Simplified interdigitated back contact solar cells

Size: px
Start display at page:

Download "Simplified interdigitated back contact solar cells"

Transcription

1 Vailable online at Energy Procedia 27 (2012 ) SiliconPV: April 03-05, 2012, Leuven, Belgium Simplified interdigitated back contact solar cells C.E. Chana*, B.J. Hallam, S.R. Wenham School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052 Abstract In this work, the fabrication of an interdigitated back contact solar cell is investigated on p-type Czochralski silicon wafers using a novel laser doping approach to form both polarities of rear contacts. Using only one conventional thermal diffusion which forms the n + active emitter on the rear and n + floating emitter on the front of the device, implied open circuit voltages exceeding 690 mv have been achieved on partly processed devices prior to metallisation, with virtually full-area emitter coverage and both polarities of contacts formed, indicating the potential of this structure for achieving high efficiencies with a simple process. Severe shunting post-metallisation due to the poor electrical isolation properties of the rear surface passivation layer currently limits the final device voltage to 625 mv. Further investigations must be undertaken in order to minimise the parasitic shunting effect and maintain a high open circuit voltage post-metallisation Published by by Elsevier Ltd. Ltd. Selection and and peer-review under under responsibility of the of scientific the scientific committee of the committee SiliconPV of 2012 the SiliconPV conference Open conference access under CC BY-NC-ND license. Keywords: Solar cells; interdigitated back contacts; laser doping 1. Introduction Interdigitated back contact (IBC) solar cells offer numerous advantages over conventional solar cells including significant improvement in short circuit current achieved from zero shading loss; simpler interconnection techniques and a higher packing density [1]; improved aesthetics; lower resistive losses and consequently higher efficiencies [2]. Despite these advantages, the complexities in the processing required to achieve such structures are often too costly for commercial production with typically two or more high temperature diffusion steps being required. For example, a processing sequence for a rear contacted rear junction cell can often include at a minimum: 1) rear emitter diffusion, 2) FSF diffusion and 3) rear base diffusion [3-5]. There are numerous disadvantages associated with multiple high * Corresponding author. Tel.: ; fax: address: catherine.chan@unsw.edu.au Published by Elsevier Ltd. Selection and peer-review under responsibility of the scientific committee of the SiliconPV 2012 conference. Open access under CC BY-NC-ND license. doi: /j.egypro

2 544 C.E. Chan et al. / Energy Procedia 27 ( 2012 ) temperature processing steps including: increased processing time; high costs; increased potential for introducing contaminants; and degradation in bulk lifetime, particularly when using lower quality substrates which are emerging onto the market. Moreover, one or more of these diffusions is performed through a diffusion mask, such as silicon dioxide, which needs to be grown at high temperatures and patterned using methods such as photolithography, laser ablation or inkjet printing. Laser doping has the potential to drastically simplify the processing sequence for rear contact solar cells as it can simultaneously pattern a dielectric layer and form heavily doped regions in the underlying silicon. The manufacture of laser doped selective emitter solar cells (LDSE) has already been shown to be achievable in a commercial environment [6, 7] and record cell results have recently been achieved by UNSW in industrial environments [8, 9]. However, little work has previously been done on laser doping through an emitter of opposite polarity. Recently, the authors of this work have demonstrated the formation of deep laser doped regions with junctions extending more than 10 μm into the wafer, as shown in Figure 1(a) [10]. The formation of such deep molten regions allows an existing doped surface layer (such as an n-type emitter) to be smeared out so that its dopant concentration is substantially reduced. At the same time, p-type dopants present in a dopant film on the surface of the wafer can be incorporated into the molten region. By controlling the concentration of dopants within the molten region as well as the heating and cooling regime, the authors have shown that it is possible to fully overcompensate the n-type emitter and form a direct contact to the buried p-type base material as shown in Figure 1(b) [10]. The applicability of this process to solar cells and ability to avoid junction tunneling between the n-type emitter and p-type compensated laser doped contacts has been investigated by the authors [11], with the finding that low dark saturation currents are introduced by the laser doping step and a high implied V oc can therefore be maintained after the formation of these contacts, without the need for isolation between the n + emitter and p ++ laser doped contact region. Wafer surface Wafer surface n-type emitter SiN Opening in SiON n-type emitter SiN Opening in SiON Junction p-type base Laser doped region (n-type) Junction p-type base Laser doped region (p-type) Fig. 1. Combined SEM/EBIC image of the cross section of (a) an n-type laser doped line and (b) a p-type laser doped line, both processed at 0.2 m/s on a p-type wafer with a thermally diffused phosphorus emitter at the surface [10]. The location of the junction is indicated by the bright regions In this work, we investigate the fabrication of a laser doped IBC (LD-IBC) solar cell using this laser doping technique to form both polarities of contacts. 2. Processing sequence Standard commercial grade 1 Ω.cm p-type CZ wafers were used in this work. For simplicity, planar

