Micron-Sized Nanoporous Antimony with Tunable Porosity for. High Performance Potassium-Ion Batteries

Size: px
Start display at page:

Download "Micron-Sized Nanoporous Antimony with Tunable Porosity for. High Performance Potassium-Ion Batteries"

Transcription

1 1 Micron-Sized Nanoporous Antimony with Tunable Porosity for High Performance Potassium-Ion Batteries Yongling An, Yuan Tian, Lijie Ci, Shenglin Xiong, Jinkui Feng,*, Yitai Qian SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan , P. R. China. School of Chemistry and Chemical Engineering, Shandong University, Jinan , P. R. China. Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei , P. R. China.

2 2 Figure S1. (a) The schematic of evolution of the Zn-Sb alloy via vacuum distillation method. (bm) SEM images of evolution structure of the different ratio Zn-Sb alloy at different distillated temperature. (b-d) SEM images of the Zn-Sb alloy (Zn:Sb=1:4) distillated at (b) 0 o C, (c) 400 o C,

3 3 and (d) 500 o C. (e-g) SEM images of the Zn-Sb alloy (Zn:Sb=2:3) distillated at (e) 0 o C, (f) 400 o C, and (g) 500 o C. (h-j) SEM images of the Zn-Sb alloy (Zn:Sb=3:2) distillated at (h) 0 o C, (i) 400 o C, and (j) 500 o C. (k-m) SEM images of the Zn-Sb alloy (Zn:Sb=4:1) distillated at (k) 0 o C, (l) 400 o C, and (m) 500 o C.

4 4 Figure S2. (a-d) XRD evolution of the Zn-Sb alloy ((a) Zn:Sb=1:4, (b) Zn:Sb=2:3, (c) Zn:Sb=3:2, (d) Zn:Sb=4:1), distillated via the vacuum distillation method.

5 5 Figure S3. (a-d) Raman evolution of the Zn-Sb alloy ((a) Zn:Sb=1:4, (b) Zn:Sb=2:3, (c) Zn:Sb=3:2, (d) Zn:Sb=4:1), distillated via the vacuum distillation method.

6 6 Figure S4. The EDS results and mapping images of the Zn-Sb alloy (Zn:Sb=1:4), distillated at (a-c) 0 o C, (b-e) 400 o C, and (f-h) 500 o C.

7 7 Figure S5. The EDS results and mapping images of the Zn-Sb alloy (Zn:Sb=2:3), distillated at (a-c) 0 o C, (b-e) 400 o C, and (f-h) 500 o C.

8 8 Figure S6. The EDS results and mapping images of the Zn-Sb alloy (Zn:Sb=3:2), distillated at (a-c) 0 o C, (b-e) 400 o C, and (f-h) 500 o C.

9 9 Figure S7. The EDS results and mapping images of the Zn-Sb alloy (Zn:Sb=4:1), distillated at (a-c) 0 o C, (b-e) 400 o C, and (f-h) 500 o C.

10 10 Figure S8. SEM images of evolution structure of the Zn-Sb alloy, distillated by the vacuum distillation method at (a) 600, (b) 700, (c) 800, and (d) 900 C.

11 Figure S9. SEM image of NP-Sb

12 12 Figure S10. SAED of Zn-Sb alloy (Zn:Sb=4:1), distillated at 500 o C via the vacuum distillation method.

13 13 Figure S11. (a, b) TEM, (c) HRTEM, and (d) SAED of Zn-Sb alloy (Zn:Sb=1:4), distillated at 500 o C via the vacuum distillation method.

14 14 Figure S12. (a, b) TEM, (c) HRTEM, and (d) SAED of Zn-Sb alloy (Zn:Sb=2:3), distillated at 500 o C via the vacuum distillation method.

15 15 Figure S13. (a, b) TEM, (c) HRTEM, and (d) SAED of Zn-Sb alloy (Zn:Sb=3:2), distillated at 500 o C via the vacuum distillation method.

16 16 Figure S14. (a, c, e) N 2 adsorption-desorption isotherm and (b, d, f) corresponding pore size distribution of Zn-Sb alloy ((a, b) Zn:Sb=1:4, (c, d) Zn:Sb=2:3, (e, f) Zn:Sb=3:2), distillated at 500 o C via the vacuum distillation method.

17 Figure S15. (a) XRD and (b) Raman of bulk-sb. 17

18 Figure S16. (a, b) SEM images, (c) EDS, and (d) mapping image of bulk-sb. 18

19 19 Figure S17. N 2 adsorption-desorption isotherm and corresponding pore size distribution of bulk- Sb.

20 20 Figure S18. The 1 st galvanostatic charge/discharge voltage profiles of NP-Sb-20 anode at 100 ma g -1.

21 Figure S19. Galvanostatic charge/discharge voltage profiles of bulk-sb anodes at 100 ma g

22 22 Figure S20. (a) Charge/discharge profiles and (b) cycling capability of NP-Sb-80 anode at 100 ma g -1.

23 23 Figure S21. (a) Charge/discharge profiles and (b) cycling capability of NP-Sb-60 anode at 100 ma g -1.

24 24 Figure S22. (a) Charge/discharge profiles and (b) cycling capability of NP-Sb-40 anode at 100 ma g -1.

