Proceedings Post Fabrication Processing of Foundry MEMS Structures Exhibiting Large, Out-of-Plane Deflections

Size: px
Start display at page:

Download "Proceedings Post Fabrication Processing of Foundry MEMS Structures Exhibiting Large, Out-of-Plane Deflections"

Transcription

1 Proceedings Post Fabrication Processing of Foundry MEMS Structures Exhibiting Large, Out-of-Plane Deflections LaVern Starman 1, *, John Walton 1, Harris Hall 1 and Robert Lake 2 1 Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA; john.walton.4@us.af.mil (J.W.); harris.hall.3@us.af.mil (H.H.) 2 Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA; robert.lake.4@us.af.mil * Correspondence: lavern.starman.1@us.af.mil; Tel.: Presented at the Eurosensors 2017 Conference, Paris, France, 3 6 September Published: 18 August 2017 Abstract: This research effort is focused on the development of large angle, out-of-plane bimorph MEMS micromirrors fabricated in the PolyMUMPs foundry process. Based on design constraints of the PolyMUMPs process, current designs fabricated do not meet the requirements to enable large angle optical steering. Through Comsol modeling and simulation, several post-processing techniques were discovered that could be used to meet the required large out-of-plane deflections. We have performed several post-processing techniques to include silicon nitride and high temperature evaporated gold to verify our Comsol modeling results. Our experimental tests validate the Comsol results of greater than 400 µm deflections are achievable. Keywords: MEMS; Bimorph; micromirror; PolyMUMPs 1. Introduction Current Micro-Electro-Mechanical system (MEMS) designers have few options when it comes to commercial foundries in the fabrication of microsystems. In general, MEMS designers are limited to the materials and design rules established by the foundry. Large angle beamsteering is highly desired in many applications for example in the medical imaging area of endoscopy [1,2]; however, meeting the steering angle requirements of is extremely difficult, especially within a constrained surface area and bias voltage limitations. Several different actuation assemblies were fabricated in the PolyMUMPs fabrication process; however, they did not meet the out-of-plane upward deflections necessary to enable large angle tip, tilt, and piston motion. Thus, several postprocessing techniques were used to enhance the out-of-plane deflections of the actuation assemblies to enable large optical beam steering. 2. PolyMUMPs Foundry Fabrication Process The foundation of the design uses the PolyMUMPs fabrication process which is outlined in [3] with Figure 1a illustrating a cross sectional view of all deposition layers and Figure 1b outlining each layer thickness and layer functionality. The surface material layers are deposited by low pressure chemical vapor deposition (LPCVD). The sacrificial oxide layers, which consist of phosphosilicate glass (PSG) serve two purposes: (1) defines the gaps between structural layers, and (2) serves as the dopant source for the 1050 C high temperature phosphorus diffusions to reduce the resistivity in the polysilicon structural layers. All surface layers are patterned using standard photolithography techniques and etched using Reactive Ion Etching (RIE). The final surface layer, a 0.5 µm-thick gold metallization layer with a 100 nm chrome adhesion layer is deposited and patterned using a standard lift-off technique. Lastly, a release etch is performed to remove the sacrificial oxide layers freeing the structural polysilicon layers (Poly1 and Poly2). The typical release etch is performed by immersing Proceedings 2017, 1, 553; doi: /proceedings

2 Proceedings 2017, 1, of 5 the die in room temperature hydrofluoric (49%) acid for 2 3 min, methanol rinses to stop the HF etch, and then a supercritical carbon dioxide (CO2) rapid dry to minimize stiction of the actuation assemblies. Figure 1. PolyMUMPs foundry fabrication layers are shown in. The material layer descriptions and thicknesses are given in to illustrate the constraints of this foundry process [3]. 3. Design Methodology As shown in Figure 1 above, to maximize the out-of-plane deflections, we strictly used the Poly2 and gold layers to create the bimorph beam structures of the actuation assembly. The actuator design concept capitalizes on the residual stress and the coefficient of thermal expansion (CTE) differences between the two layers. The concept is shown in Figure 2 below where the left image in Figure 2a illustrates the as designed layers and the right image of Figure 2a shows the same design following the removal of the sacrificial layer. Figure 2b illustrates and scanning electron microscope (SEM) image of the design concept as fabricated in the PolyMUMPs foundry process. In addition, as shown in Figure 2a, the Poly0 layer is used to create the fixed, lower electrode for all electrostatic designs as well as to provide the necessary wiring of the electrodes to select bond pads for testing. Figure 2. Illustration of the overall design concept of the actuation assembly for large out-of-plane deflections. The left image shows the as deposited layers prior to release while the right image illustrates the post released structure showing the out-of-plane upward deflection. 4. Electrothermal Actuator Modeling Using Comsol FEM and Experimental Results Comsol finite element modeling (FEM) software was used to model the pre and post-processed foundry fabricated MEMS designs to determine the out-of-plane deflections. Based on the design constraints of the foundry process and our allotted design space criteria for a single element (1 mm 2 ), the PolyMUMPs foundry does not meet the required deflections as shown in the SEM image in Figure 3a. From this SEM image and the corresponding Comsol simulation shown in Figure 3b of the structure, both show an overall peak deflection of zero microns. This is due to the full bimorph beams lacking a bending moment component which can force the beam tips to deflect downward, creating

