2009 Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization A. B.Mahmud Hasan 1,2, S.M.Guo 1 and M.A.Wahab 1

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Advanced Analytical Chemistry Lecture 13. Chem 4631

Advanced Analytical Chemistry Lecture 13. Chem 4631 Advanced Analytical Chemistry Lecture 13 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Modeling of the Reduction Stage During the Continuous Refining of Copper in a Packed Bed Reactor

Modeling of the Reduction Stage During the Continuous Refining of Copper in a Packed Bed Reactor Modeling of the Reduction Stage During the Continuous Refining of Copper in a Packed Bed Reactor Leandro Voisin 1, 2, Fabian Mansilla 1. 1 AMTC, Advanced Mining Technology Center, Chile University, Av.

More information

Numerical analyses of a PEM fuel cell s performance having a perforated type gas flow distributor

Numerical analyses of a PEM fuel cell s performance having a perforated type gas flow distributor Int. Jnl. of Multiphysics Volume 3 Number 4 2009 347 Numerical analyses of a PEM fuel cell s performance having a perforated type gas flow distributor Muhammad. S. Virk a, Mohamad Y. Mustafa b and Arne.

More information

Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions

Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions I J C T A, 9(37) 2016, pp. 577-581 International Science Press Mass Transport Analysis of a PEM Fuel Cell (High Temperature-PEMFC) Under Different Operating Conditions Deepti Suresh * and R. Bakiyalakshmi

More information

PORE-FLOW : A Finite Element Code to Model Flow in Single- and Dual-Scale Porous Media

PORE-FLOW : A Finite Element Code to Model Flow in Single- and Dual-Scale Porous Media PORE-FLOW : A Finite Element Code to Model Flow in Single- and Dual-Scale Porous Media Hua Tan and Dr. Krishna M. Pillai Laboratory for Flow and Transport Studies in Porous Media, Department of Mechanical

More information

An Analysis of Coupled PEM Fuel Cell Metal Hydride Hydrogen Storage Tank System

An Analysis of Coupled PEM Fuel Cell Metal Hydride Hydrogen Storage Tank System 2 nd European Conference on Polygeneration 30 th March-1 st April, 2011 Tarragona, Spain Rajpurohit,Venkatarathnam,Srinivasa Murthy An Analysis of Coupled PEM Fuel Cell-Metal Hydride Hydrogen Storage System

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation

Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation Journal of Power Sources 147 (2005) 148 161 Simulation of flow and transport phenomena in a polymer electrolyte fuel cell under low-humidity operation Yun Wang, Chao-Yang Wang Department of Mechanical

More information

THE EFFECT OF CURRENT DENSITY PEMFC TO WATER LIQUID FORMATION IN CATHODE

THE EFFECT OF CURRENT DENSITY PEMFC TO WATER LIQUID FORMATION IN CATHODE THE EFFECT OF CURRENT DENSITY PEMFC TO WATER LIQUID FORMATION IN CATHODE Mulyazmi Department of Chemical Engineering, University of Bung Hatta Padang, West Sumatera, Indonesia E-Mail: mulyazmi@yahoo.com

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

A Microscopic Continuum Model of a Proton Exchange Membrane Fuel Cell Electrode Catalyst Layer

A Microscopic Continuum Model of a Proton Exchange Membrane Fuel Cell Electrode Catalyst Layer A Microscopic Continuum Model of a Proton Exchange Membrane Fuel Cell Electrode Catalyst Layer Kenneth Weber Armstrong Thesis Submitted to the Faculty of Virginia Polytechnic Institute and State University

More information

PERFORMANCE ANALYSIS OF NATURAL DRAFT WET COOLING TOWER AT OPTIMIZED INJECTION HEIGHT

PERFORMANCE ANALYSIS OF NATURAL DRAFT WET COOLING TOWER AT OPTIMIZED INJECTION HEIGHT PERFORMANCE ANALYSIS OF NATURAL DRAFT WET COOLING TOWER AT OPTIMIZED INJECTION HEIGHT 1 ALOK SINGH, 2 SANJAY SONI, 3 R. S. RANA 1 Assistant Professor, 2 Associate Professor, 3 Mechanical Engineering Department

