SIMULATE5 Status. Tamer Bahadir, Sten-Orjan Lindahl & Gerardo M.Grandi 2012 International Users Group Meeting Charlotte, NC, USA May 2-3, 2012

Size: px
Start display at page:

Download "SIMULATE5 Status. Tamer Bahadir, Sten-Orjan Lindahl & Gerardo M.Grandi 2012 International Users Group Meeting Charlotte, NC, USA May 2-3, 2012"

Transcription

1 Control Rod Uniform CR Nodalization (user Input) Edit Nodalization (User Input) Final CR Nodalization Reflector SIMULATE5 Status Tamer Bahadir, Sten-Orjan Lindahl & Gerardo M.Grandi 2012 Charlotte, NC, USA Fuel Assembly

2 Outline SIMULATE5 Overview Status/New Development PWR Baffle Model PWR control rod depletion BWR QTH Model Verification SIMULATE5 Usage Summary

3 SIMULATE5 Main Features Multi-Group (default 4 energy groups) Diffusion theory or Simplified P3 Axial assembly geometry in detail Radial assembly in detail - submesh model Hybrid Macro/Micro cross section model Detailed nuclide tracking BWR TH: Cross flow inside assembly PWR TH: Detailed description cross flow allowed Explicit fuel temperature model

4 Work Performed Model improvements PWR explicit baffle model PWR CR depletion/fluence tracking Coupling to S3K, S3R, XIMAGE Fuel temperature table generation (S3R/XIMAGE) Extension of Parallelization (OpenMP) Extensive testing + bug fixing Extensive benchmarking Input manual Methods manual S5 v (QA)

5 Submesh Radial Re-homogenization Model Conventional 3D Solver J=0 C 5 C 5 f side SIMULATE5 J=0 C 5 C 5 f side J 0 2D 2D f side smx smx 2,2 1,2 2,3 smx 5,5 Submesh Solver :2D Diffusion/SP3 3D Solver

6 Submesh Model: Explicit Baffle Modeling Improve radial reflector node xs and discontinuity factors via submesh model Baffle Fuel Reflector Submesh Baffle xs/df from C5 S5 2D solution Corrected Reflector xs/df S5 3D solution

7 Core w/o Baffle Core w/baffle SMX Reflector Model Core w/o Baffle Core w/baffle OFF ON keff -7 pcm -27 pcm 2RPF RMS 0.8% 1.4% keff 7 pcm 10 pcm 2RPF RMS 0.5% 0.4% Comparison of SIMULATE5 against CASMO5 MxN

8 Control Rod Depletion Thermal/Fast fluence and absorber depletion are tracked for each blade of BWR and each rodlet of PWR Control rods side Absorber materials B4C, AIC, Hf, W (Tunsgten) and Hybrid Rods CR Type Absorber Isotopes Boron B 10 Hafnium Hf 174,Hf 176,Hf 177,Hf 178,Hf 179, Hf 180 Ag-In-Cd Ag 107,Ag 109,Cd 113,In 113,In 115 Tungsten W 182,W 183,W 184,W 185,W 186,Re 185,Re 186,Re 187 Hybrid Boron+Hafnium B 10,Hf 174,Hf 176,Hf 177,Hf 178,Hf 179, Hf 180 Hybrid B10 + Ag-In-Cd B 10,Ag 107,Ag 109,Cd 113,In 113,In 115

9 Control Rod Depletion (cont.) The CR depletion model relies on the lumped isotope model Control Rod Uniform CR Nodalization (user Input) Edit Nodalization (User Input) Final CR Nodalization N eff I i 1 w i N i eff ag 1 I N eff i 1 i ag N i Reflector SIMULATE5 keeps track of control rod depletion fraction ( t) 1 N N eff eff ( t) (0) Fuel Assembly Cross section feedback due to depletion effect to neutronic solution base HCRD ( E,,,...) ( E, ) ( E,, CRD) g x CRD x x ( E,, )...

10 Control Rod Depletion Error in Rod Worth (%) k-inf 500 Depleted CR Fresh CR k-inf Comparison of SIMULATE5 AIC rod worth against CASMO5 for a single assembly calculation CR In CR Out Burnup (GWd/MT) Error in CR Worth (pcm) k-inf Burnup (GWd/MT)

11 Benchmarking

12 Benchmarking: PWR Core Follow EPRI Project 4 Duke Plants (44 Cycles) CASMO5 (2D Lattice) CMSLINK5 (Data linking) SIMULATE5 (3D Core/T-H) Boron (ppm) Meas Calc Burnup (EFPD) Reactor # of Flux Maps Radial (2D) RMS Axial (1D) RMS Nodal (3D) RMS McGuire ± ± ± 0.69 McGuire ± ± ± 0.67 Catawba ± ± ± 0.69 Catawba ± ± ± 0.62 All ± ± ± 0.68

13 Benchmarking : BWR Q-Assembly TH Performed after conventional TH calc. Input: - Total assy inlet flow rate - Q-power from radial submesh calc. P 2,2 P 2,3 P 2,4 Q NW Q NE P 3,2 P 3,3 P 3,4 P 4,2 P 4,3 P 4,4 Q SW Q SE Output: - Q-assy flow, void,... - Density feedback to radial submesh XS NW NE 2,2 2,3 2,4 3,4 3,2 3,3 SW SE 4,2 4,3 4,4

14 BFBT Benchmark(*) BFBT test sections were simulated using the SIMULATE5 core channel model Boundary conditions: Exit pressure Inlet subcooling Heating power Inlet mass flow Measurements: Two-phase pressure drop Cross-sectional void Quarter-assembly void (*) Presented at NURETH-14 Gerardo Grandi, Sten-Örjan Lindahl, Benchmark Of Simulate5 Thermal Hydraulics Against The Frigg And Nupec Full Bundle Test Experiments, NURETH-14, Toronto, Ontario, Canada, (2011)

15 Quarter assembly void fraction

16 Quarter-assembly void: Assembly 0-3 Average void ~ 40%

17 Quarter-assembly void: Assembly 0-3 Average void ~ 65%

18 Quarter-assembly void: Assembly 0-3 Average void ~ 80%

19 Quarter assembly void fraction The agreement between the measured and calculated Q- assembly radial void distribution is reasonably good. Differences in all cases are below 5%. SIMULATE5 Q-assembly void distribution is essentially proportional to the 2D relative power density. The measured Q-assembly void distribution is flatter than the numerical solution; probably due to SIMULATE5 assumption that the turbulent mixing and void drift effects are negligible.

20 SIMULATE5 Deliveries in Extending customer base 4 Customers in the US 3 Customers in Asia 3 Customers in Europe Special projects

21 Summary SIMULATE5 is: The most advanced commercial core simulator available Extensively tested Extensively benchmarked In use on the market

22 International Users Group Meeting

23 SIMULATE5 Coupling to other CMS codes Simple conversion from existing S3 models Most input cards are the same New TH input machinery to convert old input to new input REStart file structure preserved S3 restart file -> SIMULATE5 SIMULATE5 restart file -> S3/S3K/S3R CMSLINK5 Library for both SIMULATE5 and SIMULATE-3

24 Parallelization Speed Up Parallelization with OpenMP Speed Up Limit (P=0.87) S5 (12 Core) S5 (6 core) # of threads 12 core (2x6) AMD Opteron core Intel Xeon Limit: (Amdahl s Law) 1 SU P 1 P N SU: Speed up P: Parallel portion of the code N: # of threads