3 Proceedings 2017, 1, of 5 an elongated S shaped final profile. In the current PolyMUMPs foundry fabrication, there are no additional material layers available which can be used to create this bending moment. Figure 3. An SEM image of the electrothermal design as fabricated in PolyMUMPs is shown in which shows no physical upward deflection. shows the Comsol model of the identical structure also revealing no upward deflection. As illustrated in Figure 3 both images illustrate the bimorph beams upward bending which when coupled with a silicon nitride (SiN) deposition placed on top of the gold/polysilicon stacked beams, can indeed create the necessary bending moment to cause the actuation assembly to deflect upward as shown in Figure 4. Therefore, through the use of the PolyMUMPs structural layers as the foundation of the actuation assembly, post processing depositions of SiN (Figure 4a) and high temperature gold metal evaporation (up to 300 C) (Figure 4b) can be used to achieve the upward deflections needed for large angle beam steering. Figure 4a) illustrates the as fabricated PolyMUMPs electrothermal design with a SiN layer deposited by plasma enhanced chemical vapor deposition (PECVD) at a stress level of 200 MPa at 300 C shows a deflection of ~50 µm. In Figure 4b, the PolyMUMPs gold layer was removed and replaced with a gold layer deposited at 300 C. A 500 MPa PECVD SiN layer was then deposited at 300 C. As shown, over 250 µm can be achieved using these post-processing techniques. The electrothermal PolyMUMPs design provided an out-of-plane deflection of 162 ± 5 µm using a coupled SiN layer exhibiting a stress level of 930 MPa. All deflections are determined using white light interferometry (IFM). Figure 4. The image in illustrates the electrothermal design coupled with a post-processed SiN layer placed on top of the PolyMUMPS gold layer. As shown, the upward deflection is ~50 µm. shows the Comsol result for a 500 MPa silicon nitride layer with a 300 C gold metal evaporation layer which replaced the PolyMUMPs gold layer. As shown, the upward deflection is approximately 250 µm.

4 Proceedings 2017, 1, of 5 5. Electrostatic Actuator Modeling and Experimental Results The post-processing steps outlined above were repeated for an electrostatically actuated design utilizing a beam structure in the form of a folded cantilever beam or serpentine layout [4]. The baseline electrostatic design fabricated in the PolyMUMPs fabrication process resulted in an out-of-plane deflection of ~140 µm as shown in the Comsol image in Figure 5a,b illustrates a 5 4 array of these structures with a close up view shown on the right of a single actuation assembly. The out-of-plane deflection was measured to be ~148 µm using an IFM. This deflection does not meet the out-of-plane deflections required for large angle beam steering; thus, a PECVD SiN layer was deposited with the same compressive stress level of 930 MPa as previously stated. This resulted in an experimentally measured out-of-plane deflection of over 1mm. This is far too high so the PECVD deposition parameters for this design will need to be adjusted to reduce the stress level in the nitride layer. Figure 5. A Comsol image of the electrostatic serpentine design as fabricated in PolyMUMPs is shown in which reveals a deflection of ~140 µm. shows the resulting SEM images for a 5 4 array of the electrostatic design with a close up view shown on the right. The deflection was measured to be ~148 µm. 6. Conclusions From our Comsol modeling and experimental results, our actuation assembly designs can be tailored to meet the design requirements through the use of select material layer depositions during post processing. As stated, the initial upward deflection needed for large scanning angles is achieved through precise material selection, deposition control, and design control (i.e., structure length, material thickness, material CTE, deposition temperature, and the beam layer material composition) of various bimorph structures. We plan to continue to design, model, and post fabricate high, out-ofplane MEMS actuation assemblies which can be integrated with SOI micromirror arrays to enable broadband steering applications. The actuation assemblies are the primary baseline component to develop arrays of high-deflection micromirrors having a fill factor greater than 90%. Acknowledgments: The authors would like to thank AFRL/RYD for the funding to perform this research. Conflicts of Interest: The authors declare no conflict of interest References 1. Wu, L.; Dooley, S.; Watson, E.; McManamon, P. A Tip-Tilt-Piston micromirror Array for Optical Phased Array Applications. J. Microelectromech. Syst. 2011, 19, Samuelson, S.; Xie, H. A Large Piston Displacement MEMS Mirror with Electrothermal Ladder Actuator Arrays for Ultra-Low Tilt Applications. J. Microelectromech. Syst. 2014, 23,