More information

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Sang-Hoon Jang 1, GiSoo Shin 1, Hana Hwang 1, Kap-Seung Choi 1, Hyung-Man Kim 1,* 1 Department of Mechanical Engineering

More information

A Finite Element Code for Porous Media Flows

A Finite Element Code for Porous Media Flows A Finite Element Code for Porous Media Flows Mold-filling in LCM, a process to make polymer composites Wicking flow in rigid and swelling materials Permeability prediction General laminar flow Hua Tan

More information

Investigation on performance of SOFC in hydrocarbon fuel

Investigation on performance of SOFC in hydrocarbon fuel Investigation on performance of SOFC in hydrocarbon fuel S. Senthil Kumar, Sharad Chauhan, B. Shriprakash, S. T. Aruna CSIR National Aerospace Laboratories Bangalore-560017 Presentation at COMSOL 2016,

More information

HEAT AND MASS TRANSFER AND TWO PHASE FLOW IN HYDROGEN PROTON EXCHANGE MEMBRANE FUEL CELLS AND DIRECT METHANOL FUEL CELLS

HEAT AND MASS TRANSFER AND TWO PHASE FLOW IN HYDROGEN PROTON EXCHANGE MEMBRANE FUEL CELLS AND DIRECT METHANOL FUEL CELLS HEAT AND MASS TRANSFER AND TWO PHASE FLOW IN HYDROGEN PROTON EXCHANGE MEMBRANE FUEL CELLS AND DIRECT METHANOL FUEL CELLS Hang GUO a, b, Chong Fang MA a, *, Mao Hai WANG a, Jian YU a, Xuan LIU a, Fang YE

More information

VOID FORMATION DURING PREFORM IMPREGNATION IN LIQUID COMPOSITE MOLDING PROCESSES

VOID FORMATION DURING PREFORM IMPREGNATION IN LIQUID COMPOSITE MOLDING PROCESSES VOID FORMATION DURING PREFORM IMPREGNATION IN LIQUID COMPOSITE MOLDING PROCESSES C. DeValve and R. Pitchumani Advanced Materials and Technologies Laboratory, Department of Mechanical Engineering, Virginia

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Micro Fuel Cells Potential

Micro Fuel Cells Potential Mech 549 Nov. 6, 2007 Micro Fuel Cells Potential Longer Duration for equivalent weight & volume Energy Density Instant Charge Flat Discharge Low Self-Discharge Little Short-circuit protection required

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 196 (2011) 9544 9551 Contents lists available at ScienceDirect Journal of Power Sources jou rnal h omepa g e: www.elsevier.com/locate/jpowsour Ex situ and modeling study of two-phase

More information

Two-phase flow and transport

Two-phase flow and transport Two-phase flow and transport C.-Y. Wang Volume 3, Part 3, pp 337 347 in Handbook of Fuel Cells Fundamentals, Technology and Applications (ISBN: 0-471-49926-9) Edited by Wolf Vielstich Arnold Lamm Hubert

More information

Numerical Evaluation of Effective Gas Diffusivity Saturation Dependence of Uncompressed and Compressed Gas Diffusion Media in PEFCs

Numerical Evaluation of Effective Gas Diffusivity Saturation Dependence of Uncompressed and Compressed Gas Diffusion Media in PEFCs Numerical Evaluation of Effective Gas Diffusivity Saturation Dependence of Uncompressed and Compressed Gas Diffusion Media in PEFCs V. P. Schulz a, P. P. Mukherjee b, J. Becker a, A. Wiegmann a, and C.-Y.