3 C.E. Chan et al. / Energy Procedia 27 ( 2012 ) wafers were used with no texturing on the front surface, with the initial aim of achieving high open circuit voltages as proof of concept. Future work will focus on optimising the optics for current collection. The process flow is shown schematically in Figure 2. Wafers were saw damage etched in NaOH solution to a thickness of 150 μm. Following a full RCA clean and HF dip, wafers were thermally diffused at 860 C via solid source phosphorus diffusion in a back-to-back arrangement to obtain a final active emitter sheet resistivity of 150 Ω/ on the rear (nonlight receiving) side of the device and approximately 1000 Ω/ floating emitter on the front (light receiving) side of the device. Wafers then underwent an additional HF dip to remove PSG prior to PECVD SiON deposition on both sides. For the laser doping, firstly, a commercially available boron spin on dopant source was spun onto the wafer at 2000 rpm for 40 seconds and baked at 130 C for 10 mins. A high powered 532 nm wavelength laser with scanning optics was then scanned over the wafer to form p-type laser doped lines penetrating through the n-type emitter on a pitch of 1 mm. Following a rinse-off of the p-type dopant source, phosphoric acid (85% concentration) was spun onto the wafer as an n-type dopant source. The same laser was used to scan over the wafer to form n-type laser doped lines on a 1mm pitch in an interdigitated pattern (resulting in a spacing of 0.5 mm between contacts of opposite polarity). After removal of residual phosphoric acid, wafers were then annealed at 400 C for 15 minutes in nitrogen ambient followed by a 30 second HF dip to deglaze the laser doped lines. Metal contacts were formed via thermal evaporation of aluminium. Finally, cells were sintered in nitrogen ambient at 300 C for 5 minutes to reduce contact resistance. The final device structure is shown schematically in Figure 3. Saw damage removal + cleaning Solid source P diffusion (back to back) at 860 C + PSG removal PECVD SiON on both sides Laser doping of p- type and then n- type lines Anneal at 400 C for 15 mins followed by deglaze of LD lines Thermal aluminium evaporation to form metal contacts Sinter at 300 C for 5 mins Fig. 2. Process flow for LD-IBC solar cell SiON (75 nm) n-type front floating junction (1000 ohm/sq) p-type CZ bulk (1 Ohm-cm) n-type rear emitter (150 Ohm/sq) SiON (200 nm) Aluminium Fig. 3. Structure of the LD-IBC solar cell

4 546 C.E. Chan et al. / Energy Procedia 27 ( 2012 ) Quasi-steady-state photoconductance (QSS-PC) was used to determine the implied 1-sun open circuit voltage (iv oc ) at three stages of processing: 1. after PECVD deposition, 2. after laser doping, and 3. after annealing. 3. Results High implied open circuit voltages of over 690 mv were obtained on partly-processed devices prior to metallisation, demonstrating the ability for both polarities of contacts to be formed using laser doping with minimal defect formation or parasitic shunting between contact polarities being induced. This shows the potential of the process to achieve high-efficiency devices provided this voltage can be maintained after metallisation. However, after metallisation, severe shunting between the n- and p-type silicon occurs where n-type silicon is exposed around the perimeter of the p-type laser doped lines where the dielectric layer is damaged, as shown in Figure 4(a) and (b). This reduces the final V oc to 625 mv and efficiency to 14.5%. The light J-V curve of the LD-IBC cell is shown in Figure 5. Note that the front surface is planar with high reflectance, resulting in low currents. As can be seen in Figure 1(b), the deep lateral diffusion of the p-type dopants should extend underneath this partially ablated dielectric region. However, optimisation of laser parameters to encourage deeper lateral diffusion extending beyond the damaged region could help minimise the shunting. Alternatively, the use of dielectric layers with a higher melting point or alternative laser beam profiles such as a top-hat beam could be investigated to reduce shunting by reducing the risk of partially ablating and forming pinholes in the dielectric layer. Table 1. One-sun implied open circuit voltages at each stage of processing and final open circuit voltage Stage of processing iv oc (mv) After PECVD 699 After laser doping After anneal After metallisation and sinter (V oc) (a) Shunt path (b) p++ Al n+ SiON Fig. 4. (a) Microscope image of p-type laser doped line with partially ablated dielectric layer around the edge of the line and (b) schematic of shunt path through partially ablated dielectric

5 C.E. Chan et al. / Energy Procedia 27 ( 2012 ) Fig. 5. Light J-V curve of LD-IBC cell 4. Conclusion A simple method for fabricating IBC solar cells has been demonstrated in which only one high temperature process is required. Patterning of the rear dielectric layer and heavy doping of the underlying silicon is performed simultaneously in a single laser doping step for each polarity of contact, eliminating the need for any further conventional high temperature diffusion steps after the initial emitter diffusion. For the p-type contact, laser parameters are selected such that the n-type emitter is locally overcompensated by p-type dopants, forming direct contact to the base. Virtually full emitter coverage can be maintained in this process, eliminating any electrical shading normally present in IBC solar cells caused by recombination above the base diffusion. This can enhance carrier collection and thereby relax the constraints placed on wafer quality in contrast to the tight constraints required by cell technologies which have only partial emitter coverage. The LD-IBC cell is capable of achieving very high implied open circuit voltages of 690 mv prior to metallization. Shunting post-metallisation limits the cell efficiency to 14.5 %, and future work must focus on achieving good electrical isolation between the n-type emitter and the p-type contacts to maintain high shunt resistance. Acknowledgements The authors would like to acknowledge the support of Tom Puzzer and the staff at the UNSW Electron Microscope Unit, a division of the Australian Microscope and Microanalysis Research Facility (AMMRF) for the assistance with the SEM and EBIC images produced in this work. The support of the Australian Solar Institute and Suntech are also acknowledged. References [1] Kress A, Breitenstein O, Glunz S, Fath P, Willeke G, Bucher E. Investigations on low-cost back-contact silicon solar cells. Solar Energy Materials and Solar Cells, 2001;65(1-4): [2] Kerschaver E, Beaucarne G. Back-contact solar cells: a review. Progress in Photovoltaics, 2006;14(2): [3] Guo J-H, Cotter J. Laser-grooved backside contact solar cells with 680 mv open-circuit voltage. IEEE Transactions on Electron Devices, 2004;51(12):

