Towards the limits of strength:

Size: px
Start display at page:

Download "Towards the limits of strength:"

Transcription

1 Towards the limits of strength: Design and understanding of ultra high strength steels D. Raabe, Y.J. Li, P. Choi, O. Dmitrieva, R. Kirchheim*, D. Ponge Düsseldorf, Germany * Max-Planck-Institut and Physics Dpt. University Göttingen, Germany Colloquium 19, Nov LMU

2 Overview Raabe: Adv. Mater. 14 (2002), Roters et al. Acta Mater.58 (2010)

3 New materials for key technologies: Aero-space 2

4 New materials for key technologies: mobility on land and water 3

5 New materials for key technologies: Power plants 4

6 New materials for key technologies: Green energy 5

7 New materials for key technologies: infrastructure 6

8 Property profiles of steels total elongation to fracture [%] advanced TWIP and TRIP ferritic dual phase austenitic stainless Maraging-TRIP and advanced QP 10 TRIP and complex phase martensitic ultimate tensile strength [MPa] Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009)

9 Overview Raabe: Adv. Mater. 14 (2002), Roters et al. Acta Mater.58 (2010)

10 Ab-initio methods for the design of high strength steels Stress s [MPa] martensite formation TRIP steel twin formation TWIP steel Strain e [%] Hickel, Dick, Neugebauer, SFB 761 9

11 Ab-initio methods for the design of high strength steels C B B C A Hickel, Dick, Neugebauer, SFB

12 11

13 12

14 13

15 14

16 Overview Raabe: Adv. Mater. 14 (2002), Roters et al. Acta Mater.58 (2010)

17 Tensile tests, maraging TRIP e=0% FCC BCC e=15% Raabe, Ponge, Dmitrieva, Sander: Scripta Mater. 60 (2009)

18 Microstructure hierarchy Dmitrieva et al., Acta Mater, in press

19 APT results: Atomic map (12MnPH aged 450 C/48h) Martensite decorated by precipitations? Austenite? Mn atoms Ni atoms Mn iso-concentration surfaces at 18 at.% 70 million ions Laser mode (0.4nJ, 54K) Dmitrieva et al., Acta Mater, 18in press 2010

20 APT results: chemical profiles Thermo-Calc Phase equilibrium Mn-contents: 27 at. % Mn in austenite (A) 3 at. % Mn in ferrite (martensite) (M) Mn layer 1 Mn layer 2 M nominal 12 at.% Mn depletion zone A Mn layer2 Mn layer 1 M A M Mn iso-concentration surfaces at 18 at.% 1D profile: step size 0.5 nm Dmitrieva et al., Acta Mater, 19in press 2010

21 12MnPH after aging (48h 450 C) precipitates in a` x Diff 2 Dt 30nm no precipitates in x Diff 2nm Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009)

22 APT results and simulation: DICTRA/ThermoCalc Thermo-Calc Mn layer 1 Mn layer 2 Phase equilibrium Mn content: 27 at. % in austenite 3 at. % in ferrite (martensite) M nominal 12 at.% AM A Mean diffusion path of Mn in austenite Mn-rich (aging 450 C/48h) layer 2 nm aging M final position phase boundary New austenite PB migration (formed Mn diffusion during aging) A original position phase boundary phase boundary DICTRA Ti, Si, Mo 10 nm Dmitrieva et al., Acta Mater, 21in press 2010

23 Overview 22

24 Example # 2 key mechanisms: Martensite relaxation and aging 2 GPa-steels: Aged martensite: Fe 13 Cr > 0.3 C Ultra high strength and corrosion resistance carbon α γ carbide 1.5 K/s (slab) 4000 K/s (strip) steel research int. 79 (2008) No. 6 23

25 Overview 24

26 Pearlite: Laminate nanostructures > 5 GPa-steels: Pearlite: nanostructured and mechanically alloyed Data from Lesuer, Syn, Sherby and Kim, Metallurgy, Processing and Applications of metal wires, TMS, 1993; M.H. Hong, W.T. Reynolds, Jr., T. Tarui, K. Hono, Metall. Mater. Trans. A 30, 717 (1999); T. Tarui, N. Maruyama, J. Takahashi, S. Nishida, H. Tashiro, Nippon Steel Technical Report 91, 56 (2005); S. Goto, R. Kirchheim, T. Al-Kassab, C. Borchers, Trans. Nonferrous Met. Soc. China 17, 1129 (2007); J. Takahashi, T. Tarui, K. Kawakami, Ultramicroscopy 109, 193 (2009); A. Taniyama, T. Takayama, M. Arai, T. Hamada, Scripta Mater. 51, 53 (2004); [6] K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, Scripta Mater. 44, 977 (2001). 25

27 Pearlite, chemical composition and 3D reconstructed atom map 10 nm 50 x 50 x 230 nm 3, 13 millons ions Fe C Top view Front view 10 nm Iso-concentration value 7 at. % C 26

28 Sauvage: sharp steps in the mechanical alloying profile. pearlite data: Xavier Sauvage, Rouen 27

29 Pearlite, chemical composition as a function of strain and size Ferrite Cementite Mechanisms of decomposition: As-patented Binding energy Carbon-dislocation interactions (0.5~1) ev between C and dislocation (0.4~0.42) ev between C and Fe in Fe 3 C Destabilization due to the increase of free energy 1. Large amount of C dissolved in ferrite 2. Inhomogeneous distribution of C Carbon concentration as fct. of lamellar thickness 3. ε < 5, carbon concentration increases with wire strain 4. ε > 5, carbon concentration appears to saturate. 28

30 Overview 29

31 Nano-precipitates in soft magnetic steels magnetic loss (W/kg) 15 nm size Cu precipitates (nm) {JP } nanoparticles too small for Bloch-wall interaction but effective as dislocation obstacles mechanically very strong soft magnets for motors Fe-Si steel with Cu nano-precipitates 30

32 Fe-Si-Cu, LEAP 3000X HR analysis Cu 2 wt.% 120 min 450 C aging Iso-concentration surfaces for Cu 11 at.% 6000 min 20 nm 20 nm Fe-Si steel with Cu nano-precipitates 31

33 Modeling: ab-initio, DFT / GGA, binding energies Fe-Si steel with Cu nano-precipitates

34 Modeling: ab-initio, DFT / GGA, binding energies Fe-Si steel with Cu nano-precipitates

35 Modeling: ab-initio, DFT / GGA, binding energies Fe-Si steel with Cu nano-precipitates

36 Modeling: ab-initio, DFT / GGA, binding energies Fe-Si steel with Cu nano-precipitates

37 Ab-initio, binding energies: Cu-Cu in Fe matrix Fe-Si steel with Cu nano-precipitates 36

38 Ab-initio, binding energies: Si-Si in Fe matrix Fe-Si steel with Cu nano-precipitates 37

39 Ab-initio, binding energies b in E S is i b in E S icu bin E CuCu For neighbor interaction energy take ( ev difference (in (repulsive) = (attractive) = (attractive) = Fe-Si steel with Cu nano-precipitates 38

40 Ab-initio, use binding energies in kinetic Monte Carlo model 39

41 Take-home message There are about 40 million cars in Germany High strength soft magentic steels in car engines and transfomers reduce CO 2 emission 40