5 Proceedings 2017, 1, of 5 3. Cowen, A.; Hardy, B.; Mahadevan, R.; Wilcenski, S. PolyMUMPs TM Design Handbook, Revision 13.0; MEMSCAP Inc.: Research Triangle Park, NC, USA, Walton, J.; Coutu R., Jr.; Starman, L. Modeling and simulations of new electrostatically drive bimorph actuator for high beam steering micromirror deflection angles. Proc. SPIE 2015, 9375, doi: / by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (

MEMS II: January 23. Lab 1: Pop-up mirror - PolyMUMPS - Thermal actuators - Mirror CoventorWare

MEMS II: January 23. Lab 1: Pop-up mirror - PolyMUMPS - Thermal actuators - Mirror CoventorWare MEMS II: January 23 Lab 1: Pop-up mirror - PolyMUMPS - Thermal actuators - Mirror CoventorWare Microelectromechanical Systems (MEMS) Multi-User MEMS Processes (MUMPS) Example Design Anchor hole 2.0 0.5

More information

Cambridge University Press A Guide to Hands-on MEMS Design and Prototyping Joel A. Kubby Excerpt More information.

Cambridge University Press A Guide to Hands-on MEMS Design and Prototyping Joel A. Kubby Excerpt More information. 1 Introduction 1.1 Overview of MEMS fabrication Microelectromechanical systems (MEMS) fabrication developed out of the thin-film processes first used for semiconductor fabrication. To understand the unique

More information

MICRO-ELECTRO-MECHANICAL VARIABLE BLAZE GRATINGS

MICRO-ELECTRO-MECHANICAL VARIABLE BLAZE GRATINGS MICRO-ELECTRO-MECHANICAL VARIABLE BLAZE GRATINGS D. M. Burns and V. M. Bright Air Force Institute of Technology Department of Electrical and Computer Engineering Wright-Patterson Air Force Base, OH 45433-7765

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

Surface Micromachining

Surface Micromachining Surface Micromachining Outline Introduction Material often used in surface micromachining Material selection criteria in surface micromachining Case study: Fabrication of electrostatic motor Major issues

More information

Lecture 10: MultiUser MEMS Process (MUMPS)

Lecture 10: MultiUser MEMS Process (MUMPS) MEMS: Fabrication Lecture 10: MultiUser MEMS Process (MUMPS) Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, 1 Recap Various VLSI based

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

Poly-SiGe MEMS actuators for adaptive optics

Poly-SiGe MEMS actuators for adaptive optics Poly-SiGe MEMS actuators for adaptive optics Blake C.-Y. Lin a,b, Tsu-Jae King a, and Richard S. Muller a,b a Department of Electrical Engineering and Computer Sciences, b Berkeley Sensor and Actuator

More information

4/10/2012. Introduction to Microfabrication. Fabrication

4/10/2012. Introduction to Microfabrication. Fabrication Introduction to Microfabrication Fabrication 1 MEMS Fabrication Flow Basic Process Flow in Micromachining Nadim Maluf, An introduction to Microelectromechanical Systems Engineering 2 Thin Film Deposition

More information

Silicon Nitride Biaxial Pointing Mirrors with Stiffening Ribs

Silicon Nitride Biaxial Pointing Mirrors with Stiffening Ribs Silicon Nitride Biaxial Pointing Mirrors with Stiffening Ribs Todd J. Kaiser, B. Jeffrey Lutzenberger, Robert A. Friholm, Phillip A. Himmer, David L. Dickensheets Department of Electrical and Computer

More information

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining Sādhanā Vol. 34, Part 4, August 2009, pp. 557 562. Printed in India Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining VIVEKANAND BHATT 1,, SUDHIR CHANDRA 1 and

More information

Invited Paper. Berkeley, CA, USA Davis, CA, USA ABSTRACT 1. INTRODUCTION

Invited Paper. Berkeley, CA, USA Davis, CA, USA ABSTRACT 1. INTRODUCTION Invited Paper Optical Phased Array Using Single Crystalline Silicon High-Contrast- Gratings for Beamsteering Byung-Wook Yoo* a, Trevor Chan b, Mischa Megens a, Tianbo Sun a, Weijian Yang a, Yi Rao a, David

More information

Welcome MNT Conference 1 Albuquerque, NM - May 2010

Welcome MNT Conference 1 Albuquerque, NM - May 2010 Welcome MNT Conference 1 Albuquerque, NM - May 2010 Introduction to Design Outline What is MEMs Design General Considerations Application Packaging Process Flow What s available Sandia SUMMiT Overview