6 548 C.E. Chan et al. / Energy Procedia 27 ( 2012 ) [4] Engelhart P, Harder N-P, Grischke R, Merkle A, Meyer R, Brendel R. Laser structuring for back junction silicon solar cells. Progress in Photovoltaics, 2007;15(3): [5] Mulligan W, Rose D, Cudzinovic M, De Ceuster D, McIntosh K, Smith D, Swanson R. Manufacture of solar cells with 21% efficiency. Proceedings of the 19 th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 2004, pp [6] Tjahjono B, Yang M, Lan C, Ting J, Sugianto A, Ho H, Kuepper N, Beilby B, Szpitalak T, Wenham S. 18.9% efficient laser doped selective emitter solar cell on industrial grade p-type CZ wafer. Proceedings of the 25 th European Photovoltaic Solar Energy Conference, Valencia, Spain, 2010, pp [7] Tjahjono B, Haverkamp H, Wu V, Anditsch HT, Jung W-H, Cheng J, Ting J, Yang MJ, Habermann D, Sziptalak T, Buchner C, Schmid C, Beilby B, Hsu K-C. Optimising selective emitter technology in one year of full scale production. Proceedings of the 26 th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2011, pp [8] Hallam B, Wenham S, Sugianto A, Mai L, Chong CM, Edwards M, Jordan D, Fath P. Record large area p-type CZ production cell efficiency of 19.3% based on LDSE technology. Journal of Photovoltaics, 2011;1: [9] Hallam B, Wenham S, Edwards M, Lee HS, Lee E, Lee HW, Kim J, Shin J. Record industrial cell efficiency fabricated on commercial grade p-type CZ substrates. Proceedings of the 21 st Photovoltaics Specialist Conference, Fukuoka, Japan, [10] Hallam B, Chan C, Wenham S. 2012, to be submitted [11] Chan C, Hallam B, Wenham S. 2012, to be submitted

Localized laser doped contacts for silicon solar cells: characterization and efficiency potential

Localized laser doped contacts for silicon solar cells: characterization and efficiency potential Localized laser doped contacts for silicon solar cells: characterization and efficiency potential Andreas Fell, Evan Franklin, Daniel Walter, Klaus Weber SPREE Seminar Sydney, 21/08/2014 2 Outline What

More information

Boron Back Surface Field Using Spin-On Dopants by Rapid Thermal Processing

Boron Back Surface Field Using Spin-On Dopants by Rapid Thermal Processing Journal of the Korean Physical Society, Vol. 44, No. 6, June 2004, pp. 1581 1586 Boron Back Surface Field Using Spin-On Dopants by Rapid Thermal Processing Ji Youn Lee Photovoltaics R&D Center, Sung Jin

More information

19% Efficient N-Type All-Back-Contact Silicon Wafer Solar Cells With Planar Front Surface

19% Efficient N-Type All-Back-Contact Silicon Wafer Solar Cells With Planar Front Surface 19% Efficient N-Type All-Back-Contact Silicon Wafer Solar Cells With Planar Front Surface Ngwe Zin 1, Andrew Blakers 1, Keith McIntosh 1, Evan Franklin 1, Teng Kho 1, Johnson Wong 2, Thomas Mueller 2,

More information

TWO-DIMENSIONAL MODELING OF EWT MULTICRYSTALLINE SILICON SOLAR CELLS AND COMPARISON WITH THE IBC SOLAR CELL

TWO-DIMENSIONAL MODELING OF EWT MULTICRYSTALLINE SILICON SOLAR CELLS AND COMPARISON WITH THE IBC SOLAR CELL TWO-DIMENSIONAL MODELING OF EWT MULTICRYSTALLINE SILICON SOLAR CELLS AND COMPARISON WITH THE IBC SOLAR CELL Mohamed M. Hilali, Peter Hacke, and James M. Gee Advent Solar, Inc. 8 Bradbury Drive S.E, Suite,

More information

Presented at the 29th European PV Solar Energy Conference and Exhibition, September 2014, Amsterdam (NL)

Presented at the 29th European PV Solar Energy Conference and Exhibition, September 2014, Amsterdam (NL) POCL3-BASED CO-DIFFUSION PROCESS FOR N-TYPE BACK-CONTACT BACK-JUNCTION SOLAR CELLS R. Keding 1,2, M. Hendrichs 1, D.Stüwe 1, M. Jahn 1, C. Reichel 1, D. Borchert 1, A.Wolf 1, H. Reinecke 3, D.Biro 1 1

More information

Surface passivation of phosphorus-diffused emitters by inline thermal oxidation

Surface passivation of phosphorus-diffused emitters by inline thermal oxidation Available online at www.sciencedirect.com Energy Procedia 8 (2011) 343 348 SiliconPV: 17-20 April 2011, Freiburg, Germany Surface passivation of phosphorus-diffused emitters by inline thermal oxidation

More information

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION?

