Cu 70 Zr 30. Effects of cooling rate on primary phase and peritectic transformation in Cu 70 Zr 30 alloy (2014)

Size: px
Start display at page:

Download "Cu 70 Zr 30. Effects of cooling rate on primary phase and peritectic transformation in Cu 70 Zr 30 alloy (2014)"

Transcription

1 Volume 24 Number 9 The Chinese Journal of Nonferrous Metals September (2014) Cu 70 Zr 30 1, 2 1 1, ( ) Cu 70 Zr m Cu 51 Zr 14 Cu-Zr TG146.2 A Effects of cooling rate on primary phase and peritectic transformation in Cu 70 Zr 30 alloy YANG Wei 1, 2, ZHANG Yan-long 1, YU Huan 1, 2, CHEN Shou-hui 1, LU Bai-ping 1, WANG Zhi-tai 3 (1. National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang , China; 2. Collaborative Innovation Center for Aviation Manufacturing Industry of Jiangxi Province, Nanchang , China; 3. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi an , China) Abstract: The effects of cooling rate on the size and morphology of primary phase in Cu 70 Zr 30 alloy, as well as the thickness of peritectic layer were investigated by differential thermal analysis and step copper mould spray casting techniques. The formation mechanisms of phase selection and peritectic transformation were discussed. The results show that the measured temperatures for primary phase and peritectic transformation are respectively 1042 and 957 in near-equilibrium solidification, which are smaller than the values from equilibrium phase diagram. Due to slight composition interval between the adjacent regions of peritectic phase and sluggish solute diffusion rate in solid, the average thickness of peritectic layer is merely 5 m with the presence of residual primary phase Cu 51 Zr 14. The structure of primary phase is not changed by copper mould spray casting, while peritectic transformation is suppressed effectively. With increasing cooling rate, undercooling is enhanced to activate more nucleation events, which generates the morphology transition of primary phase from directionally bundle to equiaxed-grain microstructure. Key words: Cu-Zr alloy; cooling rate; non-equilibrium solidification; phase selection; peritectic transformation ( ) (2013AA064001) (GJJ14504) (GF ) weiyang@mail.nwpu.edu.cn

2 Cu-Zr [1 2] [3 5] XU [6] Cu 100 x Zr x (x=34~40) Cu 64 Zr 36 WANG [7] Cu 50 Zr 50 2 mm ABE [8] [2] Cu 100 x Zr x (x=10~38) [2],, [9 12] [13] [14] Cu 70 Zr 30 1 Cu 70 Zr 30, Cu Zr 99.99% 99.9% ( 80 g) Pa % 0.03 MPa 3 NETZSCH STA449F3 4 mm 5 mm 120 mg 25~ K/min 5 K/min In Sn Zn Al Ag Au 1 K 20 g ( d 15 mm 150 mm 0.5 mm ) Pa 0.03 MPa min 0.02 MPa ( 80 mm mm) (40% +60% ) VHX 600E Quanta 200 INCA 250 X Max 50 D8 X [2] Cu 70 Zr Cu 51 Zr 14 T P (975 ) L+Cu 51 Zr 14 Cu 8 Zr L Cu 8 Zr 3 + Cu 10 Zr 7 (Cu 8 Zr 3 ) (Cu 8 Zr 3 +Cu 10 Zr 7 ) 1 Cu 70 Zr K/min [15]

3 24 9 Cu 70 Zr K/min 5 K/min Cu 70 Zr 30 Fig. 1 Differential thermal analysis curves of Cu 70 Zr 30 alloy at heating rate of 20 K/min and cooling rate of 5 K/min 2.2 Cu 70 Zr 30 2 Cu 70 Zr 30 5 K/min mm 2(a) 5 m 5 K/min Cu 51 Zr 14 2(a) ( 2(b)~(d)) d 10 mm ( 2(b)) ( 2(c)) 4 mm ( 2(d)) 3 d 4 mm EDS 5 K/min ( 3(a)) ( 3(b) E ) EDS ( 3(c)~(e)) Zr 19.25%(C ) 2 Cu 70 Zr 30 Fig. 2 Optical microstructures of Cu 70 Zr 30 alloy under different cooling conditions: (a) Cooling rate of 5 K/min; (b) Copper mould spray casting with inner diameter of 10 mm; (c) Copper mould spray casting with inner diameter of 6 mm; (d) Copper mould spray casting with inner diameter of 4 mm

