IN-SITU-PULTRUSION STRUCTURAL THERMOPLASTIC FRP-PARTS

Size: px
Start display at page:

Download "IN-SITU-PULTRUSION STRUCTURAL THERMOPLASTIC FRP-PARTS"

Transcription

1 IN-SITU-PULTRUSION STRUCTURAL THERMOPLASTIC FRP-PARTS Stefan Epple, Institut für Kunststofftechnik, University of Stuttgart, Germany Christian Bonten, Institut für Kunststofftechnik, University of Stuttgart, Germany Abstract Fiber reinforced plastics, produced by In-Situ- Pultrusion are supposed to be used as local reinforcement of injection molded plastic parts. For this purpose, the pultruded parts are overmolded after being inserted into the injection mold. From process technologies reasons, the parts made by In-Situ-Pultrusion consist of cast Polyamide 6 (PA6). This cast PA6 differs from standard injection molding PA6. In previous studies, it was shown that a good bonding between the partners can be reached. In this work, a new bending girder made of PA6GF30 and In-Situ-pultruded PA6 is presented. Some mechanical properties were tested and compared with an equal bending girder, made of pure PA6GF30. Introduction In traditional fiber reinforced plastics, a thermosetting resin is used as matrix. These fiber reinforced thermosets have disadvantages, especially in batch production because e. g. the cycle times are too long, they are not weldable and poorly recyclable. In batch productions it is common to use fiber reinforced thermoplastics. Often, short fibers are used as reinforcement. By using glass fibers, mechanical properties increase, however, highly-stressed components needs continuous fiber reinforced plastics. The two major advantages of thermoplastic composites are that they have a higher impact resistance to comparable thermoset composites and can be welded and recycled. One objective of the current research is to produce a pultruded thermoplastic composite that could be heated and remolded to have complex shapes. This is not possible with thermosetting resins. It will also be possible to recycle the thermoplastic composites in contrast to thermoset composites. Thermosetting resins are of low viscosity and thereby can easily impregnate the reinforcing fibers before they react. In contrast, thermoplastics are usually of high viscosity, even in the molten state. It is not easy to impregnate reinforcing fibers. To impregnate reinforcing fibers with a thermoplastic matrix, plastic films and woven fabrics must be laminated. High pressure and high temperature are required. These fiber-reinforced thermoplastic laminates are called organo-sheets. Fiber mat or long glass fiber reinforced thermoplastics are also used to produce rugged parts. The problem of these parts is their limited shape variety. In-Situ-pultrusion is one way to produce thermoplastic FRP. Like in conventional pultrusion with a thermoset matrix, continuous fibers are impregnated with the monomeric precursor of the matrix material, which then reacts and forms the polymer. When using ε-caprolactam as a monomer, cast PA6 will be formed and act as the matrix [1]. Different to conventional pultrusion, the fibers cannot get impregnated by pulling them through a resin bath, as the surrounding humidity would disturb the chemical reaction. Thus, the reaction has to take place in an inert gas atmosphere inside the pultrusion die. The products from in-situ-pultrusion can e. g. be used as reinforcements for injection molded parts. One example is the addition of rip structures to bending beams composed of two FRP profiles via back injection molding. For this purpose, the profiles are inserted into an injection mold and overmolded with a thermoplastic. Thus, cycle times like in conventional injection molding processes are possible, combined with excellent mechanical properties and high component complexity. [2] State of the Art To bring the advantages of continuous fiber reinforced plastics also into parts with complex geometries, the Institut für Kunststofftechnik (IKT) put into effect a process based on the pultrusion process combined with reaction injection molding (RIM). In reaction injection molding, two components are mixed together. The mixture is then injected into the mold, where it reacts to the plastic. The RIM process offers the advantage of a very low viscosity of the mixture before the reaction starts. In this state, the two component mixture can impregnate the fibers very well. It was the objective of the development to produce thermoplastic parts with a high amount of continuous glass fibers in various shapes and thicknesses. Adhesion between fibers and matrix and fiber coating were optimized [3]. Basic principles of the In-situ pultrusion process Two principles are coupled in the In-Sizu-pultrusion process. First, the two reactive components are mixed together. Then the mixture is injected into a mold. This process is often used to produce parts made of polyurethane. In pultrusion processes, fibers are pulled through a bath of thermosetting resin. Afterwards, the impregnated fibers are pulled through a heated die, where the resin reacts to the formed composite. SPE ANTEC Indianapolis 2016 / 433

2 A puller behind the die is pulling the material through the process at a consistent rate. Behind the puller, the parts are sawn off to the desired length. In current researches, the matrix of the composite was polyamide 6 (PA 6). That is why ε-caprolactam was used in the activated anionic polymerization process from monomer to polymer. The resulting PA 6, also known as cast PA 6, has good properties like dimensional accuracy, low moisture adsorption and a good creep resistance. The RIM pultrusion process used for the production of continuous glass fiber reinforced thermoplastics is schematically shown in. Figure 1. resin tanks mixer die puller saw While it is easier to handle glass fibers with higher tex numbers, the possibility to impregnate the fibers decreases. A roving with the tex number of 2400 was selected for the tests. In Figure 2, the rovings are shown. Fiber diameters can be adjusted to the production process. Typical fiber diameters are 16 respective 20 µm. The mechanical properties of the fiber reinforced products depend largely on the ratio of fiber diameter to fiber length. If profiles are produced continuously, the fiber length in the product is virtually endless. Therefore, the fiber diameter plays a subordinate role in the mechanical properties of the final product. The finer fiber diameter of 16 µm was chosen. fiber rovings Figure 1: Scheme of the new RIM pultrusion process The glass fibers are pulled through a pre-warming and sorting tool before they are entering the die. In the die, the fibers are impregnated with the monomer. In the following zones of the die, the monomer ε-caprolactam reacts to PA 6. The first part of the die is only heated while in the second part of the die, cooled or heated, depending on the process behaviour. This is important because in the process heat can be generated by the reaction which has to be removed from the die. The puller and the saw are also shown in the scheme. Providing the mixtures of ε-caprolactam and catalyst as well as ε-caprolactam and activator in the correct way is very important for the process. Protective gas has to be used to reduce the influence of moisture on the reaction. Basic principles of the activated anionic polymerization of PA 6 The activated anionic polymerization of PA 6 can occur within minutes. In this polymerization, the monomer respectively the growing macromolecule is an anion. An activator to accelerate the catalytic reaction is also used in this system. Especially the low temperatures below the melting temperature of PA 6 which are needed for this reaction (130 to 170 C) allow its use in the present process. Basic principles of glass fibers Usually glass fibers are delivered in wound bundles called rovings. These rovings usually have tex numbers of 300, 600, 1200, 2400, 4800 or A small beam diameter is characterized by a low tex number. Figure 2: Glass fibers in the sorting tool To ensure the fiber-matrix adhesion, as well as the handling of the fibers, a sizing is applied to the glass fibers during the process. A number of chemical compounds are known for preventing or at least affecting the anionic polymerization. For the first experiments an already available sized fiber was selected. Test facility at IKT At IKT, an In-Situ-pultrusion facility with two component units, puller, saw, die and mixer was installed. In-Situ-pultrusion die To design the In-Situ-pultrusion die (Figure 3), preliminary examinations were done and the reaction behavior of ε-caprolactam was described. It is important for the process that the material does not polymerize in the nozzle. The nozzle opening was therefore separated from the rest of the die and can be cooled. The die length was chosen in a way that in the times known from the preliminary studies, polymerization can take place in the die. It should be noted that the die should not be unnecessarily long. Otherwise the puller reaches its performance limits. On the other hand the die must not be too short because then the material would have too few time to polymerize. SPE ANTEC Indianapolis 2016 / 434