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? Bianca Lim *, Till Brendemühl, Miriam Berger, Anja Christ, Thorsten Dullweber Institute for Solar Energy Research

More information

Available online at ScienceDirect. Energy Procedia 77 (2015 )

Available online at  ScienceDirect. Energy Procedia 77 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 279 285 5th International Conference on Silicon Photovoltaics, SiliconPV 2015 21%-Efficient n-type rear-junction PERT

More information

Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells

Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells SPREE Public Seminar 20 th February 2014 Ned Western Supervisor: Stephen Bremner Co-supervisor: Ivan Perez-Wurfl

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at  ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 287 294 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Codiffused bifacial n-type solar cells (CoBiN)

More information

Etch-Back Simplifies Interdigitated Back Contact Solar Cells

Etch-Back Simplifies Interdigitated Back Contact Solar Cells Etch-Back Simplifies Interdigitated Back Contact Solar Cells Ngwe Zin, Andrew Blakers, Evan Franklin, Kean Fong, Teng Kho, Chog Barugkin and Eric Wang Centre for Sustainable Energy Systems, Australian

More information

INDUSTRIALLY FEASIBLE >19% EFFICIENCY IBC CELLS FOR PILOT LINE PROCESSING

INDUSTRIALLY FEASIBLE >19% EFFICIENCY IBC CELLS FOR PILOT LINE PROCESSING INDUSTRIALLY FEASIBLE >19% EFFICIENCY IBC CELLS FOR PILOT LINE PROCESSING F. J. Castaño 1, D. Morecroft 1, M. Cascant 1, H. Yuste 1, M.W.P.E. Lamers 2, A.A. Mewe 2, I.G. Romijn 2, E.E. Bende 2, Y. Komatsu

More information

Presented at the 28th European PV Solar Energy Conference and Exhibition, 30 Sept October 2013, Paris, France

Presented at the 28th European PV Solar Energy Conference and Exhibition, 30 Sept October 2013, Paris, France A NOVEL APPROACH TO HIGH PERFORMANCE AND COST EFFECTIVE SURFACE CLEANING FOR HIGH EFFICIENCY SOLAR CELLS A. Moldovan 1A, M. Zimmer 1, J.Rentsch 1, B.Ferstl 2, S.Rajagopalan 2, S.Thate 2, J.Hoogboom 2,

More information

Laser Doped Solar Cell on CZ P-type Silicon, IEEE 35th PVSC Conference,

Laser Doped Solar Cell on CZ P-type Silicon, IEEE 35th PVSC Conference, Laser Doped Solar Cell on CZ P-type Silicon, IEEE 35th PVSC Conference,06-2010 This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein

More information

Simplified Fabrication of Screen Printed Interdigitated Back Contact Solar Cell Based on Wet Etching Process

Simplified Fabrication of Screen Printed Interdigitated Back Contact Solar Cell Based on Wet Etching Process Simplified Fabrication of Screen Printed Interdigitated Back Contact Solar Cell Based on Wet Etching Process M. K. MAT DESA, A.W. AZHARI, SUHAILA SEPEAI, K. SOPIAN, M.Y. SULAIMAN and SALEEM H. ZAIDI Solar

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at   ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 265 271 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Ion implantation for all-alumina IBC solar

More information

OPTIMISATION OF N+ DIFFUSION AND CONTACT SIZE OF IBC SOLAR CELLS

OPTIMISATION OF N+ DIFFUSION AND CONTACT SIZE OF IBC SOLAR CELLS OPTIMISATION OF N+ DIFFUSION AND CONTACT SIZE OF IBC SOLAR CELLS Kean Chern Fong 1, Kho Teng 1, Keith R. McIntosh 2, Andrew W. Blakers 1, Evan Franklin 1, Ngwe Zin 1, Andreas Fell 1. 1 Australian National

More information

All-Aluminum Screen-Printed IBC Cells: Design Concept

All-Aluminum Screen-Printed IBC Cells: Design Concept l-uminum Screen-Printed IBC Cells: Design Concept Paul Basore, Emmanuel Van Kerschaver, Kirsten Cabanas-Holmen, Jean Hummel, Yafu Lin, C Paola Murcia, Kate Fisher, Simeon Baker-Finch, Oun-Ho Park, Frederic

More information

ET3034TUx High efficiency concepts of c- Si wafer based solar cells

ET3034TUx High efficiency concepts of c- Si wafer based solar cells ET3034TUx - 4.4 - High efficiency concepts of c- Si wafer based solar cells In the previous block we have discussed various technological aspects on crystalline silicon wafer based PV technology. In this

More information

Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells. Jonathon Dore SPREE Research Seminar - 27th June, 2013

Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells. Jonathon Dore SPREE Research Seminar - 27th June, 2013 Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells Jonathon Dore SPREE Research Seminar - 27th June, 2013 Contents Introduction motivation for thin-film Thin-film PV technologies Diode laser

More information

SURFACE PASSIVATION STUDY ON GETTERED MULTICRYSTALLINE SILICON

SURFACE PASSIVATION STUDY ON GETTERED MULTICRYSTALLINE SILICON Erschienen in: Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 213) ; Paris, France ; conference 3 September - 4 October 213. - München : WIP, 213. - S. 143-147.

More information

Lifetime Enhancement and Low-Cost Technology Development for High-Efficiency Manufacturable Silicon Solar Cells. A. Rohatgi, V. Yelundur, J.