More information

CHARACTERIZATION OF ELECTROTHERMAL ACTUATORS AND ARRAYS FABRICATED IN A FOUR-LEVEL, PLANARIZED SURFACE-MICROMACHINED POLYCRYSTALLINE SILICON PROCESS

CHARACTERIZATION OF ELECTROTHERMAL ACTUATORS AND ARRAYS FABRICATED IN A FOUR-LEVEL, PLANARIZED SURFACE-MICROMACHINED POLYCRYSTALLINE SILICON PROCESS CHARACTERIZATION OF ELECTROTHERMAL ACTUATORS AND ARRAYS FABRICATED IN A FOUR-LEVEL, PLANARIZED SURFACE-MICROMACHINED POLYCRYSTALLINE SILICON PROCESS John H. Comtois*, M. Adrian Michalicek*, and Carole

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

Sensors and Actuators Designed and Fabricated in a. Micro-Electro-Mechanical-Systems (MEMS) Course. Using Standard MEMS Processes

Sensors and Actuators Designed and Fabricated in a. Micro-Electro-Mechanical-Systems (MEMS) Course. Using Standard MEMS Processes Sensors and Actuators Designed and Fabricated in a Micro-Electro-Mechanical-Systems (MEMS) Course Using Standard MEMS Processes M.G. Guvench University of Southern Maine guvench@maine.edu Abstract Use

More information

Surface Micromachining

Surface Micromachining Surface Micromachining Micro Actuators, Sensors, Systems Group University of Illinois at Urbana-Champaign Outline Definition of surface micromachining Most common surface micromachining materials - polysilicon

More information

Surface Micromachining II

Surface Micromachining II Surface Micromachining II Dr. Thara Srinivasan Lecture 4 Picture credit: Sandia National Lab Lecture Outline Reading From reader: Bustillo, J. et al., Surface Micromachining of Microelectromechanical Systems,

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 10: Surface

More information

Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Y. C. Lee

Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Y. C. Lee Micro-Scale Engineering I Microelectromechanical Systems (MEMS) Y. C. Lee Department of Mechanical Engineering University of Colorado Boulder, CO 80309-0427 leeyc@colorado.edu September 2, 2008 1 Three

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 Lecture Outline EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY ELECTROSTATICALLY DRIVEN LARGE APERTURE MICRO-MIRROR ACTUATOR ASSEMBLIES FOR HIGH FILL-FACTOR, AGILE OPTICAL PHASE ARRAYS THESIS John P.K. Walton, Captain, USAF AFIT-ENG-MS-15-J-003 DEPARTMENT OF THE AIR

More information

FABRICATION PROCESSES FOR MAGNETIC MICROACTUATORS WITH POLYSILICON FLEXURES. Jack W. Judy and Richard S. Muller

FABRICATION PROCESSES FOR MAGNETIC MICROACTUATORS WITH POLYSILICON FLEXURES. Jack W. Judy and Richard S. Muller FABRICATION PROCESSES FOR MAGNETIC MICROACTUATORS WITH POLYSILICON FLEXURES Jack W. Judy and Richard S. Muller Berkeley Sensor & Actuator Center (BSAC) Department of EECS, University of California, Berkeley,

More information

Regents of the University of California 1

Regents of the University of California 1 Electroplating: Metal MEMS Nickel Surface-Micromachining Process Flow Photoresist Wafer Release Etchant Use electroplating to obtain metal μstructures When thick: call it LIGA Pros: fast low temp deposition,

More information

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh

Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Microfabrication of Heterogeneous, Optimized Compliant Mechanisms SUNFEST 2001 Luo Chen Advisor: Professor G.K. Ananthasuresh Fig. 1. Single-material Heatuator with selective doping on one arm (G.K. Ananthasuresh)

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

Dr. Lynn Fuller Webpage:

Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Microelectromechanical Systems (MEMs) Process Integration Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

Regents of the University of California

Regents of the University of California Surface-Micromachining Process Flow Photoresist Sacrificial Oxide Structural Polysilcon Deposit sacrificial PSG: Target = 2 m 1 hr. 40 min. LPCVD @450 o C Densify the PSG Anneal @950 o C for 30 min. Lithography

More information

SOIMUMPs Design Handbook

SOIMUMPs Design Handbook SOIMUMPs Design Handbook a MUMPs process C. J. Han, Allen Cowen, Greg Hames and Busbee Hardy MEMScAP Revision 3.0 Copyright 2002 by MEMScAP. All rights reserved. Permission to use and copy for internal,

More information

Probing Interfacial Contact via MEMS-based Microinstrumentation

Probing Interfacial Contact via MEMS-based Microinstrumentation Probing Interfacial Contact via MEMS-based Microinstrumentation Roya Maboudian Department of Chemical & Biomolecular Engineering Berkeley Sensor and Actuator Center (BSAC) Center of Integrated Nanomechanical