4 Cu 70 Zr 30 SEM EDS Fig. 3 SEM images and EDS spectra of Cu 70 Zr 30 alloy under different cooling conditions: (a) Cooling rate of 5 K/min; (b) Copper mould spray casting with inner diameter of 4 mm; (c) (g) EDS spectra 15.81%(A ) Zr 16.28%(B ) Zr 15.56%(D ) A 2.3 Cu 70 Zr 30 4 d 4 mmcu 70 Zr 30 XRD Cu 51 Zr 14 Cu 8 Zr 3 Cu 10 Zr 7 2(a) 3(a)

5 24 9 Cu 70 Zr Cu 51 Zr 14 3(c) Cu 8 Zr 3 4 Cu 70 Zr 30 XRD Fig. 4 XRD patterns of Cu 70 Zr 30 alloy under different cooling conditions 3 V R c R c [17 18] R C dt ( TL T0 ) (3) dt d c p T 0 c p d (2)~(3) d R c I V m T L T N T Cu-Zr 6 (Cu 9 Zr 2, Cu 51 Zr 14, Cu 8 Zr 3, Cu 10 Zr 7, CuZr CuZr 2 ) Cu-Zr [8] 5 Cu 51 Zr 14 Cu 8 Zr 3 Cu 10 Zr 7 G 5 Cu 51 Zr 14 Cu 51 Zr 14 Cu 50 Zr 50 [19] 310 K X B2 3.1, St JOHN [16] x t 2 x t ( C C ) D (1) C 1 C 2 D (1), Cu 8 Zr 3 x 5 K/min x 5 m 5 Cu 70 Zr 30 Fig. 5 Driving forces for formation of different compounds from Cu 70 Zr 30 alloy as function of undercooling degree 3.2 L T TN dt IV 1 (2) R c T L T N I 3.3 d 10 mm ( 2(b))

6 d 4 mm ( 2(d)) ( G * ) (r * ) [20] G r * * G V 3 2 G V (4) (5) G V G V = G/V m V m [21] Sf T (6) 1/3 2/3 N V A m S f N A [20] I het * 0 G AV Ns exp[ f ( )] (7) kt A V N f( ) [2] (4)~(6) Cu 51 Zr 14 G * r * ( 6(a)) (7) ( 6(b)) 2(d) 4 1) 5 K/min Cu 70 Zr Cu 51 Zr 14 Cu 8 Zr 3 Cu 10 Zr 7 5 m Cu 51 Zr 14 2) Cu 70 Zr 30 Cu 51 Zr 14 Cu 10 Zr 7 Cu 51 Zr 14 0 s 6 Cu 70 Zr 30 Fig. 6 Critical nucleation radius, critical nucleation work (a) and nucleation rate (b) for Cu 70 Zr 30 alloy as function of undercooling degree 3) REFERENCES [1],. Cu 64 Zr 36 [J]., 2006, 35(1): ZHANG Cheng-yu, YAO Ke-fu. Crystallization kinetics of Cu 64 Zr 36 amorphous alloy[j]. Rare Metal Materials and Engineering, 2006, 35(1): [2] YANG W, LIU F, LIU H, WANG H F, CHEN Z, YANG G C. Glass forming ability in Cu-Zr binary alloy: Effect of nucleation mode[j]. Journal of Alloys and Compounds, 2009, 484: [3],,,,,. Zr 60 Cu 17.5 Al 7.5 Ni 10 Ti 5