3 macroscopic scale, first statements about the distribution of fibers in the component can be made. Figure 5 shows the straight areas of the specimen. The fibers which can be identified as black spots are well distributed and surrounded by the PA 6 matrix. Figure 3: RIM pultrusion facility Mixer To mix the two components (ε-caprolactam with activator and ε-caprolactam with catalyst), a mixing head was developed, which has been especially adapted to the requirements of the process. Below about 80 C, the mixture is in a solid state. Above about 120 C it begins to polymerize. This means that the part of the mixer outside the die, in which a static mixer is located, has to be heated, whereas the nozzle through which the monomer is passed into the die must be cooled so that the material does not polymerize prematurely [2]. Experimental For the RIM pultrusion experiments activator concentration of 2.5 % and catalyst concentration of 3.75 % were chosen. The temperature in the tanks and the mixer was set to 100 C. The temperature in the first part of the die was adjusted to 160 C. In the second half of the die, the temperature was regulated to 140 C by a temperature control unit. To achieve a high amount of glass fibers, 114 glass fiber rovings were used. The glass fibers were sorted in a box before entering the die. In this box, the fibers also get dried by dry and hot air, to prevent the influences of moisture to the activated anionic polymerization. It was possible to produce a continuous glass-fiberreinforced PA 6 part with a sufficiently good surface in case of specimens (Figure 4). Figure 4: Pultruded parts To evaluate the quality of the specimens, microsections of the samples were made. Using these images, on Figure 5: Straight area of the specimen To study the adhesion between FRP profiles with a cast PA6 matrix and regular PA6, a specimen shape was used, which allowed to vary the effective adhesion surface without applying a bending moment (as it would occur in a conventional three-point flexural test). Therefore a PA6 overlap on two sides of the profile was realized (Figure 6), which allowed for pull-out tests on a tensile-testing machine. Figure 6: Side view of the test specimen The overlap length can be varied by choosing different lengths of the pultruded parts. The test specimen were produced on an injection molding machine of the type Arburg Allrounder 520S The PA6 used in the tests was a Lanxess Durethan B 30 S. Before injecting the PA6 into the mold, the pultruded profile was heated under defined conditions. For this purpose, the ceramic heater was placed 17 mm in front of the profile. Then the profile surface temperature was measured with the pyrometer to ensure that the profile temperature had reached 230 C. The heating and measuring equipment was then pulled out of the mold and SPE ANTEC Indianapolis 2016 / 435

4 the injection molding cycle was started. The injection pressure was 900 bar, the dwell pressure was 525 bar and the cooling time was 30 seconds at a mold temperature of 80 C. The test specimen (Figure 7) were sealed within airproof bags to later be tested as-molded [3]. Figure 10: bending girder (PA6GF30/pultruded parts) Figure 7: Test specimen as-molded After the results of these tests have shown, that the bonding strength between the pultruded profile and the PA6 was sufficient, a bending girder has been designed (Figure 8). This bending girder has the pultruded parts in the highest stressed surface areas and is overmolded with short glass fiber reinforced PA6 (PA6GF30). The Tests have shown, that while the Youngs- Modulus and the maximum load are equal between the specimens, the maximal displacement is more than three two times higher with the In-Situ-pultruded reinforcement parts (Figure 11). This is probably caused by the fact that the structure between the reinforcement parts was the same in both specimens. Figure 8: bending girder Results and Discussion The bending girders with pultruded parts (Figure 10) were tested versus PA6GF30 bending girders (Figure 9). Figure 9: bending girder (PA6GF30) Figure 11: mechanical properties Through testing, there was no delamination between the PA6GF30 and the PA6GF30 with pultruded parts. In- Situ-pultruded parts therefore can be used as local reinforcement for injection molded complex parts. Conclusion and Outlook It was shown and already publicized, that continuous glass-fiber-reinforced PA 6 parts can be produced by In- Situ-pultrusion at the Institut für Kunststofftechnik / University of Stuttgart. The method provides new horizons to produce continuous fiber reinforced parts with various geometries and larger thicknesses. It was now shown that it is possible to get a good adhesion between in-situ-pultruded parts with a cast PA6 matrix and regular PA6. It was also shown that structural parts can be made of In-Situ-pultruded parts and SPE ANTEC Indianapolis 2016 / 436

5 PA6GF30. In further studies, injection molding parameters have to be varied systematically, to get information about their influence, concerning the mechanichal properties of the finished parts. Acknowledgements The authors thank the companies Lanxess Germany, Brüggemann Chemical and Johns Manville for the provided material. References 1. NING, X.; ISHIDA, H.: RIM-Pultrusion of Nylon-6 and Rubber-Toughened Nylon-6 Composites. In: Polymer Engineering and Science, Vol. 31, No. 9 (1991) 2. EPPLE, S.; BONTEN, C.: Production of Continuous Fiber Thermoplastic Composites by In-Situ Pultrusion. In AIP Conference Proceedings (2014) 3. EPPLE, S.; BONTEN, C.: In-Situ-Pultrusion Bonding of FRP-Parts to PA6 (PPS Europe/Africa Regional Conference 2015, Graz, Austria, September 2015). Graz, 2015 SPE ANTEC Indianapolis 2016 / 437

