Supporting Information P2-Type Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries

Size: px
Start display at page:

Download "Supporting Information P2-Type Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries"

Transcription

1 Supporting Information P2-Type Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries Wenpei Kang,, Denis Y. W. Yu, *, Pui-Kit Lee, Zhenyu Zhang, Haidong Bian, Wenyue Li, Tsz-Wai Ng, Wenjun Zhang and Chun-Sing Lee * Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, People s Republic of China. State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao , P. R. China * Corresponding Author: denisyu@cityu.edu.hk; apcslee@cityu.edu.hk S-1

2 Figure S1 (a) XRD and (b, c) SEM images of the as-prepared Cu 0.15 Ni 0.20 Mn 0.65 C 2 O 4 2H 2 O precursor. S-2

3 (a) (b) Figure S2 (a) Survey spectra of the Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2 (x = 0.50, 0.67 and 0.75) samples; (b) O 1s core level spectra. S-3

4 Figure S3 The magnified Na0.67Cu0.15Ni0.20Mn0.65O2. HRTEM images S-4 for (a) Na0.50Cu0.15Ni0.20Mn0.65O2 and (b)

5 Figure S4 CV curves of Na 0.75 Cu 0.15 Ni 0.20 Mn 0.65 O 2 sample at a scan rate of 0.1 mv s 1. S-5

6 Figure S5 Representative charge discharge curves of Na 0.75 Cu 0.15 Ni 0.20 Mn 0.65 O 2 electrode; (a) The electrodes are cycled at 10 ma g -1 in the initial two cycles and 1000 ma g -1 in the following cycles; (b) The electrodes are cycled at various current densities for 10 cycles each. S-6

7 Figure S6 Representative charge discharge curves of (a) Na 0.50 Cu 0.15 Ni 0.20 Mn 0.65 O 2 and (b) Na 0.67 Cu 0.15 Ni 0.20 Mn 0.65 O 2 electrodes cycled at 10 ma g -1 in the initial two cycles and 1000 ma g -1 in the following cycles over the voltage range of V. S-7

8 Table S1 ICP-AES results and lattice parameters of Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2. x Na (mg L -1 ) M/T [1] / / / Cu (mg L -1 ) M/T 3.546/ / / Ni (mg L -1 ) M/T 4.386/ / / Mn (mg L -1 ) M/T / / / [1] M represents the measured value and T represents the theoretical value. Na:Cu:Ni:Mn a (Å) c (Å) V (Å 3 ) 0.51:0.15:0.20: :0.15:0.20: :0.15:0.20: S-8

9 Table S2 Average oxidation states of Mn and estimated oxygen deficiency of Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2-δ from redox titration. x Estimated avg Mn oxidation state Oxygen deficiency (δ) S-9

10 Table S3 Electrochemical performance comparison of Mn- based cathode materials substituted by different cations in the literature Material Na x Cu 0.15 Ni 0.20 Mn 0.65 O 2 Na x MnO 2+z Na 0.7 MnO 2 Na 0.66 Li 0.18 Mn 0.71 Ni 0.21 Co 0.08 O 2+δ Na 2/3 Fe 1/2 Mn 1/2 O 2 Na 0.67 Ni 0.25 Mg 0.1 Mn 0.65 O 2 Initial capacity (mah g -1 ) ~ Test current (ma g -1 ) Capacity (mah g -1 ) 65/1000th 84/100th ~70/50th 110/150 th ~50/40 th 87/100th capacity retention 81.6% 60% 56% 75% 51% 87% Ref This Work Na 2/3 Co 1/2 Mn 1/2 O /30th 69% 6 Na 2/3 Fe 1/3 Mn 2/3 O /40th 80% 7 Na 2/3 Fe 1/2 Mn 1/2 O ~150/30th 79% 8 Na 0.67 Mg 0.1 Mn 0.9 O ~130/25th 76% 9 Na 2/3 [Mg 0.28 Mn 0.72 ]O ~150/30 th 71% 10 Na x Ni 0.22 Co 0.11 Mn 0.66 O 2 Na 0.67 Mn 0.67 Ni 0.15 Mg 0.18 O 2 Na 7/9 Cu 2/9 Fe 1/9 Mn 2/3 O ~ /200th 78/100 th 59.5/150th Na 0.67 Cu 0.33 Mn 0.67 O /500th 76.6% 14 Na 0.68 Cu 0.34 Mn 0.66 O 2 70 ~20 43/1000th 61% 15 Na 0.5 [Ni 0.23 Fe 0.13 Mn 0.63 ]O /100th 69% 16 Na x Ni 0.22 Co 0.11 Mn 0.66 O ~99/200th 76% 17 Na 0.66 Ni 0.26 Zn 0.07 Mn 0.67 O /30th 89% 18 76% 92% 87% References [1] Bucher, N.; Hartung, S.; Nagasubramanian, A.; Cheah, Y. L.; Hoster, H. E.; Madhavi, S. Layered Na x MnO 2+z in Sodium Ion Batteries-Influence of Morphology on Cycle Performance. ACS Appl. Mater. Interfaces 2014, 6, [2] Su, D. W.; Wang, C. Y.; Ahn, H. J.; Wang, G. X. Single Crystalline Na 0.7 MnO 2 Nanoplates as Cathode Materials for Sodium-Ion Batteries with Enhanced Performance. Chem. - Eur. J. 2013, 19, [3] Guo, S. H.; Liu, P.; Yu, H. J.; Zhu, Y. B.; Chen, M. W.; Ishidaand, M.; Zhou, H. S. A Layered P2- and O3-Type Composite as a High-Energy Cathode for Rechargeable Sodium-Ion Batteries. Angew. Chem., Int. Ed. 2015, 54, S-10

