APPLICATION OF NANOPARTICLES AS PROMISING FLAME RETARDANT ADDITIVES FOR TEXTILE FABRICS

Size: px
Start display at page:

Download "APPLICATION OF NANOPARTICLES AS PROMISING FLAME RETARDANT ADDITIVES FOR TEXTILE FABRICS"

Transcription

1 APPLICATION OF NANOPARTICLES AS PROMISING FLAME RETARDANT ADDITIVES FOR TEXTILE FABRICS Jenny Alongi J. Tata, F. Carosio, A. Frache, G. Malucelli, G. Rosace, C. Colleoni, G. Brancatelli, D. Losio, G. Fusi, A. Andretta, A. Scalvedi, C. Pilenga Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino Alessandria Branch jenny.alongi@polito.it

2 Outline - FRONT Project -.against the fire. - Cone calorimetry - Nanoparticles (NPs) - Experimental part - Results on PET - Results on COTTON 2

3 FRONT project: Flame Retardant On Textile Collaborative Project of 2 years in 7 FP Contract n Members Beneficiary name Country SME and LE Europizzi (coordinator) Antecuir Abeil IT ES FR Klopman International srl IT RTD Politecnico di Torino Centro Tessile Cotoniero e Abbigliamento Ghent University IT IT BE 3

4 WP1 SET UP of PARAMETERS WP2 IDENTIFICATION of NPs WP3 CHARACTERIZATION WP4 COMPOUNDING WP5 LAB-SCALE PROTOTYPES WP6 PROTOTYPE TESTS WP7 INDUSTRIAL SCALE SAMPLES WP8 SAMPLE TESTS WP9 TECHNICAL & ECONOMIC EVALUATION W P 1 0 M A N A G M E N T 4

5 against the fire..13 TH FEBRUARY 1982 TORINO.. From this fatal accident, Italian legislation obliged to use flame retardant materials in all the public locals (restaurants, cinemas, theatres..) 5

6 against the fire Polymer Combustion Cycle Flame retardants Gas Phase Volatiles Flame Products (C, CO ) Oxygen Dispersion Heat Polymer Flame retardants Char Condensed Phase 6

7 against the fire ü Inorganic hydroxides ü Halogen and metal-halogen derivates ü Phosphorous compounds ü Intumescent system Flame retardants: additives able to slow down and/or delay the combustion process before the fire is fully developed ü Polymer nanocomposites 7

8 Nanostructured material 1 size <100 nm (lamellae) 2 sizes <100 nm (fibers, carbon nanotubes) 3 sizes <100 nm (silica, POSS)

9 Increasing of the Modulus Decreasing of the Thermal Expansion Coefficient Reducing Gas Permeability Increasing Solvent Resistance Enhancing Ionic Conductivity Optical Transparency Modified Thermal Degradation Lower Combustion Heat Release Rate Easy Recyclability

10 O Δ polymer 1 2 Δ FLAME Ignition O H O O H O H C O O H O O O H C O O H Labyrinth outward barrier effect 1. Ignition 2. Ablative reassembly 3. Catalyzed oxidative dehydrogenation 4. Catalyzed cross-linking 5. Catalyzed dehydrogenation 4 O O H O Catalysed oxidative dehydrogenation 3 O O H Ablative reassembly O smoke Catalysed crosslinking 5 6 SMOKE Catalysed dehydrogenation O2 Ceramic char-layered silicate nanocomposite 10

11 1 step: immersion of textile into NP aqueous suspension 2 NP fixation by thermal treatment Textile NP suspension Hot T= 200 C, p=2.5ton 11

12 Exhaust blower Temperature and pressure measurement are taken here Smoke and temperature measurements are taken here Soot collection filter Gas samples are taken here Exhaust hood Conical heater Spark igniter Sample Optional retainer frame Sample Aluminum foil Low density ceramic wool Sample pan Load cell HRR, Heat Release Rate THR, Total Heat Release TTI, Time To Ignition TSR, Total Smoke Release OD, Optical Density Mass or residue C and CO amount Specimen size: 100x100x0.5mm Heat Flux: 35 kw/m 2

13 HRR vs time 100 HRR peak (pkhrr) 80 HRR (kw/m²) Slope Time (s) Time To Ignition Optimization of the procedure to burn textile fabrics by cone calorimeter: part I. Combustion behavior of polyester J. Tata, J. Alongi, F. Carosio, A. Frache submitted to Fire and Materials

14 14

15 PETCNa 60 PET PET CNa TTI=25s M x [Al 4-x Mg x ](Si) 8 0 (OH) 4 HRR (kw/m²) pkhrr=-15% Time (s) Combining immersion of CNa with a pre-treatment by cold plasma: TTI=75s JJ 15

16 PETOS PET PETOS1 PETCL PETCLOS1 TTI=-20s L HRR (kw/m²) pkhrr=-20% J Time (s) 16

17 PETPOSS PET PETPOSS P E TC L P E TC LP OS S TTI=123s JJ HRR (kw/m²) pkhrr=-27% J Time (s) 18

18 CROSS-LINKERS (CL) FORMULA CODE A B C D E OS1 POSS CNa CNa [%] POSS [%] CNa:POSS [%] - 1:1 2.5:2.5 19

19 COTTONOS1 60 TTI HRR (kw/m².g) J Cotton CottonAOS1 CottonBOS1 CottonCOS1 CottonDOS1 CottonEOS1 pkhrr J Time (s) Use of cone calorimetry to measure the combustion behavior of POSS and boehmite finished cotton textile fabric J. Alongi, J. Tata, G. Brancatelli, A. Frache, G. Rosace submitted to Applied Surface Science Sample TTI (s) pkhrr (kw/m 2.g) Cotton CottonAOS CottonBOS CottonCOS CottonDOS CottonEOS

20 COTTONPOSS [POSS]= 1wt.-% TTI=16s J Cotton CottonPOSS CottonE CottonEPOSS HRR (kw/m 2 g) pkhrr=-25% J Time (s) Sample TTI(s) pkhrr(kw/m 2 g) Δ (%) Cotton CottonEPOSS 1% CottonEPOSS 2% CottonEPOSS 5%

21 COTTONCNa wt.-% 140 2wt.-% 140 5wt.-% pkhrr HRR [kw/m²] COT CNa_C1 CNa_D1 CNa_E1 HRR [kw/m²] COT CNa_C2 CNa_D2 CNa_E2 HRR [kw/m²] COT CNa_C5 CNa_D5 CNa_E5 J TIME [s] TIME [s] TIME [s] TTI increases of ca. 30s for each CL J Ø E cross-linker turns out the best crosslinker to link CNa Ø The better performance is obtained with 1wt.-% of CNa TTI [s] Δ [s] pkhrr [kw/m 2 ] Cotton CottonECNa 1% CottonECNa 2% CottonECNa 5% Δ [%]

22 COTTONCNaPOSS: synergism between two NPs???? HRR [kw/m²] Cotton Cotton 5% CNa-POSS C Cotton 5% CNa-POSS D Cotton 5% CNa-POSS E [filler] tot =5wt.-% Ø E cross-linker turns out the best cross-linker to link both CNa and POSS TIME [s] Ø there is no a synergistic effect between CNa and POSS in terms of TTI increase and pkhrr decrease TTI [s] Δ [s] pkhrr [kw/m 2 ] Cotton Δ [%] CottonEPOSS 2% CottonEPOSS 5% CottonECNa 2% CottonECNa 5% CottonECNaPOSS 5%

23 24 thanks 24