More information

Chemical reacting transport phenomena and multiscale models for SOFCs

Chemical reacting transport phenomena and multiscale models for SOFCs Chemical reacting transport phenomena and multiscale models for SOFCs Updated version for group seminar Martin Andersson Dept. of Energy sciences Lund University, Sweden Heat Transfer 2008, 9-11 July,

More information

COMPUTATIONAL FLUID DYNAMICS MODEL OF HIGH PERFORMANCE PROTON EXCHANGE MEMBRANE FUEL CELL WITHOUT EXTERNAL HUMIDIFICATION

COMPUTATIONAL FLUID DYNAMICS MODEL OF HIGH PERFORMANCE PROTON EXCHANGE MEMBRANE FUEL CELL WITHOUT EXTERNAL HUMIDIFICATION COMPUTATIONAL FLUID DYNAMICS MODEL OF HIGH PERFORMANCE PROTON EXCHANGE MEMBRANE FUEL CELL WITHOUT EXTERNAL HUMIDIFICATION Željko Penga, Frano Barbir Faculty of electrical engineering, mechanical engineering

More information

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies

Outline. Determining Equivalence Factors II. Fuel Cell Stack. Fuel Cell Basic Principles. Overview of Different Fuel Cell Technologies Vehicle Propulsion Systems Lecture 8 Fuel Cell Vehicles Lars Eriksson Professor Vehicular Systems Linköping University May 3, 8 / 4 / 4 Deterministic Dynamic Programming Basic algorithm N J(x ) = g N (x

More information

TWO-PHASE FLOW IN ANODE INTERDIGITAL FLOW BED OF A LIQUID FED DIRECT METHANOL FUEL CELL. Abstract

TWO-PHASE FLOW IN ANODE INTERDIGITAL FLOW BED OF A LIQUID FED DIRECT METHANOL FUEL CELL. Abstract TWO-PHASE FLOW IN ANODE INTERDIGITAL FLOW BED OF A LIQUID FED DIRECT METHANOL FUEL CELL H Guo, J L Jia, J Kong, F Ye, C F Ma College of Environmental and Energy Engineering, Beijing University of Technology,

More information

Pore network modelling for fuel cell diffusion media

Pore network modelling for fuel cell diffusion media Pore network modelling for fuel cell diffusion media A. Bazylak, V. Berejnov, D. Sinton and N. Djilali Department Dept. of Mechanical Engineering and Institute for Integrated Energy Systems, University

More information

Preparation and characterization of sulfonated styrene pentablock copolymer (Nexar TM ) membrane for PEM fuel cell.

Preparation and characterization of sulfonated styrene pentablock copolymer (Nexar TM ) membrane for PEM fuel cell. Preparation and characterization of sulfonated styrene pentablock copolymer (Nexar TM ) membrane for PEM fuel cell. 1 2 Outline of Presentation Fuel Cell & PEM Fuel Cell MEA & Membrane for PEMFC Membrane

More information

The Effect of Bi-Polar Plate and Membrane Materials On Water Transport in PEMFCs

The Effect of Bi-Polar Plate and Membrane Materials On Water Transport in PEMFCs University of South Carolina Scholar Commons Theses and Dissertations 1-1-2013 The Effect of Bi-Polar Plate and Membrane Materials On Water Transport in PEMFCs Visarn Lilavivat University of South Carolina

More information

DRUG DELIVERY PARTICLES FABRICATED USING THE ELECTROHYDRODYNAMIC ATOMIZATION (EHDA) METHOD

DRUG DELIVERY PARTICLES FABRICATED USING THE ELECTROHYDRODYNAMIC ATOMIZATION (EHDA) METHOD ABSTRACT DRUG DELIVERY PARTICLES FABRICATED USING THE ELECTROHYDRODYNAMIC ATOMIZATION (EHDA) METHOD YEO YING QIAN and WANG CHI-HWA Department of Chemical and Biomolecular Engineering National University

More information

COMSOL Multiphysics Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR)

COMSOL Multiphysics Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR) COMSOL Multiphysics Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR) Anthony G. Dixon *,1, Dominic Polcari 1, Anthony Stolo 1 and Mai Tomida 1 1 Department of Chemical Engineering, Worcester

