Ultrasonic enhanced electroless copper plating on microporous polyurethane foam

Size: px
Start display at page:

Download "Ultrasonic enhanced electroless copper plating on microporous polyurethane foam"

Transcription

1 42 1 ( ) Vol.42 No Journal of Central South University (Science and Technology) Jan ( ) 0.3 mm ph 16 g/l 30 g/l Na 2 EDTA 20 g/l α,α - 25 mg/l 25 mg/l PEG g/l 5 ml/l ph 12.5~ mg/min 20%~30% 92.2% TQ153.3 A (2011) Ultrasonic enhanced electroless copper plating on microporous polyurethane foam TIAN Qing-hua, GUO Xue-yi (School of Metallurgical Science & Engineering, Central South University, Changsha , China) Abstract In order to get good conductive foam substrates for foam metal materials, a novel method for electroless copper plating on microporous polyurethane foam with diameter of 0.3 mm was proposed. The main factors affecting the plating rate such as the solution composition, temperature, ph and adding ultrasonic were investigated comprehensively. The results show that the optimal conditions are 16 g/l CuSO 4, 5 ml/l HCHO, 30 g/l NaKC 4 H 4 O 6, 20 g/l Na 2 EDTA, 25 mg/l α,α -Dipyridyl, 25 mg/l K 4 Fe(CN) 6, 1 g/l PEG-1000, at ph , temperature 50. Under above conditions, the process has efficient bath stability with the plating rate up to mg/min. The result shows that adding ultrasonic on the process can elevate the plating rate of copper by 20% 30%. Foam metal material with a porosity of 92.2%, and a three-dimensional network structure can be fabricated by electrodeposition after electroless copper plating. Key words: electroless copper plating; microporous; polyurethane foam; ultrasonic; foam metal ( ) [1] [2] (2010FJ3117) (K ) (1981 ) qinghua@mail.csu.edu.cn

2 12 ( ) ~0.4 mm 0.6 mm [3] [3] ( ) ( ) [4 6] [7 10] CuSO 4 5H 2 O NaKC 4 H 4 O 6 4H 2 O Na 2 EDTA HCHO α,α - PEG-1000 phs 3C ph DZKW 4 FA2004 KQ 400GQDV JSM 6360LV ( BRIDGESTONE 0.3 mm 96%) 1.2 KMnO 4 (1 g/l) H 2 SO 4 (0.05 ml/l) ( ) [11] Cu 2+ 2HCHO 4OH =Cu + 2HCOO 2H 2 O + H 2 (1) 1.3 ν=(m 2 m 1 )/(m 1 t) (2) ν m 1 m 2 t ( ) 1.4 ε = ( V0 V1 V2 V3) / V0 = ε1 m2 /( ρ 2V0 ) m3 /( ρ3v0 ) (3) ε V 0 V 1 V 2 V 3 m 2 m 3 ρ 2 ρ 3 ε ml/l 30 g/l Na 2 EDTA 20 g/l α,α - 25 mg/l 25 g/l PEG g/l ph g/l 16 g/l 20 g/l 16 g/l

3 Fig.1 Effect of CuSO 4 mass content on plating rate 30 g/l Na 2 EDTA 20 g/l α,α - 25 mg/l 25 mg/l PEG g/l 50 ph 11 ph ph [11] NaOH ph 11.5~13.5 ph 3 3 ph ph 12 ph 12.5~13.0 ph 13.5 Cu 2 O ph 12.5~ g/l 30 g/l Na 2 EDTA 20 g/l α,α - 25 mg/l 25 mg/l PEG g/l ph ml/l 5 ml/l 6 ml/l 5 ml/l 3 ph Fig.3 Effect of bath ph on plating rate 2 Fig.2 Effect of HCHO content on plating rate 2.3 ph 16 g/l 5 ml/l g/l 5 ml/l 30 g/l Na 2 EDTA 20 g/l α,α - 25 mg/l 25 mg/l PEG g/l ph ~30 50 Cu 2 O 40~ [12]