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

Tensile Testing of Polycrystalline Silicon Thin Films Using Electrostatic

Tensile Testing of Polycrystalline Silicon Thin Films Using Electrostatic Paper Tensile Testing of Polycrystalline Silicon Thin Films Using Electrostatic Force Grip Member Toshiyuki Tsuchiya (Toyota Central Labs., Inc.) Member Osamu Tabata (Ritsumeikan University) Jiro Sakata

More information

Optimization of Carbon Nanotube Field Emission Arrays

Optimization of Carbon Nanotube Field Emission Arrays Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Optimization of Carbon Nanotube Field Emission Arrays Benjamin L. Crossley *1, Mauricio Kossler 1, LaVern A. Starman 1, Ronald A. Coutu,

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

Regents of the University of California

Regents of the University of California Topography Issues Degradation of lithographic resolution PR step coverage, streaking Thickness differences pose problems for reduction steppers Direction of Spin PR PR PR Stringers Problematic when using

More information

6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term Solution to Problem Set 2 (16 pts)

6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term Solution to Problem Set 2 (16 pts) 6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term 2007 By Brian Taff (Adapted from work by Feras Eid) Solution to Problem Set 2 (16 pts) Issued: Lecture 4 Due: Lecture

More information

On-chip MEMS for automated chip-to-chip assembly

On-chip MEMS for automated chip-to-chip assembly On-chip MEMS for automated chip-to-chip assembly Dr. Ir. Marcel Tichem, Ir. Tjitte-Jelte Peters, Kai Wu MSc TU Delft, Precision and Microsystems Engineering Photonics Event, Koningshof, Veldhoven, 2 June

More information

NANOTUBE MICRO-OPTO-MECHANICAL SYSTEMS

NANOTUBE MICRO-OPTO-MECHANICAL SYSTEMS NANOTUBE MICRO-OPTO-MECHANICAL SYSTEMS B. Panchapakesan Delaware MEMS and Nanotech Laboratory, University of Delaware, Newark, DE 19716, USA (Tel: 001-302-831-4062; Email: baloo@ece.udel.edu) INTRODUCTION

More information

Chapter 2 OVERVIEW OF MEMS

Chapter 2 OVERVIEW OF MEMS 6 Chapter 2 OVERVIEW OF MEMS 2.1 MEMS and Microsystems The term MEMS is an abbreviation of microelectromechanical system. MEMS contains components ofsizes in 1 micrometer to 1 millimeter. The core element

More information

There are basically two approaches for bulk micromachining of. silicon, wet and dry. Wet bulk micromachining is usually carried out

There are basically two approaches for bulk micromachining of. silicon, wet and dry. Wet bulk micromachining is usually carried out 57 Chapter 3 Fabrication of Accelerometer 3.1 Introduction There are basically two approaches for bulk micromachining of silicon, wet and dry. Wet bulk micromachining is usually carried out using anisotropic

More information

Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes

Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes TB, KR, JMM/184987, 3/12/2004 INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF MICROMECHANICS AND MICROENGINEERING J. Micromech. Microeng. 15 (2005) 1 8 doi:10.1088/0960-1317/15/0/000 Design and fabrication

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

Smarter sensing solutions

Smarter sensing solutions Easy access to microsystems production through contract manufacturing services Espoo, Finland June 14th 2011 Smarter sensing solutions Colibrys Foundry presentation: Sean Neylon Business Model The Colibrys

More information

Preface Preface to First Edition

Preface Preface to First Edition Contents Foreword Preface Preface to First Edition xiii xv xix CHAPTER 1 MEMS: A Technology from Lilliput 1 The Promise of Technology 1 What Are MEMS or MST? 2 What Is Micromachining? 3 Applications and

More information

INF5490 RF MEMS. LN02: MEMS Fabrication. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN02: MEMS Fabrication. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN02: MEMS Fabrication Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Micromachining Today s lecture Important process steps General Summary: MEMS-specific steps Examples

More information

A 600 Degrees C Wireless Multimorph-Based Capacitive MEMS Temperature Sensor for Component Health Monitoring

A 600 Degrees C Wireless Multimorph-Based Capacitive MEMS Temperature Sensor for Component Health Monitoring Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 1-29-2012 A 600 Degrees C Wireless Multimorph-Based Capacitive MEMS Temperature Sensor for Component Health Monitoring

More information

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam PHYS 534 (Fall 2008) Process Integration Srikar Vengallatore, McGill University 1 OUTLINE Examples of PROCESS FLOW SEQUENCES >Semiconductor diode >Surface-Micromachined Beam Critical Issues in Process

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

Mostafa Soliman, Ph.D. May 5 th 2014

Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. 1 Basic MEMS Processes Front-End Processes Back-End Processes 2 Mostafa Soliman, Ph.D. Wafers Deposition Lithography Etch Chips 1- Si Substrate

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Fabrication Technology, Part II