IN-SITU POLYMERIZED CONTINUOUS FIBER THERMOPLASTIC COMPOSITE MANUFACTURED THROUGH LIQUID MOLDING PROCESSES

IN-SITU POLYMERIZED CONTINUOUS FIBER THERMOPLASTIC COMPOSITE MANUFACTURED THROUGH LIQUID MOLDING PROCESSES IN-SITU POLYMERIZED CONTINUOUS FIBER THERMOPLASTIC COMPOSITE MANUFACTURED THROUGH LIQUID MOLDING PROCESSES A. de la Calle a*, S. García-Arrieta a, C. Elizetxea a a Aerospace, Industry and Transport Division,

More information

CHAPTER - 1 INTRODUCTION

CHAPTER - 1 INTRODUCTION CHAPTER - 1 INTRODUCTION 1. 1.1 Polymer Matrix Composites Composite materials are formed by combining two or more materials that have different properties. The constituent materials work together to give

More information

Vacuum infused thermoplastic composites for wind turbine blades

Vacuum infused thermoplastic composites for wind turbine blades Vacuum infused thermoplastic composites for wind turbine blades 28-10-2009 Julie Teuwen, Design and Production of Composites Structures Delft University of Technology Challenge the future Introduction

More information

Continuous Fiber Reinforced Thermoplastic (CFRT ) Inserts for Injection Over-Molding in Structural Applications

Continuous Fiber Reinforced Thermoplastic (CFRT ) Inserts for Injection Over-Molding in Structural Applications Continuous Fiber Reinforced Thermoplastic (CFRT ) Inserts for Injection Over-Molding in Structural Applications Thomas Smith, President TenCate Performance Composites Kipp Grumm, PE Advanced Development

More information

NEW GMT MATERIAL SUITABLE FOR VARIOUS POLYMERS AND HIGH GLASS FIBER CONTENT

NEW GMT MATERIAL SUITABLE FOR VARIOUS POLYMERS AND HIGH GLASS FIBER CONTENT NEW GMT MATERIAL SUITABLE FOR VARIOUS POLYMERS AND HIGH GLASS FIBER CONTENT G. Jung a*, P. Mitschang a, C. Park b a Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Str. 58, 67663 Kaiserslautern,

More information

LOCAL CONTINUOUS FIBER-REINFORCEMENT TAILORED INJECTION MOULDING >>LIGHTWEIGHT POTENTIAL FOR INJECTION MOULDED PARTS<<

LOCAL CONTINUOUS FIBER-REINFORCEMENT TAILORED INJECTION MOULDING >>LIGHTWEIGHT POTENTIAL FOR INJECTION MOULDED PARTS<< LOCAL CONTINUOUS FIBER-REINFORCEMENT TAILORED INJECTION MOULDING >>LIGHTWEIGHT POTENTIAL FOR INJECTION MOULDED PARTS

More information

NUTC R211 A National University Transportation Center at Missouri University of Science & Technology

NUTC R211 A National University Transportation Center at Missouri University of Science & Technology Pultruded Composites Using Soy-based Polyurethane Resine by K. Chandrashekhara NUTC R211 A National University Transportation Center at Missouri University of Science & Technology Disclaimer The contents

More information

Composites Processing ver. 1 ME 4210: Manufacturing Processes and 1 Engineering Prof. J.S. Colton GIT 2009

Composites Processing ver. 1 ME 4210: Manufacturing Processes and 1 Engineering Prof. J.S. Colton GIT 2009 Composites Processing ver. 1 1 Definition A microscopic mixture of two or more different materials. One typically being the continuous phase (matrix), and the other being the discontinuous phase (reinforcement).

More information

Methods of Making 3-Dimensional Shaped Composite Structures

Methods of Making 3-Dimensional Shaped Composite Structures Methods of Making 3-Dimensional Shaped Composite Structures Parvinder Walia, George Klumb, Jason Reese, Jack Hetzner, Dave Bank, and Keith Kauffmann The Dow Chemical Company, Midland, MI 48667 Abstract

More information

MANUFACTURING WITH COMPOSITES 2

MANUFACTURING WITH COMPOSITES 2 MANUFACTURING WITH COMPOSITES 2 WCC WEBINAR 10 th June 2011 1 AIMS OF WEBINAR To give an overview of the most important manufacturing methods for composite materials Covering suitable materials, typical

More information

PROCESSING OF CONTINUOUS FIBRE REINFORCED THERMOPLASTICS

PROCESSING OF CONTINUOUS FIBRE REINFORCED THERMOPLASTICS PROCESSING OF CONTINUOUS FIBRE REINFORCED THERMOPLASTICS J. P. Nunes 1*, J. F. Silva 1,2, A. T. Marques 3 1 Institute for Polymers and Composites/I3N, Minho University, Campus de Azurem, 4800-058 Guimaraes,

More information

Individualized mass production of tailored thermoplastic composite blanks

Individualized mass production of tailored thermoplastic composite blanks Individualized mass production of tailored thermoplastic composite blanks Fraunhofer Institute for Production Technology IPT Department for Fiber-Reinforced Plastics and Laser System Technology Prof. Dr.-Ing.