Lifetime Enhancement and Low-Cost Technology Development for High-Efficiency Manufacturable Silicon Solar Cells. A. Rohatgi, V. Yelundur, J. Lifetime Enhancement and Low-Cost Technology Development for High-Efficiency Manufacturable Silicon Solar Cells A. Rohatgi, V. Yelundur, J. Jeong University Center of Excellence for Photovoltaics Research

More information

Selective Laser Doping From Boron Silicate Glass

Selective Laser Doping From Boron Silicate Glass Vailable online at www.sciencedirect.com Energy Procedia 27 (2012 ) 455 459 SiliconPV: April 03-05, 2012, Leuven, Belgium Selective Laser Doping From Boron Silicate Glass G. Poulain a,c *, D. Blanc a,

More information

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY Meijun Lu 1,2, Ujjwal Das 1, Stuart Bowden 1, and Robert Birkmire 1,2 1 Institute of Energy

More information

High efficiency selective emitter cells using patterned ion implantation

High efficiency selective emitter cells using patterned ion implantation Available online at www.sciencedirect.com Energy Procedia 8 (2011) 6 706 711 1 5 SiliconPV: 17-20 April 2011, Freiburg, Germany High efficiency selective emitter cells using patterned ion implantation

More information

Impact of the Deposition and Annealing Temperature on the Silicon Surface Passivation of ALD Al 2 O 3 Films

Impact of the Deposition and Annealing Temperature on the Silicon Surface Passivation of ALD Al 2 O 3 Films Vailable online at www.sciencedirect.com Energy Procedia 27 (2012 ) 396 401 SiliconPV 2012, 03-05 April 2012, Leuven, Belgium Impact of the Deposition and Annealing Temperature on the Silicon Surface Passivation

More information

BIFACIAL SOLAR CELLS WITH BORON BACK SURFACE FIELD

BIFACIAL SOLAR CELLS WITH BORON BACK SURFACE FIELD BIFACIAL SOLAR CELLS WITH BORON BACK SURFACE FIELD C. Duran 1, T. Buck 1, R. Kopecek 1, J. Libal 2, F. Traverso 2 1 International Solar Energy Research Center - ISC - Konstanz, Rudolf-Diesel-Str. 15, D-78467

More information

UV-induced degradation study of multicrystalline silicon solar cells made from different silicon materials

UV-induced degradation study of multicrystalline silicon solar cells made from different silicon materials Available online at www.sciencedirect.com ScienceDirect Energy Procedia 38 (2013 ) 626 635 SiliconPV: March 25-27, 2013, Hamelin, Germany UV-induced degradation study of multicrystalline silicon solar

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at  ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 235 240 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Boron emitters from doped PECVD layers for

More information

Available online at ScienceDirect. Energy Procedia 92 (2016 )

Available online at   ScienceDirect. Energy Procedia 92 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 92 (2016 ) 225 231 6th International Conference on Silicon Photovoltaics, SiliconPV 2016 Choosing the best silicon material parameters

More information

Anodic Aluminium Oxide for Passivation in Silicon Solar Cells

Anodic Aluminium Oxide for Passivation in Silicon Solar Cells Anodic Aluminium Oxide for Passivation in Silicon Solar Cells School of Photovoltaic & Renewable Energy Engineering Zhong Lu Supervisor: Alison Lennon May. 2015 Co-supervisor: Stuart Wenham Outline Introduction

More information

Influence of the Front Surface Passivation Quality on Large Area n-type Silicon Solar Cells with Al-Alloyed Rear Emitter

Influence of the Front Surface Passivation Quality on Large Area n-type Silicon Solar Cells with Al-Alloyed Rear Emitter Erschienen in: Energy Procedia ; 8 (2011). - S. 487-492 Available online at www.sciencedirect.com Energy Procedia 8 (2011) 487 492 SiliconPV: 17-20 April 2011, Freiburg, Germany Influence of the Front

More information

Available online at ScienceDirect. Energy Procedia 92 (2016 )

Available online at  ScienceDirect. Energy Procedia 92 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 92 (2016 ) 925 931 6th International Conference on Silicon Photovoltaics, SiliconPV 2016 Contacting BBr 3 -based boron emitters with

More information

Citation for the original published paper (version of record):

Citation for the original published paper (version of record): http://www.diva-portal.org This is the published version of a paper published in Energy Procedia. Citation for the original published paper (version of record): Boulfrad, Y., Lindroos, J., Inglese, A.,

More information

ScienceDirect. Improvement of V OC for thin RST solar cells by enhanced back side passivation

ScienceDirect. Improvement of V OC for thin RST solar cells by enhanced back side passivation Erschienen in: Energy Procedia ; 77 (2015). - S. 848-854 https://dx.doi.org/10.1016/j.egypro.2015.07.120 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 848 854 5th International

More information

Passivation of a Metal Contact with a Tunneling Layer

Passivation of a Metal Contact with a Tunneling Layer Downloaded from orbit.dtu.dk on: Sep 12, 2018 Passivation of a Metal Contact with a Tunneling Layer Loozen, X.; Larsen, Jakob Bonne; Dross, F.; Aleman, M.; Bearda, T.; O'Sullivan, B.J.; Gordon, I.; Poortmans,

More information

PASHA: A NEW INDUSTRIAL PROCESS TECHNOLOGY ENABLING HIGH EFFICIENCIES ON THIN AND LARGE MC-SI WAFERS

PASHA: A NEW INDUSTRIAL PROCESS TECHNOLOGY ENABLING HIGH EFFICIENCIES ON THIN AND LARGE MC-SI WAFERS PASHA: A NEW INDUSTRIAL PROCESS TECHNOLOGY ENABLING HIGH EFFICIENCIES ON THIN AND LARGE MC-SI WAFERS Ingrid Romijn, Ilkay Cesar, Martien Koppes, Eric Kossen and Arthur Weeber ECN Solar Energy, P.O. Box

More information

Available online at ScienceDirect. Energy Procedia 92 (2016 )

Available online at   ScienceDirect. Energy Procedia 92 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 92 (2016 ) 336 340 6th International Conference on Silicon Photovoltaics, SiliconPV 2016 Corona field effect surface passivation

More information

Energy Procedia 00 (2013) PV Asia Pacific Conference 2012

Energy Procedia 00 (2013) PV Asia Pacific Conference 2012 Energy Procedia 00 (2013) 000 000 Energy Procedia www.elsevier.com/locate/procedia PV Asia Pacific Conference 2012 Continued Development of All-Back-Contact Silicon Wafer Solar Cells at ANU Ngwe Zin a,*,