Fabrication Technology, Part II EEL5225: Principles of MEMS Transducers (Fall 2003) Fabrication Technology, Part II Agenda: Process Examples TI Micromirror fabrication process SCREAM CMOS-MEMS processes Wafer Bonding LIGA Reading: Senturia,

More information

Procedia Chemistry 1 (2009) Proceedings of the Eurosensors XXIII conference

Procedia Chemistry 1 (2009) Proceedings of the Eurosensors XXIII conference Procedia Chemistry 1 (2009) 609 613 Procedia Chemistry www.elsevier.com/locate/procedia Proceedings of the Eurosensors XXIII conference Thermal Characterization of Polycrystalline CVD Diamond Thin Films

More information

MEMS Surface Fabrication

MEMS Surface Fabrication ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING MEMS Surface Fabrication Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Novel Applications of a Thermally Tunable Bistable Buckling Silicon-on-Insulator (SOI) Microfabricated Membrane

Novel Applications of a Thermally Tunable Bistable Buckling Silicon-on-Insulator (SOI) Microfabricated Membrane Air Force Institute of Technology AFIT Scholar Theses and Dissertations 9-17-2015 Novel Applications of a Thermally Tunable Bistable Buckling Silicon-on-Insulator (SOI) Microfabricated Membrane Robert

More information

zyvex TEM Sample Lift-out Using the Zyvex Nanoprober System By Kimberly Tuck, Zyvex Corporation

zyvex TEM Sample Lift-out Using the Zyvex Nanoprober System By Kimberly Tuck, Zyvex Corporation TEM Sample Lift-out Using the Zyvex Nanoprober System By Kimberly Tuck, Zyvex Corporation Introduction The Zyvex Nanoprober System, coupled with a focused ion beam (FIB) tool, is a complete solution for

More information

Note Application of Screen Printing in Flexible Miniature Thermocouple Process Development

Note Application of Screen Printing in Flexible Miniature Thermocouple Process Development Int. J. Electrochem. Sci., 10 (2015) 3082-3087 Note Application of Screen Printing in Flexible Miniature Thermocouple Process Development International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

9/4/2008 GMU, ECE 680 Physical VLSI Design

9/4/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter II CMOS Manufacturing Process 1 Dual-Well Trench-Isolated CMOS Process gate-oxide TiSi 2 AlCu Tungsten SiO 2 p-well poly n-well SiO 2 n+ p-epi p+ p+ 2 Schematic Layout

More information

ME 189 Microsystems Design and Manufacture. Chapter 9. Micromanufacturing

ME 189 Microsystems Design and Manufacture. Chapter 9. Micromanufacturing ME 189 Microsystems Design and Manufacture Chapter 9 Micromanufacturing This chapter will offer an overview of the application of the various fabrication techniques described in Chapter 8 in the manufacturing

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Thin. Smooth. Diamond.

Thin. Smooth. Diamond. UNCD Wafers Thin. Smooth. Diamond. UNCD Wafers - A Family of Diamond Material UNCD is Advanced Diamond Technologies (ADT) brand name for a family of thin fi lm diamond products. UNCD Aqua The Aqua series

More information

Thin. Smooth. Diamond.

Thin. Smooth. Diamond. UNCD Wafers Thin. Smooth. Diamond. UNCD Wafers - A Family of Diamond Material UNCD is Advanced Diamond Technologies (ADT) brand name for a family of thin fi lm diamond products. UNCD Aqua The Aqua series

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 10: Bulk

More information

ANTI-STICTION COATINGS FOR HIGH RELIABILITY MEMS

ANTI-STICTION COATINGS FOR HIGH RELIABILITY MEMS ANTI-STICTION COATINGS FOR HIGH RELIABILITY MEMS Introduction Nilesh Gunda, Santosh K. Jha and Suri A. Sastri Surmet Corporation, 33 B Street Burlington, MA 01803 (USA). Micro-electromechanical system

More information

PECVD SiO 2 SACRIFICIAL LAYERS FOR FABRICATION OF FREE - STANDING POLYSILICON FILAMENTS

PECVD SiO 2 SACRIFICIAL LAYERS FOR FABRICATION OF FREE - STANDING POLYSILICON FILAMENTS PECVD SiO 2 SACRIFICIAL LAYERS FOR FABRICATION OF FREE - STANDING POLYSILICON FILAMENTS Eliphas W. Simões 1, Rogério Furlan 2, Nilton I. Morimoto 3, Olivier Bonnaud 4*, Ana N. R. da Silva 5, Maria L. P.