More information

T-RTM TECHNOLOGY AND PROCESSING OF THERMOPLASTIC TAPES TWO TECHNOLOGIES MANAGING A COMMON CHALLENGE

T-RTM TECHNOLOGY AND PROCESSING OF THERMOPLASTIC TAPES TWO TECHNOLOGIES MANAGING A COMMON CHALLENGE T-RTM TECHNOLOGY AND PROCESSING OF THERMOPLASTIC TAPES TWO TECHNOLOGIES MANAGING A COMMON CHALLENGE Norbert Müller ENGEL Austria GmbH, Center for Lightweight Composite Technologies Steyrer Straße 20, A-4300

More information

EXPERT IN REACTIVE THERMOPLASTIC PULTRUSION

EXPERT IN REACTIVE THERMOPLASTIC PULTRUSION EXPERT IN REACTIVE THERMOPLASTIC PULTRUSION 24/02/2015 1 Company Core Business and competences Reactive Thermoplastic Pultrusion Technologies Advantages of Thermoplastic Composites Applications 24/02/2015

More information

SPECIAL: PU Elastomers (cast, spray, TPUs)

SPECIAL: PU Elastomers (cast, spray, TPUs) September 2017 English EUROPEAN POLYURETHANE JOURNAL SPECIAL: PU Elastomers (cast, spray, TPUs) in German in Russian KP VERLAG ISSN 1867-3503 FACHMAGAZIN FÜR DIE POLYURETHANINDUSTRIE Technical Articles

More information

CHARACTERIZATION OF DEVELOPED HYBRID MOLDINGS BY TEXTILE AND SHORT FIBER REINFORCED COMPOSITES

CHARACTERIZATION OF DEVELOPED HYBRID MOLDINGS BY TEXTILE AND SHORT FIBER REINFORCED COMPOSITES CHARACTERIZATION OF DEVELOPED HYBRID MOLDINGS BY TEXTILE AND SHORT FIBER REINFORCED COMPOSITES Taiga Saito, Kazuharu Yasuda, Asahi Kasei Corporation Asami Nakai, GIFU University, Akio Ohtani, Kyoto Institute

More information

Influence of Fiber Length on Mechanical Properties of Fabric Reinforced C/C-SiC

Influence of Fiber Length on Mechanical Properties of Fabric Reinforced C/C-SiC Influence of Fiber Length on Mechanical Properties of Fabric Reinforced C/C-SiC Christian Zuber, Thomas Reimer DLR German Aerospace Center Institute of Structures and Design D-7569 Stuttgart Introduction

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Manufacturing aspects Metals & Composites Faculty of Aerospace Engineering 6-12-2011 Delft University of Technology Challenge

More information

StyLight. New material solution for lightweight design. ACCE September 6-8, 2017 John Fialka, Business Development Manager

StyLight. New material solution for lightweight design. ACCE September 6-8, 2017 John Fialka, Business Development Manager StyLight New material solution for lightweight design ACCE September 6-8, 2017 John Fialka, Business Development Manager Contents AUTOMOTIVE FOCUS ON LIGHTWEIGHTING PROCESSING OF STYLIGHT CHARACTERISTIC

More information

THE DEVELOPMENT OF NOVEL CARBON-FIBER-REINFORCED STAMPABLE THERMOPLASTIC SHEETS

THE DEVELOPMENT OF NOVEL CARBON-FIBER-REINFORCED STAMPABLE THERMOPLASTIC SHEETS ECCM15-15 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 212 THE DEVELOPMENT OF NOVEL CARBON-FIBER-REINFORCED STAMPABLE THERMOPLASTIC SHEETS N. Hirano 1, A. Tsuchiya 1, M. Honma

More information

Composite Materials. Manufacturing processes for Polymer Matrix Composites

Composite Materials. Manufacturing processes for Polymer Matrix Composites Composite Materials Manufacturing processes for Polymer Matrix Composites Polymer Matrix Composites The method of manufacturing composites is very important to the design and outcome of the product With

More information

THERMOPLASTIC COMPOSITE PARTS BASED ON ONLINE SPUN COMMINGLED HYBRID YARNS WITH CONTINUOUS CURVILINEAR FIBRE PATTERNS

THERMOPLASTIC COMPOSITE PARTS BASED ON ONLINE SPUN COMMINGLED HYBRID YARNS WITH CONTINUOUS CURVILINEAR FIBRE PATTERNS THERMOPLASTIC COMPOSITE PARTS BASED ON ONLINE SPUN COMMINGLED HYBRID YARNS WITH CONTINUOUS CURVILINEAR FIBRE PATTERNS E. Richter a*, K. Uhlig a, A. Spickenheuer a, L. Bittrich a, E. Mäder a,b, G. Heinrich

More information

SME 2713 Processing of Polymers - 2

SME 2713 Processing of Polymers - 2 SME 2713 Processing of Polymers - 2 Outline 1. Introduction 2. Extrusion process 3. Injection molding process 4. Blow molding process 5. Rotational molding 6. Thermoforming 7. Compression molding 8. Transfer

More information

Basic types of bridge decks

Basic types of bridge decks Bridge Deck Slab 1 Introduction 2 Bridge deck provide the riding surface for traffic, support & transfer live loads to the main load carrying member such as girder on a bridge superstructure. Selection

More information

In Situ Polymerization and Characterization of PA6/CFRTP Composites

In Situ Polymerization and Characterization of PA6/CFRTP Composites 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 In Situ Polymerization and Characterization of PA6/CFRTP Composites Mei Xian Li 1, Gyu Hee Lee 1, Dasom Lee 1, Jaemin Jung

More information

VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES

VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES Amando Padilla R., Antonio Flores B., Guillermo Landa A. and Iván Panamá UAM Azcapotzalco ABSTRACT This research is focused to study the effectiveness

More information

Composite Sheets make Ultra-lite airbag housings possible

Composite Sheets make Ultra-lite airbag housings possible Vasant Pednekar Application Development LANXESS Corp. 1 Sales in the year 2013 Sales in the year 2012 Employees worldwide EUR 8.300 bn EUR 9.094 bn approx. 17,300 Portfolio Performance Polymers Advanced

More information

PLASTIC PIPE TERMS & DEFINITIONS

PLASTIC PIPE TERMS & DEFINITIONS PLASTIC PIPE TERMS & DEFINITIONS Every product has certain terms and definitions that are unique to that particular product. Listed below are some of the more common terms and definitions that relate to

More information

Processing of Non-Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Processing of Non-Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Processing of Non-Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 5 Polymer Matrix Composites: Processing Lecture -

More information

DESIGN AND MANUFACTURE OF ANISOTROPIC HOLLOW BEAM USING THERMOPLASTIC COMPOSITES

DESIGN AND MANUFACTURE OF ANISOTROPIC HOLLOW BEAM USING THERMOPLASTIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DESIGN AND MANUFACTURE OF ANISOTROPIC HOLLOW BEAM USING THERMOPLASTIC COMPOSITES T. Matsuo 1 *, K. Takayama 1, J. Takahashi 1, S. Nagoh 2, K. Kiriyama

