Supporting Information. Peanut Shell Hybrid Sodium Ion Capacitor with Extreme. Energy - Power Rivals Lithium Ion Capacitors

Size: px
Start display at page:

Download "Supporting Information. Peanut Shell Hybrid Sodium Ion Capacitor with Extreme. Energy - Power Rivals Lithium Ion Capacitors"

Transcription

1 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 214 Supporting Information Peanut Shell Hybrid Sodium Ion Capacitor with Extreme Energy - Power Rivals Lithium Ion Capacitors Jia Ding a,b, Huanlei Wang a,b, Zhi Li a,b*, Kai Cui b, Dimitre Karpuzov c, Xuehai Tan a,b, Alireza Kohandehghan a,b, David Mitlin a,b,d** a Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada b National Institute for Nanotechnology (NINT), National Research Council of Canada, Edmonton, Alberta T6G 2M9, Canada c University of Alberta, Alberta Centre for Surface Engineering and Science, Edmonton, Canada d Chemical & Biomolecular Engineering, Clarkson University 8 Clarkson Ave., Potsdam, New York 13699, USA * lizhicn@gmail.com, **david.mitlin2@gmail.com

2 Figure S1: SEM micrographs of (A) PSNC-3-85 and (B) PSNC-2-8, (C) PSOC, (D) the baseline commercial activated carbon (CAC). Figure S2: SEM micrographs of cathode and anode carbons achieved when employing the entire peanut shell as a single precursor for either synthesis process. (A) cathode carbon. (B) anode carbon.

3 Figure S3: HAADF TEM micrographs and thickness profiles (insert) of (A) PSNC-3-85 and (B) PSNC-2-8, measured from low-loss EELS along the white arrows. HRTEM micrographs of (C) PSNC-3-85, and (D) PSNC-2-8.

4 Figure S4: HRTEM micrograph of PSOC. A 2 18 R = B/A A B 1 B Theta / B A R = B/A Theta / Figure S5: Scheme illustrating the R values calculation based on XRD patterns for PSNCs (A) and PSOCs (B).

5 A PSOC PSNC-2-8 PSNC-3-85 CAC B PSOC Intensity / a. u. Intensity / a. u. T D D'' G C Wavenumber / cm -1 PSOC-A D Wavenumber / cm -1 PSNC-3-85 Intensity / a. u. T D D'' G Intensity / a. u. T D D'' G E Wavenumber / cm -1 PSNC-3-8 F Wavenumber / cm -1 PSNC-2-8 Intensity / a. u. T D D'' G Intensity / a. u. T D D'' G Wavenumber / cm Wavenumber / cm -1 CAC Intensity / a. u. T D D'' G Wavenumber / cm -1 Figure S6: (A) Raman spectra of PSNC-2-8, PSNC-3-85 and PSOC specimens. (B-F) Fitted Raman spectra of PSOC, PSNC and CAC.

6 A Quantity Adsorbed / cm 3 g CAC Relative Pressure / P/P Incremental Pore Volume / cm 3 g -1 B Pore Size / nm CAC Figure S7: (A)-(B) Nitrogen adsorption-desorption isotherms and pore size distributions of CAC.

7 A Intensity / a. u. Si 2S Si 2P Cl 2P C 1s Bio-char PSNC-3-8 PSNC-2-8 PSNC-3-85 PSOC-A O 1s PSOC B O 1s C 1s N 1s Binding Energy / ev B.E / ev B.E / ev C O 1s C 1s D O 1s C 1s B.E / ev B.E / ev B.E / ev B.E / ev E O 1s C 1s F O 1s C 1s B.E / ev B.E / ev B.E / ev B.E / ev Figure S8: (A) XPS survey spectra of PSNC, PSOC and hydrothermal biochar. Magnified views of the C 1s, N 1s and O 1s core level XPS spectra with fits for (B) PSNC-3-85, (C) PSNC-2-8, (D) PSOC, (E) PSOC-A, (F) hydrothermal obtained biochar.

8 ACurrent / Ag mvs -1 5 mvs -1 1 mvs -1.2 mvs -1-1 B Current / Ag Voltage / V vs. Na/Na + 1 mvs -1 5 mvs -1 1 mvs -1.2 mvs -1 C Voltage / V vs. Na/Na + Current / Ag mvs -1 5 mvs -1 1 mvs -1.2 mvs Voltage / V vs. Na/Na + Figure S9: (A-C) Cyclic voltammograms (CVs) of PSNC-3-85, PSNC-2-8, and CAC, respectively.

9 A Ag -1.2Ag -1 Voltage / vs. Na/Na B Ag -1.2Ag -1 Voltage / vs. Na/Na Capaciy / mahg -1 Capaciy / mahg -1 C Ag -1.2Ag D Ag -1.2Ag -1 Voltage / vs. Na/Na Capaciy / mahg -1 Capaciy / mahg -1 E Ag -1.2Ag -1 Voltage / vs. Na/Na Voltage / vs. Na/Na Capaciy / mahg -1 Figure S1:Galvanostatic discharge/charge profiles of (A) PSNC-3-8, (B) PSNC- 3-85, (C) PSNC-2-8 and (D) CAC, (E) PSNC-3-8 within voltage region of V vs. Na/Na +.