More information

ENABLING DIELECTRIC REAR SIDE PASSIVATION FOR INDUSTRIAL MASS PRODUCTION BY DEVELOPING LEAN PRINTING-BASED SOLAR CELL PROCESSES

ENABLING DIELECTRIC REAR SIDE PASSIVATION FOR INDUSTRIAL MASS PRODUCTION BY DEVELOPING LEAN PRINTING-BASED SOLAR CELL PROCESSES ENABLING DIELECTRIC REAR SIDE PASSIVATION FOR INDUSTRIAL MASS PRODUCTION BY DEVELOPING LEAN PRINTING-BASED SOLAR CELL PROCESSES Thomas Lauermann, Thomas Lüder, Sascha Scholz, Bernd Raabe, Giso Hahn, Barbara

More information

162 Solar Energy. front contact (metal grid) serial connections (to the back contact of the next cell) p-type wafer back contact

162 Solar Energy. front contact (metal grid) serial connections (to the back contact of the next cell) p-type wafer back contact 162 Solar Energy serial connections (to the back contact of the next cell) front contact (metal grid) antireflective coating n + -type emitter p + -type layer p-type wafer back contact 200 μm Figure 12.8:

More information

Presented at the 35th European PV Solar Energy Conference and Exhibition, September 2018, Brussels, Belgium

Presented at the 35th European PV Solar Energy Conference and Exhibition, September 2018, Brussels, Belgium PRINTED DOPANT SOURCES FOR LOCALLY-DOPED SIOX/POLY-SI PASSIVATING CONTACTS Z. Kiaee, C. Reichel, F. Feldmann, M. Jahn, J. D. Huyeng, R. Keding, M. Hermle, F. Clement Fraunhofer Institute for Solar Energy

More information

Tailoring the absorption properties of Black Silicon

Tailoring the absorption properties of Black Silicon Vailable online at www.sciencedirect.com Energy Procedia 27 (2012 ) 480 484 SiliconPV: 02-05 April 2012, Leuven, Belgium Tailoring the absorption properties of Black Silicon A. L. Baumann a *, K.-M. Guenther

More information

IBM Research Report. Low-cost, High Efficiency Solar Cells on Scrapped CMOS Silicon

IBM Research Report. Low-cost, High Efficiency Solar Cells on Scrapped CMOS Silicon RC24941 (W1001-102) January 29, 2010 Materials Science IBM Research Report Low-cost, High Efficiency Solar Cells on Scrapped CMOS Silicon Joel P. de Souza, Daniel Inns*, Katherine L. Saenger, Harold J.

More information

Research Article Laser Process for Selective Emitter Silicon Solar Cells

Research Article Laser Process for Selective Emitter Silicon Solar Cells International Photoenergy Volume 2012, Article ID 413863, 5 pages doi:10.1155/2012/413863 Research Article Laser Process for Selective Emitter Silicon Solar Cells G. Poulain, 1 D. Blanc, 1 A. Focsa, 1

More information

Available online at ScienceDirect. Energy Procedia 77 (2015 )

Available online at   ScienceDirect. Energy Procedia 77 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 321 330 5th International Conference on Silicon Photovoltaics, SiliconPV 2015 Electronic properties of Al p + surfaces

More information

OVER 14% EFFICIENCY ON RST-RIBBON SOLAR CELLS. ² Solarforce, 1 rue du Dauphin, Bourgoin-Jallieu, France

OVER 14% EFFICIENCY ON RST-RIBBON SOLAR CELLS. ² Solarforce, 1 rue du Dauphin, Bourgoin-Jallieu, France OVER 14% EFFICIENCY ON RST-RIBBON SOLAR CELLS P. Keller 1, U. Hess 1, S. Seren 1, J. Junge 1, F. de Moro², G. Hahn 1 1 University of Konstanz, Department of Physics, Jacob-Burckhardt-Str. 29, 78457 Konstanz,

More information

Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells

Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells Photoenergy Volume 2012, Article ID 971093, 5 pages doi:10.1155/2012/971093 Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells Bangwu Liu, Sihua Zhong, Jinhu Liu, Yang

More information

Available online at ScienceDirect. Energy Procedia 77 (2015 )

Available online at  ScienceDirect. Energy Procedia 77 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 356 363 5th International Conference on Silicon Photovoltaics, SiliconPV 2015 Potential-induced degradation for encapsulated

More information

Available online at ScienceDirect. Energy Procedia 77 (2015 )

Available online at   ScienceDirect. Energy Procedia 77 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 752 758 5th International Conference on Silicon Photovoltaics, SiliconPV 2015 Base contacts and selective emitters processed

More information

School of Photovoltaic and Renewable Energy Engineering

School of Photovoltaic and Renewable Energy Engineering School of Photovoltaic and Renewable Energy Engineering Silicon PV Education, Research and Industry in Australia R. Corkish, Head of School r.corkish@unsw.edu.au www.pv.unsw.edu.au Photo: K. McLean Context:

More information

24th European Photovoltaic Solar Energy Conference and Exhibition, September 2009, Hamburg, Germany.