More information

DEVELOPMENT OF POLYURETHANE SHEET MOLDING COMPOUND

DEVELOPMENT OF POLYURETHANE SHEET MOLDING COMPOUND DEVELOPMENT OF POLYURETHANE SHEET MOLDING COMPOUND D. Park 1, R. Maertens 2, M. Connolly 3, K. Gleich 4, V. Ugresic 1, F. Henning 2 1 Fraunhofer Project Centre for Composites Research 2 Department of Polymer

More information

INTRODUCTION TO COMPOSITE MATERIALS

INTRODUCTION TO COMPOSITE MATERIALS INTRODUCTION TO COMPOSITE MATERIALS PRESENTED BY: LARRY CERCONE, Ph.D. Director of Material Engineering PIPEWRAP, LLC PRESENTATION CONTENT DEFINITION TERMS HISTORY OF COMPOSITES CONSTITUENT MATERIALS REINFORCEMENT

More information

n g n d i B e h e Impossible, They Said. We Bent the Rules. 1 *Trademark of FULCRUM Composites Inc.

n g n d i B e h e Impossible, They Said. We Bent the Rules. 1 *Trademark of FULCRUM Composites Inc. B e n d i n g t h e Impossible, They Said. It s the combination of materials, properties, and performance that plastics manufacturers and suppliers have been trying to perfect for years: the high strength

More information

Thermosets and Structural Adhesives. revised by A. Franck, TA Instruments Germany

Thermosets and Structural Adhesives. revised by A. Franck, TA Instruments Germany AN3 Thermosets and Structural Adhesives revised by A. Franck, TA Instruments Germany Keywords: hot melts structurak adhesives, thermosets, cure, Tg., cure cycle, gel point INTRODUCTION Structural adhesives

More information

SikaWrap. Composite Fabrics for Structural and Seismic Strengthening. Solutions with Sika Systems. Hybrid fiber fabrics. Glass fiber fabrics

SikaWrap. Composite Fabrics for Structural and Seismic Strengthening. Solutions with Sika Systems. Hybrid fiber fabrics. Glass fiber fabrics Solutions with Sika Systems Composite Fabrics for Structural and Seismic Strengthening Hybrid fiber fabrics Glass fiber fabrics Structural epoxy resins Carbon fiber fabrics Composite Strengthening Systems

More information

Welcome. Centre for Lightweight Composite Technologies. offering processing solutions for production of endless fibre reinforced composite parts

Welcome. Centre for Lightweight Composite Technologies. offering processing solutions for production of endless fibre reinforced composite parts Centre for Lightweight Composite Technologies offering processing solutions for production of endless fibre reinforced composite parts Welcome ENGEL Austria GmbH 02. 2013, Gerhard Entholzer Seite 1 What

More information

Processing of Non Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Processing of Non Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Processing of Non Metals Prof. Dr. Inderdeep Singh Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 5 Polymer Matrix Composites: Processing Lecture -

More information

Composites Manufacturing

Composites Manufacturing Composites Manufacturing Session delivered by: Dr. Srikari S. 1 Session Objectives At the end of the session the delegates will get an overview on Manufacturing Processes Polymer Matrix Composites (PMCs)

More information

5.1 Essentials of Polymer Composites

5.1 Essentials of Polymer Composites 5 Polymer Composites Polymer modification can follow from the mixing of two or more macromolecular compounds or their filling with reinforcing materials of inorganic or organic substances. It enables the

More information

Broad Base. Best Solutions. SIGRAFIL Continuous Carbon Fiber Tow

Broad Base. Best Solutions. SIGRAFIL Continuous Carbon Fiber Tow Broad Base. Best Solutions. COMPOSITEs Fibers and MATERIALS SIGRAFIL Continuous Carbon Fiber Tow 2 Carbon fibers and composites made by SGL Group. Q Comprehensive product range Q Integrated value chain

More information

Use of Long Fiber Thermoplastic in Automotive Market Creig Bowland President Colorado Legacy Group LLC

Use of Long Fiber Thermoplastic in Automotive Market Creig Bowland President Colorado Legacy Group LLC Use of Long Fiber Thermoplastic in Automotive Market Creig Bowland President Colorado Legacy Group LLC Vanja Ugresic Research Engineer Fraunhofer Project Center @ Western University Projected Material

More information

Fabrication of Continuous Glass Fiber/Nylon6,6 Thermoplastic Composite with Improved Mechanical Properties

Fabrication of Continuous Glass Fiber/Nylon6,6 Thermoplastic Composite with Improved Mechanical Properties Fabrication of Continuous Glass Fiber/Nylon6,6 Thermoplastic Composite with Improved Mechanical Properties SPE ACCE Conference, September 9-11, 2014 Dr. Chul Lee, Application Development Manager, INVISTA

More information

Elium Liquid thermoplastics. Room temperature cure Very high stiffness Ductile composites

Elium Liquid thermoplastics. Room temperature cure Very high stiffness Ductile composites Elium Liquid thermoplastics Room temperature cure Very high stiffness Ductile composites Unique Technology Proven Results An Exciting Future Liquid thermoplastic composite resin Easy to process with existing

More information

Supplement. by WING SIEN FONG. October A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA

Supplement. by WING SIEN FONG. October A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA Report No. 51A REINFORCED PLASTICS Supplement A by WING SIEN FONG October 1973 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I I MENLO PARK, CALIFORNIA CONTENTS 1 INTRODUCTION........................