11 [4] Bai, Y.; Zhao, L. X.; Wu, C.; Li, H.; Li, Y.; Wu, F. Enhanced Sodium Ion Storage Behavior of P2-Type Na 2/3 Fe 1/2 Mn 1/2 O 2 Synthesized via a Chelating Agent Assisted Route. ACS Appl. Mater. Interfaces 2016, 8, [5] Hemalatha, K.; Jayakumar, M.; Berac, P.; Prakash, A. S. Improved Electrochemical Performance of Na 0.67 MnO 2 through Ni and Mg Substitution. J. Mater. Chem. A 2015, 3, [6] Wang, X. F.; Tamaru, M.; Okubo, M.; Yamada, A. Electrode Properties of P2 Na 2/3 Mn y Co 1 y O 2 as Cathode Materials for Sodium-Ion Batteries. J. Phys. Chem. C 2013, 117, [7] Zhao, J.; Xu, J.; Lee, D. H.; Dimov, N.; Meng, Y. S.; Okada, S. Electrochemical and Thermal Properties of P2-Type Na 2/3 Fe 1/3 Mn 2/3 O 2 for Na-ion Batteries. J. Power Sources 2014, 264, [8] Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-Type Na x [Fe 1/2 Mn 1/2 ]O 2 Made from Earth-Abundant Elements for Rechargeable Na Batteries. Nat. Mater. 2012, 11, [9] Billaud, J.; Singh, G.; Armstrong, A. R.; Gonzalo, E.; Roddatis, V.; Armand, M.; Rojob, T.; Bruce, P. G. Na 0.67 Mn 1-x Mg x O 2 (0 x 0.2): a High Capacity Cathode for Sodium-Ion Batteries. Energy Environ. Sci. 2014, 7, [10] Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakurad, S.; Komaba, S. A New Electrode Material for Rechargeable Sodium Batteries: P2-Type Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 with Anomalously High Reversible Capacity. J. Mater. Chem. A 2014, 2, [11] Chagas, L. G.; Buchholz, D.; Vaalma, C.; Wu, L.; Passerini, S. P-type Na x Ni 0.22 Co 0.11 Mn 0.66 O 2 Materials: Linking Synthesis with Structure and Electrochemical Performance. J. Mater. Chem. A 2014, 2, S-11

12 [12] Xu, Y. M.; Yang, Z. Z.; Xu, S. Y.; Mu, L. Q.; Gu, L.; Hu, Y.-S.; Li, H.; Chen, L. Q. Air-Stable Copper-Based P2-Na 7/9 Cu 2/9 Fe 1/9 Mn 2/3 O 2 as a New Positive Electrode Material for Sodium-Ion Batteries. Adv. Sci. 2015, 2, [13] Kang, W. P.; Zhang, Z. Y.; Lee, P.-K.; Ng, T.-W.; Li, W. Y.; Tang, Y. B.; Zhang, W. J.; Lee, C.-S.; Yu, D. Y. W. Copper Substituted P2-type Na 0.67 Cu x Mn 1 x O 2 : a Stable High-power Sodium-ion Battery Cathode. J. Mater. Chem. A 2015, 3, [14] Wang, P.-F.; You, Y.; Yin, Y.-X.; Wang, Y.-S.; Wan, L.-J.; Gu, L.; Guo, Y.-G. Suppressing the P2 O2 Phase Transition of Na 0.67 Mn 0.67 Ni 0.33 O 2 by Magnesium Substitution for Improved Sodium-Ion Batteries. Angew.Chem., Int. Ed. 2016, 55, [15] Mason, C.W.; Lange, F.; Saravanan, K.; Lin, F.; Nordlundc, D. Beyond Divalent Copper: A Redox Couple for Sodium Ion Battery Cathode Materials. ECS Electrochem. Lett. 2015, 4, A41-A44. [16] Hasa, I.; Buchholz, D.; Passerini, S.; Scrosati, B.; Hassoun, J. High Performance Na 0.5 [Ni 0.23 Fe 0.13 Mn 0.63 ]O 2 Cathode for Sodium-Ion Batteries. Adv. Energy Mater. 2014, 4, [17] Chagas, L. G.; Buchholz, D.; Vaalma, C.; Wu, L.; Passerini, S. P-type Na x Ni 0.22 Co 0.11 Mn 0.66 O 2 Materials: Linking Synthesis with Structure and Electrochemical Performance. J. Mater. Chem. A 2014, 2, [18] Wu, X. H.; Guo, J. H.; Wang, D. W.; Zhong, G. M.; McDonald, M. J.; Yang, Y. P2-type Na 0.66 Ni 0.33 x Zn x Mn 0.67 O 2 as New High-voltage Cathode Materials for Sodium-ion Batteries. J. Power Sources 2015, 281, S-12