24th European Photovoltaic Solar Energy Conference and Exhibition, September 2009, Hamburg, Germany. STATUS OF N-TYPE SOLAR CELLS FOR LOW-COST INDUSTRIAL PRODUCTION Arthur Weeber*, Ronald Naber, Nicolas Guillevin, Paul Barton, Anna Carr, Desislava Saynova, Teun Burgers, Bart Geerligs ECN Solar Energy,

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2007/11

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2007/11 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 1 763 086 A1 (43) Date of publication: 14.03.2007 Bulletin 2007/11 (21) Application number: 05447200.6 (51) Int Cl.: H01L 31/0216 (2006.01) H01L 31/0224 (2006.01)

More information

Available online at ScienceDirect. Energy Procedia 92 (2016 ) 37 41

Available online at   ScienceDirect. Energy Procedia 92 (2016 ) 37 41 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 92 (2016 ) 37 41 6th International Conference on Silicon Photovoltaics, SiliconPV 2016 Quantification of void defects on PERC solar

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at   ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 791 796 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Investigation of rear side selective laser

More information

Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling

Optimised Antireflection Coatings using Silicon Nitride on Textured Silicon Surfaces based on Measurements and Multidimensional Modelling Available online at www.sciencedirect.com Energy Procedia 15 (2012) 78 83 International Conference on Materials for Advanced Technologies 2011, Symposium O Optimised Antireflection Coatings using Silicon

More information

Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells

Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells Device Architecture and Lifetime Requirements for High Efficiency Multicrystalline Silicon Solar Cells The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

IMEC, LEUVEN, BELGIUM, 2 KU LEUVEN, BELGIUM, 3 U HASSELT, BELGIUM

IMEC, LEUVEN, BELGIUM, 2 KU LEUVEN, BELGIUM, 3 U HASSELT, BELGIUM INVESTIGATION OF RADIATION DAMAGE OF CU PLATED IBC CELLS CAUSED BY SPUTTERING OF SEED LAYER SUKHVINDER SINGH 1, BARRY O SULLIVAN 1, SHRUTI JAMBALDINNI 1, MAARTEN DEBUCQUOY 1 AND JEF POORTMANS 1,2,3 1 IMEC,

More information

Advances in High Efficiency Back Contact Back Junction Solar Cells

Advances in High Efficiency Back Contact Back Junction Solar Cells Current Photovoltaic Research 3(2) 45-49 (2015) pissn 2288-3274 Advances in High Efficiency Back Contact Back Junction Solar Cells Nagarajan Balaji 1) Cheolmin Park 1) Jayapal Raja 2) Junsin Yi 1,2) *

More information

Fig 1.1 Band Gap for Six-Junction Tandem Stack

Fig 1.1 Band Gap for Six-Junction Tandem Stack This research was, in part, funded by the U.S. Government. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies,

More information

Available online at ScienceDirect. Energy Procedia 67 (2015 ) Ran Chen*,Wei Zhang, Xi Wang, Xi Wang, Alison Lennon

Available online at   ScienceDirect. Energy Procedia 67 (2015 ) Ran Chen*,Wei Zhang, Xi Wang, Xi Wang, Alison Lennon Available online at www.sciencedirect.com ScienceDirect Energy Procedia 67 (2015 ) 194 202 5 th Workshop on Metallization for Crystalline Silicon Solar Cells Failure modes identified during adhesion testing

More information

Amorphous silicon / crystalline silicon heterojunction solar cell

Amorphous silicon / crystalline silicon heterojunction solar cell Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-9 "Amorphous Silicon / Cyrstalline Silicon Heterojunction Solar Cell" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy Amorphous

More information

HIGH EFFICIENCY INDUSTRIAL SCREEN PRINTED N-TYPE SOLAR CELLS WITH FRONT BORON EMITTER

HIGH EFFICIENCY INDUSTRIAL SCREEN PRINTED N-TYPE SOLAR CELLS WITH FRONT BORON EMITTER HIGH EFFICIENCY INDUSTRIAL SCREEN PRINTED N-TYPE SOLAR CELLS WITH FRONT BORON EMITTER V.D. Mihailetchi 1, Y. Komatsu 1, G. Coletti 1, R. Kvande 2, L. Arnberg 2, C. Knopf 3, K. Wambach 3, L.J. Geerligs

More information

Micro Structural Root Cause Analysis of Potential Induced Degradation in c-si Solar Cells

Micro Structural Root Cause Analysis of Potential Induced Degradation in c-si Solar Cells Available online at www.sciencedirect.com Energy Procedia 27 (2012 ) 1 6 SiliconPV: April 03-05, 2012, Leuven, Belgium Micro Structural Root Cause Analysis of Potential Induced Degradation in c-si Solar

More information

Effect of POCl 3 bubbler temperature on solar cells emitter characteristics

Effect of POCl 3 bubbler temperature on solar cells emitter characteristics SCIREA Journal of Science and Technology of Energy Sources http://www.scirea.org/journal/energy December 20, 2016 Volume 1, Issue 2, December 2016 Effect of POCl 3 bubbler temperature on solar cells emitter

More information

Investigation on the Impact of Metallic Surface Contaminations on Minority Carrier Lifetime of a-si:h Passivated Crystalline Silicon

Investigation on the Impact of Metallic Surface Contaminations on Minority Carrier Lifetime of a-si:h Passivated Crystalline Silicon Available online at www.sciencedirect.com Energy Procedia 8 (2011) 6 288 293 1 5 SiliconPV: 17-20 April 2011, Freiburg, Germany Investigation on the Impact of Metallic Surface Contaminations on Minority