More information

THERMOPLASTIC MATRIX TOWPREG PRODUCTION

THERMOPLASTIC MATRIX TOWPREG PRODUCTION THERMOPLASTIC MATRIX TOWPREG PRODUCTION J. F. Silva, jfs@isep.ipp.pt Department of Mechanical Engineering, ISEP, Porto, Portugal J. P. Nunes, J. C. Velosa & C. A. Bernardo Polymer Engineering Department,

More information

Evaluation Guide for Selecting the Best FRP Composite Process for Your Project

Evaluation Guide for Selecting the Best FRP Composite Process for Your Project 19 48-2018 Evaluation Guide for Selecting the Best FRP Composite Process for Your Project Liquid Composite Molding (LCM) vs. SMC ABSTRACT In this report, we compare and contrast the properties of the two

More information

Structural Composite Materials

Structural Composite Materials Structural Composite Materials F.C. Campbell The Materials Information Society ASM International Materials Park, Ohio 44073-0002 www.asminternational.org Contents Preface About the Author xi xv Chapter

More information

SIMTEX Conjugated Filament

SIMTEX Conjugated Filament SIMTEX Conjugated Filament Support new mobility challenges: find new smart materials for ergonomic, light and durable parts! Self-reinforced composite fabric Key benefits Light-weight Aesthetic freedom

More information

High-tech plastics for lightweight solutions. Dr. Martin Wanders LANXESS

High-tech plastics for lightweight solutions. Dr. Martin Wanders LANXESS High-tech plastics for lightweight solutions Dr. Martin Wanders LANXESS LANXESS Tech Series, 24th of May 2012 Motivation Weight reduction in automotive Resources are limited CO 2 -emission is harmful for

More information

Module 1: Introduction to Composites. Lecture 7: Fabrication Processes. The Lecture Contains: Wet/Hand Lay-Up. Spray Lay-Up.

Module 1: Introduction to Composites. Lecture 7: Fabrication Processes. The Lecture Contains: Wet/Hand Lay-Up. Spray Lay-Up. The Lecture Contains: Wet/Hand Lay-Up Spray Lay-Up Autoclave Curing Filament Winding Pultrusion References file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture7/7_1.htm[8/18/2014

More information

Test report. Basalt fiber testing and evaluation

Test report. Basalt fiber testing and evaluation Test report Basalt fiber testing and evaluation Tamás Deák Ph.D. student Budapest University of Technology and Economics Faculty of Mechanical Engineering Department of Polymer Engineering H-1111 Budapest

More information

COMPOSITES MATERIALS FOR AVIATION INDUSTRY

COMPOSITES MATERIALS FOR AVIATION INDUSTRY HENRI COANDA AIR FORCE ACADEMY ROMANIA INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2012 Brasov, 24-26 May 2012 GENERAL M.R. STEFANIK ARMED FORCES ACADEMY SLOVAK REPUBLIC COMPOSITES MATERIALS FOR

More information

Table of content of printouts:

Table of content of printouts: Table of content of printouts: Introduction Materials and Properties of Polymer Matrix Composites Mechanics of a Lamina Laminate Theory Ply by Ply Failure Analysis FRP Strengthening of Metallic Structures

More information

IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS

IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS IN-SITU POLYMERIZATION OF REINFORCED THERMOPLASTICS Jim Mihalich Cyclics Corp Abstract Most reinforced thermoplastics are produced from fully polymerized resins which are then introduced to the reinforcement

More information

Light Solutions. The Crossfire vision for the future Automotive. Let s define them, based on the final applications

Light Solutions. The Crossfire vision for the future Automotive. Let s define them, based on the final applications Light Solutions The Crossfire vision for the future Automotive Let s define them, based on the final applications June 2016 Lightweight!! The drivers for the future bodies!! Less energy required to move!!

More information

Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite

Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite High Performance Structures and Materials V 167 Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite K. Takemura Department of Mechanical Engineering, Kanagawa

More information

PUSHTRUSION TM DIRECT IN-LINE (D-LFT) COMPOUNDING TECHNOLOGY VERSUS LFT PELLETS AND GMT SHEET

PUSHTRUSION TM DIRECT IN-LINE (D-LFT) COMPOUNDING TECHNOLOGY VERSUS LFT PELLETS AND GMT SHEET PUSHTRUSION TM DIRECT IN-LINE (D-LFT) COMPOUNDING TECHNOLOGY VERSUS LFT PELLETS AND GMT SHEET Eric Wollan PlastiComp, LLC Abstract PlastiComp s Direct In-Line (D-LFT) compounding process provides processors

More information

Expanding the Performance Envelope for Long Fiber Thermoplastic Composites with Unidirectional Tape Inserts

Expanding the Performance Envelope for Long Fiber Thermoplastic Composites with Unidirectional Tape Inserts Expanding the Performance Envelope for Long Fiber Thermoplastic Composites with Unidirectional Tape Inserts White Paper Innovation Made to Order PlastiComp, Inc. 110 Galewski Drive Winona, Minnesota, U.S.A.

More information

STP772-EB/Jun Index

STP772-EB/Jun Index STP772-EB/Jun. 1982 Index Acoustic emission monitoring, 106-112 Aerospace applications, 64, 133, 225 Agglomerations, fiber, 6, 9, 47 Analysis (see Testing, Thermal mechanical analysis technique, Ultrasonic

More information

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs S.V.T. Janaka Perera 1*, Hiroshi Mutsuyoshi 1 and Nguyen Duc Hai 2 1 Saitama University,

More information

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK Technical University of Liberec, Liberec, Czech Republic, EU jiri.habr@tul.cz, petr.lenfeld@tul.cz,

More information

In cooperation with. ipul pultrusion systems More speed in pultrusion. Engineering Passion

In cooperation with. ipul pultrusion systems More speed in pultrusion. Engineering Passion In cooperation with ipul pultrusion systems Engineering Passion Fascinating insight A tour round the ipul system Material handling Manual filling, filling via barrel pumps or IBC containers Stations with

More information

AP-NYLON ADDITIVES POLYMER ADDITIVES

AP-NYLON ADDITIVES POLYMER ADDITIVES AP-NYLON ADDITIVES POLYMER ADDITIVES AP-NYLON CAPROLACTAM THE IDEAL BASIS FOR CAST POLYAMIDES Cast polyamide, made by anionic polymerization of AP-Nylon Caprolactam, combines outstanding material properties

More information

THE DESIGN OF A THERMOPLASTIC CF COMPOSITE FOR LOW PRESSURE MOLDING

THE DESIGN OF A THERMOPLASTIC CF COMPOSITE FOR LOW PRESSURE MOLDING THE DESIGN OF A THERMOPLASTIC CF COMPOSITE FOR LOW PRESSURE MOLDING Takeshi Ishikawa, Masao Tomioka, Masahiro Osuka Advanced Composites Research Group, Toyohashi Research Laboratories, MITSUBISHI RAYON

More information

A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process

A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process High Performance Structures and Materials IV 231 A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process T. Fujiura 1, K. Sakamoto

More information

Solving Corrosion Problems with VIPEL Composites

Solving Corrosion Problems with VIPEL Composites Solving Corrosion Problems with VIPEL Composites Slide 1 Welcome to the seminar on Solving Corrosion Problems with Fiberglass Composites. The Solution is AOC VIPEL, CORROSION RESISTANT RESINS Slide 2 Shows

More information

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam , Tamilnadu.