More information

Shock Testing of MEMS Devices

Shock Testing of MEMS Devices Shock Testing of MEMS Devices Michelle A. Duesterhaus Vesta I. Bateman Darren A. Hoke Sandia National Laboratories, P.O. Box 5800 MS-1310, Albuquerque, NM 87185-1310 ABSTRACT Micro-Electro-Mechanical Systems

More information

Lecture 8-1 MCNC/MUMPS Process

Lecture 8-1 MCNC/MUMPS Process F. G. Tseng Fall/2016, 8-1, p1 Lecture 8-1 MCNC/MUMPS Process!! MCNC/MUMPS structure Layers provided: 7.0 µm Cr/Au=0.5 poly2=1.5 ox2=0.5 poly1=2.0 ox1=2.0 Poly0=0.5 Nitride=0.5 MUMPS Cross section with

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2007

EE C245 ME C218 Introduction to MEMS Design Fall 2007 EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 9: Surface

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Thin film shape memory alloys for optical sensing applications

Thin film shape memory alloys for optical sensing applications Thin film shape memory alloys for optical sensing applications Y. Q. Fu, 1 J. K. Luo, 1,2 W.M. Huang, 3 A.J. Flewitt 1 and W.I. Milne 1 1 Department of Engineering, Cambridge University, 9 JJ Thomson Ave,

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

Design, Simulation and Study of MEMS Based Micro-needles and Micro-pump for Biomedical Applications

Design, Simulation and Study of MEMS Based Micro-needles and Micro-pump for Biomedical Applications Design, Simulation and Study of MEMS Based Micro-needles and Micro-pump for Biomedical Applications Presented by Pranay Kanti Podder Dhiman Mallick Dip Prakash Samajdar Anirban Bhattacharyya Institute

More information

IC-Compatible Technologies for Optical MEMS

IC-Compatible Technologies for Optical MEMS < * IC-Compatible Technologies for Optical MEMS Thomas W. Krygowski, Jef& J. Sniegowsk~ Intelligent Mikromachine Department, Sandia National Laboratories, Albuquerque, New Mexico Optical MicroElectroMechanical

More information

Ultra High Barrier Coatings by PECVD

Ultra High Barrier Coatings by PECVD Society of Vacuum Coaters 2014 Technical Conference Presentation Ultra High Barrier Coatings by PECVD John Madocks & Phong Ngo, General Plasma Inc., 546 E. 25 th Street, Tucson, Arizona, USA Abstract Silicon

More information

Tackling the optical interconnection challenge for the Integrated Photonics Revolution

Tackling the optical interconnection challenge for the Integrated Photonics Revolution Tackling the optical interconnection challenge for the Integrated Photonics Revolution Dr. Ir. TU Delft, Precision and Microsystems Engineering m.tichem@tudelft.nl Microfabrication and MEMS Si microfabrication

More information

Chemical Vapor Deposition

Chemical Vapor Deposition Chemical Vapor Deposition ESS4810 Lecture Fall 2010 Introduction Chemical vapor deposition (CVD) forms thin films on the surface of a substrate by thermal decomposition and/or reaction of gas compounds

More information

Micromachining AMT 2505

Micromachining AMT 2505 Micromachining AMT 2505 Shanmuga Raja.B (BVB0912004) Module leader : Mr. Raja Hussain Introduction Micromachining are inherently connected to the evolution of Micro Electro Mechanical Systems (MEMS). Decades

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

PiezoMUMPs Design Handbook

PiezoMUMPs Design Handbook PiezoMUMPs Design Handbook a MUMPs process Allen Cowen, Greg Hames, Konstantin Glukh, and Busbee Hardy MEMSCAP Inc. Revision 1.3 Copyright 2014 by MEMSCAP Inc.,. All rights reserved. Permission to use

More information

Lithography Independent Fabrication of Nano-MOS-Transistors with W = 25 nm and L = 25 nm

Lithography Independent Fabrication of Nano-MOS-Transistors with W = 25 nm and L = 25 nm Lithography Independent Fabrication of Nano-MOS-Transistors with W = 25 nm and L = 25 nm J. T. Horstmann John_Horstmann@ieee.org C. Horst Christian.Horst@udo.edu K. F. Goser goser@ieee.org Abstract The

More information

Single crystal silicon supported thin film micromirrors for optical applications

Single crystal silicon supported thin film micromirrors for optical applications Single crystal silicon supported thin film micromirrors for optical applications Zhimin J. Yao* Noel C. MacDonald Cornell University School of Electrical Engineering and Cornell Nanofabrication Facility

More information

CMOS Manufacturing process. Design rule set

CMOS Manufacturing process. Design rule set CMOS Manufacturing process Circuit design Set of optical masks Fabrication process Circuit designer Design rule set Process engineer All material: Chap. 2 of J. Rabaey, A. Chandrakasan, B. Nikolic, Digital

More information

Low Temperature Dielectric Deposition for Via-Reveal Passivation.