25 25 Figure S23. (a, b) Charge/discharge profiles of the (a) bulk-sb and (b) NP-Sb-20 anodes at different current densities.

26 26 Figure S24. (a) Charge/discharge profiles and (b) cycling capability of NP-Sb-20 anode for SIBs at 100 ma g -1.

27 27 Figure S25. (a-d) SEM images of the bulk-sb anode (a) before and (c) after 50 cycles, and the NP- Sb-20 anode (b) before and (d) after 50 cycles.

28 Figure S26. TEM images of bulk-sb (a) and NP-Sb-20 (b) after 50 cycles at 100 ma g

29 29 Figure S27. (a-d) EIS spectra of bulk-sb (a) before cycle and (c) after the 1st, 5th, 10th, 20th, and 50th cycle, NP-Sb-20 anodes (b) before cycle and (d) after the 1st, 5th, 10th, 20th, and 50th cycle.

30 30 Table S1. A survey of Sb-based anode materials for SIBs. Sb-Based Anode Materials (SIBs) Current Density (ma g -1 ) Cycle Number (Cycles) Capacity Retention (%) Reversible Capacity (mah g -1 ) Reference Fe-Sb Sn-Ge-Sb SnSb AlSb Mo 3 Sb Sb/C Fibers SbNP/MWCNT Sb@C Coaxial Nanotubes rgo/nano Sb Antimony/Multilayer Graphene Hybrid Sb Nanorod Array Hollow Sb@C Yolk- Shell Spheres NiSb Intermetallic Hollow Nanospheres Sb-carbon Composite Microspheres Sb Nanocrystals Bulk Sb NP-Sb This work 15

31 31 REFERENCES (1) Edison, E.; Sreejith, S.; Madhavi, S. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, (2) Farbod, B.; Cui, K.; Kalisvaart, W. P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E. M.; Li, Z.; Luber, E. J.; Mitlin, D. Anodes for Sodium Ion Batteries Based on Tin-Germanium- Antimony Alloys. ACS Nano 2014, 8, (3) Choi, J.-H.; Ha, C.-W.; Choi, H.-Y.; Seong, J.-W.; Park, C.-M.; Lee, S.-M. Porous Carbon- Free SnSb Anodes for High-Performance Na-Ion Batteries. J. Power Sources 2018, 386, (4) Baggetto, L.; Marszewski, M.; Górka, J.; Jaroniec, M.; Veith, G. M. AlSb Thin Films as Negative Electrodes for Li-Ion and Na-Ion Batteries. J. Power Sources 2013, 243, (5) Li, W.; Hu, C.; Zhou, M.; Tao, H.; Wang, K.; Cheng, S.; Jiang, K. Carbon-Coated Mo 3 Sb 7 Composite as Anode Material for Sodium Ion Batteries with Long Cycle Life. J. Power Sources 2016, 307, (6) Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode. ACS Nano 2013, 7, (7) Zhou, X.; Dai, Z.; Bao, J.; Guo, Y.-G. Wet Milled Synthesis of an Sb/MWCNT Nanocomposite for Improved Sodium Storage. J. Mater. Chem. A 2013, 1, (8) Liu, Z.; Yu, X.-Y.; Lou, X. W.; Paik, U. Sb@C Coaxial Nanotubes as a Superior Long- Life and High-Rate Anode for Sodium Ion Batteries. Energy Environ. Sci. 2016, 9, (9) Nithya, C.; Gopukumar, S. rgo/nano Sb Composite: a High Performance Anode Material for Na + Ion Batteries and Evidence for the Formation of Nanoribbons from the Nano rgo Sheet during Galvanostatic Cycling. J. Mater. Chem. A 2014, 2, (10) Hu, L.; Zhu, X.; Du, Y.; Li, Y.; Zhou, X.; Bao, J. A Chemically Coupled

32 32 Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries. Chem. Mater. 2015, 27, (11) Liang, L.; Xu, Y.; Wang, C.; Wen, L.; Fang, Y.; Mi, Y.; Zhou, M.; Zhao, H.; Lei, Y. Large- Scale Highly Ordered Sb Nanorod Array Anodes with High Capacity and Rate Capability for Sodium-Ion Batteries. Energy Environ. Sci. 2015, 8, (12) Liu, J.; Yu, L.; Wu, C.; Wen, Y.; Yin, K.; Chiang, F. K.; Hu, R.; Liu, J.; Sun, L.; Gu, L.; Maier, J.; Yu, Y.; Zhu, M. New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Lett. 2017, 17, (13) Liu, J.; Yang, Z.; Wang, J.; Gu, L.; Maier, J.; Yu, Y. Three-Dimensionally Interconnected Nickel-Antimony Intermetallic Hollow Nanospheres as Anode Material for High-Rate Sodium- Ion Batteries. Nano Energy 2015, 16, (14) Ko, Y. N.; Kang, Y. C. Electrochemical Properties of Ultrafine Sb Nanocrystals Embedded in Carbon Microspheres for Use as Na-Ion Battery Anode Materials. Chem. Commun. 2014, 50, (15) He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse Antimony Nanocrystals for High-Rate Li-Ion and Na-Ion Battery Anodes: Aano versus Bulk. Nano Lett. 2014, 14, (16) Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: an Unexpected Electrochemical Mechanism. J. Am. Chem. Soc. 2012, 134,