10 IR drop / V PSNC-3-8 PSNC-3-85 PSNC-2-8 CAC Current density / Ag -1 Figure S11: IR drops of PSNC specimens and CAC in half cells.

11 A 24 Capacitance / Fg PSNC-3-8 Integral peanut shell Current Density / Ag -1 B.1Ag -1.2Ag -1.4Ag -1.8Ag Ag Ag Ag Ag Ag Capacity / mahg PSOC-A Integral peanut shell-a Cycle Number Figure S12: The electrochemical performance of cathode carbon (A) and anode carbon (B) that were derived from the entire peanut shell without separation.

12 ACapacity / mahg mg cm -2 2.mg cm B Current density / Ag -1.1Ag Ag -1.4Ag -1.8Ag Ag Ag Ag Ag Ag -1 Capacity / mahg mg cm -2 2.mg cm Current density / Ag -1 Figure S13: The electrochemical performance of PSNC-3-8 (A) and PSOC-A (B) with two different electrode mass loadings.

13 Figure S14: Cross section SEM images of (A) PSNC-3-8 (B) CAC, (C) PSOC-A and (D) commercial graphite thin film electrodes with commercial mass loadings.

14 A 12 Capacity / mahcm B 6 Capacity / mahcm Current density / Ag -1 Cycle Number Ag -1.2Ag -1.4Ag -1.8Ag Ag Ag Ag Ag Ag -1 Figure S15: The volumetric capacity of PSNC-3-8 (A) and PSOC-A (B).

15 A.4 B 3. Current / Ag st 5th 1th Voltage / V vs. Na/Na + Voltage / vs. Na/Na st 1.5 2nd 1. 5th.5 1th Capacity / mahg -1 C D Voltage / V vs. Na/Na Capacity / mahg -1.8Ag -1.4Ag -1.2Ag -1.1Ag -1 Voltage / V vs. Na/Na + 3.8Ag Ag Ag -1.1Ag Capacity / mahg -1 E 15 Cathodic Anodic 1 PSOC PSOC-A Maximum Current / Ag Scan rate / mvs -1 Figure S16: (A) CVs of PSOC specimen at a scan rate of.1mvs -1. (B) Galvanostatic discharge/charge profiles of PSOC at density of.1ag -1. (C-D) Galvanostatic discharge/charge profiles of PSOC-A (C) and PSOC (D) at current densities of.1,.2,.4 and.8ag -1. (E) Dependence of anodic and cathodic peak currents on scan rate for PSOC and PSOC-A.

16 Ag -1.2Ag -1.4Ag -1 Voltage / V Time / s Figure S17: (A) Galvanostatic discharge/charge profiles of PSNC-3-8//PSOC-A hybrid Na-ion capacitor at low current densities.

17 Capacity Retention Voltage: V Current Density: 1Ag Cycle Number 98.9% Figure S18: Cycling stability of PSNC-3-8//PSOC-A hybrid ion capacitor at a current density of 1Ag -1 and voltage window of V.

18 -Z'' / ohm Z'' / ohm Z' / ohm PSNC-3-8//PSOC-A NIC CAC//PSOC-A NIC Z' / ohm Figure S19: Nyquist plots of PSNC-3-8//PSOC-A and CAC//PSOC-A after rate tests. Figure S2: Equivalent electronic circuits used to simulate the EIS data. R es is the sum of resistances of electrical connections in the experiment setup including ionic diffusion resistance in the electrolyte. R ct reflects the charge transfer resistance and Z w (Warburg-type element) represents Na diffusion impedance within carbon materials.

19 Table S1. Capacity retention comparison with literature reported hybrid devices. Hybrid system Voltage Window Current density Energy density (Whkg -1 ) Power density (Wkg -1 ) Cycled number Capacity retention Ref. PSNC-3-8//PSOC-A (Na + ) V 6.4Ag ~8 1/5/ 1 79%/69%/ 66% This work PSNC-3-8//PSOC-A (Na + ) V 6.4Ag ~7 1/5/ 1 92%/78%/ 72% This work PSNC-3-8//PSOC-A (Na + )-65 C PSNC-3-8//PSOC-A (Na + ) V 51.2Ag -1 ~2 ~ % V 51.2Ag -1 ~8 ~5 1 88% This work This work AC//Na x H 2-x Ti 3 O 7 (Na + ) AC//V 2 O 5 /CNT (Na + ) -3V.25Ag ~2 1 73% V 6C 16-2 ~ % 38 AC//NiCo 2 O 4 (Na + ) -3V.15Ag ~ % 45 AC//V 2 O 5 /CNT (Li + ).1-2.7V 3C 24-3 ~85 1 8% 16 CNS//MnO/CNS (Li + ) 3DGraphene//Fe 3 O 4 / Graphene (Li + ) -4V 5Ag ~6 5 82% V 2Ag % 39 AC//Li 4 Ti 5 O 12 (Li + ) 1-3V 1.5Ag ~3 2 8% 47 AC//Soft carbon (Li + ) -4.4V.74Ag ~2 1 65% 4 AC//graphite (Li + ) V.65Ag ~ % 51 AC//hard carbon (Li + ) V 1C 6-75 ~ % 52

20

21 Retention Figure S21: The cyclability of Na-Na cell. Cycle Number