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam , Tamilnadu. 17MF102 POLYMERS AND COMPOSITE MATERIALS Academic Year : 2017-2018 Programme : M.E (Manuf.Engg) Question Bank Year / Semester : I/II Course Coordinator: Dr.S.Krishnamohan Course Objectives 1. To Impart

More information

Lecture 24 Fibre-reinforced composite materials

Lecture 24 Fibre-reinforced composite materials Lecture 24 Fibre-reinforced composite materials Fibre-reinforced composite materials Reference Text Higgins RA & Bolton, 2410. Materials for Engineers and Technicians, 5th ed, Butterworth Heinemann Section

More information

CFRTP pipe molding process using high-frequency direct resistance heating

CFRTP pipe molding process using high-frequency direct resistance heating Materials Characterisation VII 217 CFRTP pipe molding process using high-frequency direct resistance heating K. Tanaka, J. Nakatsuka, Y. Matsuura, T. Ueda & T. Katayama Department of Biomedical Engineering,

More information

Composites Composite Production Methods. Remko Akkerman Laurent Warnet C O M PO SI T ES GRO U P U N I V ERSI T Y O F T W EN T E

Composites Composite Production Methods. Remko Akkerman Laurent Warnet C O M PO SI T ES GRO U P U N I V ERSI T Y O F T W EN T E C O M PO SI T ES GRO U P Composites 2008-09 Composite Production Methods U N I V ERSI T Y O F T W EN T E Remko Akkerman Laurent Warnet fibre glass carbon... resin impregnation thermoplastic thermoset CFRP

More information

Solidification Process(2) - Polymer Processing (Chapter 8, 12)

Solidification Process(2) - Polymer Processing (Chapter 8, 12) Solidification Process(2) - Polymer Processing (Chapter 8, 12) Seok-min Kim smkim@cau.ac.kr Plastic Products Plastics can be shaped into a wide variety of products: Molded parts Extruded sections Films

More information

Normalization Process Technique of Composite Foam-filled Sandwich Wind Turbine Blades

Normalization Process Technique of Composite Foam-filled Sandwich Wind Turbine Blades Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 1988 1995 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Normalization Process Technique of

More information

Mechanical Charecterization Of Glass Fiber Reinforced Polymer (GFRP) Bars.

Mechanical Charecterization Of Glass Fiber Reinforced Polymer (GFRP) Bars. INTERNATIONAL JOURNAL OF TECHNOLOGY ENHANCEMENTS AND EMERGING ENGINEERING RESEARCH, VOL 4, ISSUE 3 55 Mechanical Charecterization Of Glass Fiber Reinforced Polymer (GFRP) Bars. Sachhidanandayya. Hiremath,

More information

New developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA

New developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA New developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA Gregor Knust, Thomas Klöppel, André Haufe, Christian Liebold DYNAmore GmbH, Stuttgart Oasys LS-DYNA Users Meeting

More information

Seat Pan Opel Astra OPC

Seat Pan Opel Astra OPC Advancing structural capability of injection molded components with Continuous Fiber Reinforcement Seat Pan Opel Astra OPC Calvin Nichols, BASF Corporation Continuous Fiber Reinforcement of Injection Molded

More information

TU Dresden ILK, Institute of Lightweight Engineering and Polymer Technology, Dresden, Germany 3

TU Dresden ILK, Institute of Lightweight Engineering and Polymer Technology, Dresden, Germany 3 Cellular metal for lightweight design based on textile wire structures S. Kaina 1, B. Kieback 1, W. Hufenbach 2, D. Weck 2, A. Gruhl 2, M. Thieme 2, R. Böhm 2, C. Cherif 3, C. Sennewald 3, G. Hoffmann

More information

CFRP and aluminum foam hybrid composites. R. Hartmann 1, M. Koch 1 ABSTRACT

CFRP and aluminum foam hybrid composites. R. Hartmann 1, M. Koch 1 ABSTRACT URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-100:6 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 CFRP and aluminum foam hybrid

More information

Pultrusion technology. - current and future potential for industrial applications

Pultrusion technology. - current and future potential for industrial applications Pultrusion technology - current and future potential for industrial applications Page 1 Content Röchling Group: short introduction Divisions and locations markets, materials and production processes Pultrusion

More information

INTEGRATION OF POLYMER AND COMPOSITE MATERIALS FOR ENHANCED DESIGN FREEDOM AND COST-EFFICIENCY

INTEGRATION OF POLYMER AND COMPOSITE MATERIALS FOR ENHANCED DESIGN FREEDOM AND COST-EFFICIENCY INTEGRATION OF POLYMER AND COMPOSITE MATERIALS FOR ENHANCED DESIGN FREEDOM AND COST-EFFICIENCY P.-E. Bourban, F. Bonjour, N. Bernet, M.D. Wakeman, J.-A. E. Månson *1 Ecole Polytechnique Fédérale de Lausanne

More information

INNOVATIVE FIBRE REINFORCED BRIDGE DECK MODULES ABSTRACT

INNOVATIVE FIBRE REINFORCED BRIDGE DECK MODULES ABSTRACT INNOVATIVE FIBRE REINFORCED BRIDGE DECK MODULES Heather Crocker, ISIS Canada, Winnipeg, MB Emile Shehata, Wardrop Engineering Inc., Winnipeg, MB Rick Haldane-Wilsone, Wardrop Engineering Inc., Winnipeg,

More information

Overview of composite manufacturing technologies

Overview of composite manufacturing technologies Composite technology BMEGEPT AGE1 Overview of composite manufacturing technologies Gergely Czél Spring 2018 Composites- Structure Lamina, ply, layer Matrix Fibre Interface Laminate Stacking/lay-up sequence

More information

JSCE-K Test methods for weathering resistance of. concrete surface coating materials

JSCE-K Test methods for weathering resistance of. concrete surface coating materials JSCE-K 511-2007 Test methods for weathering resistance of concrete surface coating materials JSCE-K 511-2007 Test methods for weathering resistance of concrete surface coating materials 1. Scope This JSCE