7 24 9 Cu 70 Zr [J]., 2011, 21(8): KOU Sheng-zhong, CHEN Yan, LIU Guang-qiao, LI Na, ZHENG Bao-chao, HUANG Wen-jun, SUO Hong-li. Effect of semi-solid processing on glass forming ability and mechanical properties of Zr 60 Cu 17.5 Al 7.5 Ni 10 Ti 5 bulk amorphous alloys[j]. The Chinese Journal of Nonferrous Metals, 2011, 21(8): [4],,,. Cu-Zr-Al [J]., 2011, 21(3): PAN Ye, JI Xiu-lin, PI Jing-hong, ZHANG Lu. Effects of minor alloying additions on glass forming ability and mechanical properties of Cu-Zr-Al bulk metallic glasses[j]. The Chinese Journal of Nonferrous Metals, 2011, 21(3): [5] DEO L P, MENDES M A B, COSTA A M S, CAMPOS NETO N D, de OLIVEIRA M F. Applying a new criterion to predict glass forming alloys in the Zr-Ni-Cu ternary system[j]. Journal of Alloys and Compounds, 2013, 553: [6] XU D H, LOHWONGWATANA B, DUAN G, JOHNSON W L, GARLAND C. Bulk metallic glass formation in binary Cu-rich alloy series-cu 100 x Zr x (x=34, 36, 38.2, 40 at%) and mechanical properties of bulk Cu 64 Zr 36 glass[j]. Acta Materialia, 2004, 52(9): [7] WANG D, LI Y, SUN B B, SUI M L, LU K, MA E. Bulk metallic glass formation in the binary Cu-Zr system[j]. Applied Physics Letters, 2004, 84(20): [8] ABE T, SHIMONO M, ODE M, ONODERA H. Thermodynamic modeling of the undercooled liquid in the Cu-Zr system[j]. Acta Materialia, 2006, 54(4): [9] YANG W, YU H, WANG J H, CAI C C, XU Z F, LI S, LIU F, YANG G C. Application of dendrite fragmentation to fabricate the homogeneous dispersed structure in undercooled Cu-Co immiscible alloy[j]. Journal of Alloys and Compounds, 2011, 509: [10],,. Sn-6.5Zn /Cu [J]., 2012, 22(10): ZHAO Guo-ji, SHENG Guang-min, LUO Jun. Influence of rapid solidification on characteristics of Sn-6.5Zn solder alloy and mechanical properties of solder/cu joints[j]. The Chinese Journal of Nonferrous Metals, 2012, 22(10): [11],,,. [J]., 2012, 48(12): MU Dan-ning, YANG Chang-lin, WEI Xiao-wei, LIU Feng. Research on grain refinement in bulk undercooled Fe-Co base alloys[j]. Acta Metallurgica Sinica, 2012, 48(12): [12],,,. Co-Cu [J]., 2013, 23(4): LI Sheng, LIU Feng, YANG Gen-cang, YANG Wei. Effect of solute content on grain refinement microstructure of rapid solidified Co-Cu immiscible alloy[j]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): [13] HERLACH D M, GILLESSEN F, VOLKMANN T, WOLLGARTEN M, URBAN K. Phase selection in undercooled quasicrystal forming Al-Mn alloy melts[j]. Physical Review B, 1992, 46: [14] LIU F, CHEN Y Z, YANG G C, LU Y P, CHEN Z, ZHOU Y H. Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni 78.6 Si 21.4 alloy[j]. Journal of Materials Research, 2007, 22: [15],,,,. Pb-Bi DSC [J]., 2010, 30(7): HU Xiao-wu, LI Shuang-ming, GAO Si-feng, LIU Lin, FU Heng-zhi. DSC analysis of Pb-Bi peritectic alloys during solidification process[j]. Special Casting & Nonferrous Alloys, 2010, 30(7): [16] STJOHN D H, HOGAN L M. A simple prediction of the rate of the peritectic transformation[j]. Acta Metallurgica, 1987, 35(1): [17] KONG J, YE Z T, LÜ F. Non-equilibrium solidification character of Zr 56.2 Ti 13.8 Nb 5.0 Cu 6.9 Ni 5.6 Be 12.5 bulk metallic glass composites containing ductile dendrite phase[j]. Journal of Alloys and Compounds, 2009, 478: [18],,,,,. AZ91D [J]., 2014, 24(3): YANG Wei, CHEN Shou-hui, ZHANG Shou-yin, YU Huan, YAN Qing-song, CAI Chang-chun. Effect of cooling rate on non-equilibrium solidified microstructure of AZ91D magnesium alloy[j]. The Chinese Journal of Nonferrous Metals, 2014, 24(3): [19] GEGNER J, SHULESHOVA O, KOBOLD R, HOLLAND- MORITTZ D, YANG F, HORNFECK W, BEDNARCIK J, HERLACH D M. In situ observation of the phase selection from the undercooled melt in Cu-Zr[J]. Journal of Alloys and Compounds, 2013, 576: [20],. [M]. :, 2010: 17. LI Jian-guo, HU Qiao-dan. Principle of solidification[m]. Beijing: Higher Education Press, 2010: 17. [21] SPAEPEN F. A structural model for the solid-liquid interface monatomic system[j]. Acta Metallurgica, 1975, 23(6): ( )