More information

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Luke T. Gritter 1, Jeffrey S. Crompton *1, and Kyle C. Koppenhoefer 1 1 AltaSim Technologies, LLC 130 E. Wilson Bridge Rd, Suite

More information

Lateral Current Density Variation in PEM Fuel Cells with Interdigitated Flow Fields

Lateral Current Density Variation in PEM Fuel Cells with Interdigitated Flow Fields University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2014-04-21 Lateral Current Density Variation in PEM Fuel Cells with Interdigitated Flow Fields Song

More information

CFD SIMULATIONS OF A CAPILLARY FORCE DRIVEN TWO-PHASE FLOW IN THE ANODE FLOW-FIELD OF PASSIVE-FEED µdmfc.

CFD SIMULATIONS OF A CAPILLARY FORCE DRIVEN TWO-PHASE FLOW IN THE ANODE FLOW-FIELD OF PASSIVE-FEED µdmfc. Sixth South African Conference on Computational and Applied Mechanics SACAM08 Cape Town, 26-28 March 2008 SACAM CFD SIMULATIONS OF A CAPILLARY FORCE DRIVEN TWO-PHASE FLOW IN THE ANODE FLOW-FIELD OF PASSIVE-FEED

More information

Progress in Energy and Combustion Science

Progress in Energy and Combustion Science Progress in Energy and Combustion Science 35 (2009) 275 292 Contents lists available at ScienceDirect Progress in Energy and Combustion Science journal homepage: www.elsevier.com/locate/pecs Mass transport

More information

Low Temperature PEM vs. High Temperature PEM fuel cells

Low Temperature PEM vs. High Temperature PEM fuel cells Hochschule Ulm presentation seminar EPS (ECPS2) Low Temperature PEM vs. High Temperature PEM fuel cells Aaron Fesseler EE2 3126581 Tim Kistenfeger EE2 3126534 supervisor: Dr. Joachim Scholta WS 2017/2018

More information

Optimization of porous current collectors for PEM water electrolysers

Optimization of porous current collectors for PEM water electrolysers Optimization of porous current collectors for PEM water electrolysers S. Grigoriev a, I. Baranov a, P. Millet b, Z. Li c, V. Fateev a a Hydrogen Energy and Plasma Technology Institute of Russian Research

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 182 (2008) 531 539 Contents lists available at ScienceDirect Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour Facilitating mass transport in gas diffusion

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

Comsol Multiphysics Simulations of Microfluidic Systems for Biomedical Applications

Comsol Multiphysics Simulations of Microfluidic Systems for Biomedical Applications Excerpt from the Proceedings of the COMSOL Conference 008 Hannover Comsol Multiphysics Simulations of Microfluidic Systems for Biomedical Applications Maria Dimaki *,1, Jacob Moresco Lange 1, Patricia

More information

Simulation of the Flow in a Packed-Bed with and without a Static Mixer by Using CFD Technique

Simulation of the Flow in a Packed-Bed with and without a Static Mixer by Using CFD Technique Simulation of the Flow in a Packed-Bed with and without a Static Mixer by Using CFD Technique Phavanee Narataruksa, Karn Pana-Suppamassadu, Sabaithip Tungkamani Rungrote Kokoo, and Prayut Jiamrittiwong

More information

CFD Modelling of an Aerosol Exposure Chamber for Medical Studies G. Manenti, M. Derudi, G. Nano, R. Rota

CFD Modelling of an Aerosol Exposure Chamber for Medical Studies G. Manenti, M. Derudi, G. Nano, R. Rota CFD Modelling of an Aerosol Exposure Chamber for Medical Studies G. Manenti, M. Derudi, G. Nano, R. Rota Dip. di Chimica, Materiali e Ingegneria Chimica G. Natta, Politecnico di Milano, via Mancinelli

More information

Available online at ScienceDirect. Physics Procedia 69 (2015 )