More information

Production of UD-Tape Based Thermoplastic Composite Parts

Production of UD-Tape Based Thermoplastic Composite Parts COVER PROCESS CHAIN FOR INDUSTR IA L-SCALE Neue Materialien Bayreuth Production of UD-Tape Based Thermoplastic Composite Parts Tape layup, pre-consolidation and compression injection molding are the primary

More information

CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS

CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS Nagaraj Eshwar Dr Tim Ibell Dr Antonio Nanni Graduate Research Assistant Senior Lecturer Jones Professor CIES, # 223 ERL University of Bath CIES,

More information

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS Prof. John J. Myers Associate Professor CIES / Department of Civil, Arch., & Env. Engineering University

More information

Reinforced Thermoset Plastic Corrosion-Resistant Equipment

Reinforced Thermoset Plastic Corrosion-Resistant Equipment ASME RTP-1 2007 (Revision of ASME RTP-1 2005) Reinforced Thermoset Plastic Corrosion-Resistant Equipment AN AMERICAN NATIONAL STANDARD Three Park Avenue New York, NY 10016 Date of Issuance: April 9, 2008

More information

NEW COMPOSITE SANDWICH WITH ALUMINUM CORE

NEW COMPOSITE SANDWICH WITH ALUMINUM CORE SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 NEW COMPOSITE SANDWICH WITH ALUMINUM CORE Horatiu TEODORESCU-DRAGHICESCU *, Mariana Domnica STANCIU *, Florin TEODORESCU-DRAGHICESCU ** * Transilvania

More information

Reactive Thermoplastic Composites - A Potential Game Changer?

Reactive Thermoplastic Composites - A Potential Game Changer? Reactive Thermoplastic Composites - A Potential Game Changer? Dr. Conchúr Ó Brádaigh Senior Lecturer, Mechanical Engineering National University of Ireland, Galway R & D Director, ÉireComposites Teo.,

More information

DEVELOPMENT OF BENDING PROCESS FOR FRTP PIPE

DEVELOPMENT OF BENDING PROCESS FOR FRTP PIPE 21 st International Conference on Composite Materials Xi an, 2-25 th August 217 DEVELOPMENT OF BENDING PROCESS FOR FRTP PIPE Tatsuya Banno 1, Yagi Masaoki 2, Kyuso Morino 3 and Asami Nakai 4 1 Graduate

More information

Joining of Dissimilar Automotive Materials

Joining of Dissimilar Automotive Materials Joining of Dissimilar Automotive Materials P.K. Mallick William E. Stirton Professor of Mechanical Engineering Director, Center for Lighweighting Automotive Materials and Processing University of Michigan-Dearborn

More information

SPECIFICATION FOR FIBERGLASS REINFORCED PLASTIC CHEMICAL STORAGE TANKS

SPECIFICATION FOR FIBERGLASS REINFORCED PLASTIC CHEMICAL STORAGE TANKS The following specification for FRP Chemical Storage Tanks has been developed to assist the specifier and the buyer in detailing their own specification for equipment that meets the minimum design parameters

More information

PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS

PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS Hamdy M. Mohamed NSERC Post-Doctoral Fellow University of Sherbrooke Sherbrooke, Quebec, Canada. Hamdy.Mohamed@usherbrooke.ca Brahim Benmokrane Professor

More information

MACHINE DESIGNERS AND MANUFACTURERS. SPECIALISED IN 3-D WOVEN PREFORM MANUFACURING MACHINES

MACHINE DESIGNERS AND MANUFACTURERS. SPECIALISED IN 3-D WOVEN PREFORM MANUFACURING MACHINES MACHINE DESIGNERS AND MANUFACTURERS SPECIALISED IN 3-D WOVEN PREFORM MANUFACURING MACHINES info@kaletexnique.com Definition of composites To combine two or more materials together without having chemical

More information

Highly effective antioxidants for Polyamides: Unique set-up of properties:

Highly effective antioxidants for Polyamides: Unique set-up of properties: polymer additives High Performance Additives for Polyamides And other Engineering Thermoplastics BRUGGOLEN H Heat Stabilizers Copper based antioxidants Most efficient heat stabilization of Polyamides Classic

More information

Injection moulding: properties customization by varying process conditions

Injection moulding: properties customization by varying process conditions Loughborough University Institutional Repository Injection moulding: properties customization by varying process conditions This item was submitted to Loughborough University's Institutional Repository

More information

Industrial aspects of polymer processing

Industrial aspects of polymer processing Course MP10 Lecture 2 Industrial aspects of polymer processing Ben, I just want to say one word to you, just one word plastics Dr James Elliott 2.1 General model of polymer processing Overview of the various

More information

APPLICATION POSSIBILITIES OF FIBER COMPOSITES WITH POLYMER-MATRIX IN BUILDING INDUSTRY

APPLICATION POSSIBILITIES OF FIBER COMPOSITES WITH POLYMER-MATRIX IN BUILDING INDUSTRY Life Prediction and Aging Management of Concrete Structures 383 APPLICATION POSSIBILITIES OF FIBER COMPOSITES WITH POLYMER-MATRIX IN BUILDING INDUSTRY L. BODNAROVA and R. HELA Brno University of Technology,

More information

The Sandvik double belt system

The Sandvik double belt system The Sandvik double belt system Sandvik steel belts around the world Sandvik steel belt technology forms the basis for all of our double belt systems and delivers a range of proven benefits. Hard and smooth

More information

Analysis and design of composite structures

Analysis and design of composite structures Analysis and design of composite structures Class notes 1 1. Introduction 2 Definition: composite means that different materials are combined to form a third material whose properties are superior to those

More information

THE INFLUENCE OF MOISTURE CONTENT ON THE HEAT AFFECTED ZONE AND THE RESULTING IN-PLANE SHEAR STRENGTH OF LASER CUT THERMOPLASTIC CFRP

THE INFLUENCE OF MOISTURE CONTENT ON THE HEAT AFFECTED ZONE AND THE RESULTING IN-PLANE SHEAR STRENGTH OF LASER CUT THERMOPLASTIC CFRP ECCM16-16 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 214 THE INFLUENCE OF MOISTURE CONTENT ON THE HEAT AFFECTED ZONE AND THE RESULTING IN-PLANE SHEAR STRENGTH OF LASER CUT

More information