Low Temperature Dielectric Deposition for Via-Reveal Passivation. EMPC 2013, September 9-12, Grenoble; France Low Temperature Dielectric Deposition for Via-Reveal Passivation. Kath Crook, Mark Carruthers, Daniel Archard, Steve Burgess, Keith Buchanan SPTS Technologies,

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Optimization of Carbon Nanotube Field Emission Arrays

Optimization of Carbon Nanotube Field Emission Arrays Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Optimization of Carbon Nanotube Field Emission Arrays Benjamin L. Crossley *1, Mauricio Kossler 1, LaVern A. Starman 1, Ronald A. Coutu,

More information

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 SUPPLEMENTARY INFORMATION A Functional Micro-Solid Oxide Fuel Cell with

More information

Structural changes of polycrystalline silicon layers during high temperature annealing

Structural changes of polycrystalline silicon layers during high temperature annealing Structural changes of polycrystalline silicon layers during high temperature annealing D. Lysáček, L. Válek ON SEMICONDUCTOR CZECH REPUBLIC, Rožnov p. R., david.lysacek@onsemi.com Abstract The structure

More information

Lecture 3: Integrated Processes

Lecture 3: Integrated Processes Lecture 3: Integrated Processes Single-Crystal Silicon Process Integration Polysilicon Micromachining Process Integrated CMOS Micromachining Process ENE 5400, Spring 2004 1 Single Crystal Silicon ENE 5400,

More information

Solid State Sensors. Microfabrication 8/22/08 and 8/25/08

Solid State Sensors. Microfabrication 8/22/08 and 8/25/08 Solid State Sensors Microfabrication 8/22/08 and 8/25/08 Purpose of This Material To introduce the student to microfabrication techniques as used to fabricate MEMS Sensors Understand concepts not specifics

More information

Research of Structure and Technology for the Micro- Machined Airflow Inclinometer

Research of Structure and Technology for the Micro- Machined Airflow Inclinometer Available online at www.sciencedirect.com Physics Procedia 22 (2011) 397 402 2011 International Conference on Physics Science and Technology (ICPST 2011) Research of Structure and Technology for the Micro-

More information

Tutorial on Micro Electro Mechanical Systems (MEMS)

Tutorial on Micro Electro Mechanical Systems (MEMS) Tutorial on Micro Electro Mechanical Systems (MEMS) Bruce Kim Department of Electrical, 1 ! What is MEMS! Why MEMS! Applications! MEMS Fabrication! MEMS Packaging! Conclusion MEMS 2 WHAT IS MEMS! MEMS

More information

UV15: For Fabrication of Polymer Optical Waveguides

UV15: For Fabrication of Polymer Optical Waveguides CASE STUDY UV15: For Fabrication of Polymer Optical Waveguides Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 main@masterbond.com CASE STUDY UV15:

More information

MANUFACTURING OF AN OPTICAL QUALITY MIRROR SYSTEM FOR ADAPTIVE OPTICS

MANUFACTURING OF AN OPTICAL QUALITY MIRROR SYSTEM FOR ADAPTIVE OPTICS Invited Paper MNUFCTURING OF N OPTICL QULITY MIRROR SYSTEM FOR DPTIVE OPTICS Julie. Perreaulta, Paul. Bierden', Mark N. Horensteina, and Thomas G. Bifanoc aelectrical and Computer Engineering, Boston University,

More information

MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT. Pingtung, Taiwan.

MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT. Pingtung, Taiwan. Stresa, Italy, 5-7 April 007 MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT Chia-Yen Lee 1, Rong-Hua Ma, Yu-Hsiang Wang 1, Po-Cheng Chou 3, Lung-Ming Fu 4

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

In situ TEM Characterization of Shear Stress-Induced Interlayer. Sliding in the Cross Section View of Molybdenum Disulfide

In situ TEM Characterization of Shear Stress-Induced Interlayer. Sliding in the Cross Section View of Molybdenum Disulfide In situ TEM Characterization of Shear Stress-Induced Interlayer Sliding in the Cross Section View of Molybdenum Disulfide Juan Pablo Oviedo, Santosh KC, Ning Lu, Jinguo Wang, Kyeongjae Cho, Robert M. Wallace,

More information

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis

Supporting Information: Model Based Design of a Microfluidic. Mixer Driven by Induced Charge Electroosmosis Supporting Information: Model Based Design of a Microfluidic Mixer Driven by Induced Charge Electroosmosis Cindy K. Harnett, Yehya M. Senousy, Katherine A. Dunphy-Guzman #, Jeremy Templeton * and Michael

More information

Planarization of a CMOS die for an integrated metal MEMS

Planarization of a CMOS die for an integrated metal MEMS Planarization of a CMOS die for an integrated metal MEMS Hocheol Lee*, Michele H. Miller +, Thomas G. Bifano Boston University ABSTRACT This paper describes a planarization procedure to achieve a flat

More information