4 14 ( ) 42 4 Fig.4 Effect of bath temperature on plating rate 6 Fig.6 Effect of NaKC 4 H 4 O 6 content on plating rate Na 2 EDTA 16 g/l 5 ml/l 30 g/l α,α - 25 mg/l 25 mg/l PEG g/l ph Na 2 EDTA 5 Na 2 EDTA 20 g/l Na 2 EDTA 20 g/l 30 g/l 20 g/l Na 2 EDTA 30 g/l 5 Na 2 EDTA Fig.5 Effect of Na 2 EDTA mass content on plating rate 2.6 α,α - PEG-1000 α,α - α,α - [11] PEG mg/l α,α - 25 mg/l 1 g/l PEG (1) 0.3 mm [13] 3 min 400 W 20%~30%

5 ZnSO g/l Al 2 (SO 4 ) 3 20 g/l KAl(SO 4 ) 2 45 g/l Na 2 SO 4 30 g/l ml/l 0.04 A/dm 2 30 ph cm JSM 6360LV ~0.4 mm 3~5 96% (3) 92.2% ph Na 2 EDTA α, α - PEG-1000 (2) 16 g/l 5 ml/l 30 g/l Na 2 EDTA 20 g/l α, α - 25 mg/l 25 mg/l PEG g/l ph 12.5~ mg/min (3) 20%~30% (4) 92.2% (a) (b) 7 Fig.7 SEM photos of foam material on different phases 3 (1) 0.3~0.4 mm [1],,. [J]., 2008, 32(6): TIAN Qing-hua, LI Jun, GUO Xue-yi. Preparation and application of foam metal material[j]. Chinese Journal of Power Sources, 2008, 32(6): [2] TIAN Qing-hua, GUO Xue-yi, XUE Ping, et al. Electrodeposition for foamed zinc material from zinc sulfate solution[j]. Materials Science Forum, 2007, 561/565(3): [3]. [D]. :, 2007: TIAN Qing-hua. Electrodeposition for manufacturing foamed zinc material[d]. Changsha: Central South University. School of Metallurgical Science & Engineering, 2007: [4],,. [J]., 2005, 24(6): ZHU Ruo-ying, HUA Jun-kai, HUANG Gu. Research on metallic finishing of polyester textiles by vacuum evaporation[j]. Journal of Tianjin Polytechnic University, 2005, 24(6): [5],. Al 2 O 3 [J]., 2005, 25(7): LUO Rui-xue, LI Zheng-xian. Investigation of titanium film deposited by arc ion processing on Al 2 O 3 ceramics[j]. Rare Metals Letters, 2005, 25(7):

6 16 ( ) 42 [6],,. [J]., 2007, 26(4): TIAN Qing-hua, YAN Jian-feng, GUO Xue-yi. Research progress on electroless copper plating[j]. Electroplating and Finishing, 2007, 26(4): [7] Harik K, John S, Srinivasan K N, et al. An overall aspect of electroless Ni-P depositions: A review article[j]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37(6): [8],,,. [J]., 2007, 19(7): LI Kai-hua, LUO Jiang-shan, LIU Ying, et al. Electroless plating in synthesizing nickel foams[j]. High Power Laser and Particle Beams, 2007, 19(7): [9],,,. [J]., 2000, 17(4): XU Zhi-mou, ZHENG Jia-shen, LIU Hong-fang, et al. Investigation of production of functionally gradient material by electroless plating[j]. Acta Material Compositae Sinica, 2000, 17(4): [10] Khoperia T N. Investigation of the substrate activation mechanism and electroless Ni-P coating ductility and adhesion[j]. Microelectronic Engineering, 2003, 69(2/4): [11]. [M]. :, 2004: LI Ning. Practical electroless plating technology[m]. Beijing: Chemical Industry Press, 2004: [12],,,. EDTA 2Na [J]. :, 2005, 36(6): ZHENG Ya-jie, ZOU Wei-hong, YI Dan-qing, et al. Electroless copper plating system of potassium sodium tartrate and EDTA 2Na[J]. Journal of Central South University: Science and Technology, 2005, 36(6): [13],,,. [J]., 2008(4): ZHAO Peng, PU Yu-ping, HUANG Chun-hui, et al. Effect of adding ultrasonic on copper electroless plating of polyurethane foam[j]. Journal of Materials Engineering, 2008(4): ( )