Available online at  ScienceDirect. Physics Procedia 69 (2015 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 69 (2015 ) 607 611 10 World Conference on Neutron Radiography 5-10 October 2014 Visualization of water accumulation process in polymer

More information

Electrochemical Engine Center

Electrochemical Engine Center Electrochemical Engine Center Computational Fuel Cell Research and SOFC Modeling at Penn State Chao-Yang Wang Professor of Mechanical Engineering, and Materials Science & Engineering Director, Electrochemical

More information

Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Pore Network Modeling of Multiphase Transport in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers by Mohammadreza Fazeli A thesis submitted in conformity with the requirements for the degree

More information

THERMAL MANAGEMENT OF AN AIR-COOLED PEM FUEL CELL: CELL LEVEL SIMULATION

THERMAL MANAGEMENT OF AN AIR-COOLED PEM FUEL CELL: CELL LEVEL SIMULATION Proceedings of the ASME 2012 6th International Conference on Energy Sustainability & 10th Fuel Cell Science, and Technology Conference ESFuelCell2012 July 23-26, 2012, San Diego, CA, USA ESFuelCell2012-91440

More information

MODELLING COMBUSTION AND THERMAL NO X FORMATION IN ELECTRIC ARC FURNACES FOR THE PRODUCTION OF FERRO-SILICON AND SILICON-METAL

MODELLING COMBUSTION AND THERMAL NO X FORMATION IN ELECTRIC ARC FURNACES FOR THE PRODUCTION OF FERRO-SILICON AND SILICON-METAL MODELLING COMBUSTION AND THERMAL NO X FORMATION IN ELECTRIC ARC FURNACES FOR THE PRODUCTION OF FERRO-SILICON AND SILICON-METAL B. Ravary, C. Colomb 1 and S. T. Johansen 2 ERAMET Norway AS, c/o SINTEF Materials,

More information

Laser based rapid manufacturing of metallic Gas diffusion layers for PEM fuel cells

Laser based rapid manufacturing of metallic Gas diffusion layers for PEM fuel cells Laser based rapid manufacturing of metallic Gas diffusion layers for PEM fuel cells Gargi Tandra, Todd Eugene Sparks, Shyam Barua, Nikhil P.Kulkarni, Dr.Frank Liou Department of Mechanical Engineering

More information

DYNAMIC SIMULATION OF A PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEM FOR AUTOMOTIVE APPLICATIONS

DYNAMIC SIMULATION OF A PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEM FOR AUTOMOTIVE APPLICATIONS DYNAMIC SIMULATION OF A PROTON EXCHANGE MEMBRANE FUEL CELL SYSTEM FOR AUTOMOTIVE APPLICATIONS R. A. Rabbani 1 and M. Rokni 2 1. Technical University of Denmark, Kgs. Lyngby, Denmark; email: raar@mek.dtu.dk

More information

Fuel Cell Systems: an Introduction for the Engineer (and others)

Fuel Cell Systems: an Introduction for the Engineer (and others) Fuel Cell Systems: an Introduction for the Engineer (and others) Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the E 3

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 192 (2009) 544 551 Contents lists available at ScienceDirect Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour Assembly pressure and membrane swelling

More information

Development of Open -Pore Copper Foams to Use as Bipolar Plates in Polymer Electrolyte Membrane Fuel Cell Stacks

Development of Open -Pore Copper Foams to Use as Bipolar Plates in Polymer Electrolyte Membrane Fuel Cell Stacks Iranica Journal of Energy & Environment 4 (2): 99-103, 2013 ISSN 2079-2115 IJEE an Official Peer Reviewed Journal of Babol Noshirvani University of Technology DOI: 10.5829/idosi.ijee.2013.04.02.04 BUT

More information

Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells

Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells Chemical Engineering Science 59 (2004) 5883 5895 www.elsevier.com/locate/ces Optimization of the cathode geometry in polymer electrolyte membrane (PEM) fuel cells M. Grujicic, K.M. Chittajallu Department

More information