More information

INDUSTRIAL IMPLEMENTATION OF EFFICIENCY IMPROVEMENTS IN N-TYPE SOLAR CELLS AND MODULES

INDUSTRIAL IMPLEMENTATION OF EFFICIENCY IMPROVEMENTS IN N-TYPE SOLAR CELLS AND MODULES INDUSTRIAL IMPLEMENTATION OF EFFICIENCY IMPROVEMENTS IN N-TYPE SOLAR CELLS AND MODULES I.G. Romijn 1, B. van Aken 1, J. Anker 1, A.R. Burgers 1, A. Gutjahr 1, B. Heurtault 1, M. Koppes 1, E. Kossen 1,

More information

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Crystalline Silicon Solar Cells With Two Different Metals Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588,

More information

Preservation of Si surface structure by Ag/Al contact spots an explanatory model

Preservation of Si surface structure by Ag/Al contact spots an explanatory model Available online at www.sciencedirect.com ScienceDirect Energy Procedia 00 (2015) 000 000 www.elsevier.com/locate/procedia 5th Workshop on Metallization of Crystalline Silicon Solar Cells Preservation

More information

2. High Efficiency Crystalline Si Solar Cells

2. High Efficiency Crystalline Si Solar Cells 2 High Efficiency Crystalline Si Solar Cells Students: Karthick Murukesan, Sandeep S S, Meenakshi Bhaisare, Bandana Singha, Kalaivani S and Ketan Warikoo Faculty members: Anil Kottantharayil, B M Arora,

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at  ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 320 325 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Boron implanted, laser annealed p + emitter

More information

Defect passivation of multicrystalline silicon solar cells by silicon nitride coatings

Defect passivation of multicrystalline silicon solar cells by silicon nitride coatings Materials Science-Poland, Vol. 24, No. 4, 2006 Defect passivation of multicrystalline silicon solar cells by silicon nitride coatings M. LIPIŃSKI 1*, P. PANEK 1, S. KLUSKA 2, P. ZIĘBA 1, A. SZYSZKA 3,

More information

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING Lynne Michaelson 1, Anh Viet Nguyen 2, Krystal Munoz 1, Jonathan C. Wang

More information

1 INTRODUCTION 2 EXPERIMENTATION

1 INTRODUCTION 2 EXPERIMENTATION COMPARISON OF POCL 3 & BBR 3 FURNACE DIFFUSSION DOPANT SOURCES TO PHOSPHORUS & BORON IMPLANT AND PLASMA DOPANT SOURCES FOR SELECTIVE EMITTER FORMATION USING LOCALIZED LASER MELT (LLM) ANNEALING EITHER

More information

TMAH texturisation and etching of interdigitated back-contact solar cells

TMAH texturisation and etching of interdigitated back-contact solar cells Materials Science-Poland, Vol. 24, No. 4, 2006 TMAH texturisation and etching of interdigitated back-contact solar cells P. PAPET, O. NICHIPORUK, A. FAVE, A. KAMINSKI *, B. BAZER-BACHI, M. LEMITI Laboratoire

More information

Comparison of PV Efficiency Using Different Types of Steam for Wet Thermal Oxidation

Comparison of PV Efficiency Using Different Types of Steam for Wet Thermal Oxidation Comparison of PV Efficiency Using Different Types of Steam for Wet Thermal Oxidation Jeffrey Spiegelman 1 Jan Benick 2 1 RASIRC 2 Fraunhofer Institute for Solar Energy Systems (ISE) PRINT this article

More information

Available online at ScienceDirect. Energy Procedia 92 (2016 )

Available online at   ScienceDirect. Energy Procedia 92 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 92 (2016 ) 633 637 6th International Conference on Silicon Photovoltaics, SiliconPV 2016 Back junction n-type silicon heterojunction

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

Application of infrared thermography to the characterization of multicristalline silicon solar cells

Application of infrared thermography to the characterization of multicristalline silicon solar cells Application of infrared thermography to the characterization of multicristalline silicon solar cells A. Kaminski, O. Nichiporuk*, J. Jouglar, P.L. Vuillermoz, A. Laugier Laboratoire de Physique de la Matière

More information

Simulation of the anneal of ion implanted boron emitters and the impact on the saturation current density

Simulation of the anneal of ion implanted boron emitters and the impact on the saturation current density Vailable online at www.sciencedirect.com Energy Procedia 27 (2012 ) 240 246 SiliconPV 2012, 03-05 April 2012, Leuven, Belgium Simulation of the anneal of ion implanted boron emitters and the impact on

More information

Available online at ScienceDirect. Energy Procedia 92 (2016 )

Available online at   ScienceDirect. Energy Procedia 92 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 92 (2016 ) 738 742 6th International Conference on Silicon Photovoltaics, SiliconPV 2016 Simplified fabrication of n-type Cz-Si HIP-MWT+

More information

Available online at ScienceDirect. Energy Procedia 77 (2015 )

Available online at   ScienceDirect. Energy Procedia 77 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 331 339 5th International Conference on Silicon Photovoltaics, SiliconPV 2015 Organic-silicon solar cells exceeding 20%

More information

Review Article High-Efficiency Crystalline Silicon Solar Cells

Review Article High-Efficiency Crystalline Silicon Solar Cells Advances in OptoElectronics Volume 2007, Article ID 97370, 15 pages doi:10.1155/2007/97370 Review Article High-Efficiency Crystalline Silicon Solar Cells S. W. Glunz Fraunhofer Institute for Solar Energy

More information

MRS Fall Meeting, Boston, USA, 28 November 2 December 2011

MRS Fall Meeting, Boston, USA, 28 November 2 December 2011 Examination of the properties of the interface of a-sin x :H/Si in crystalline silicon solar cells and its effect on cell efficiency Machteld W.P.E. Lamers 1, Keith Butler 2, Ingrid G. Romijn 1, John Harding

More information

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima Proceedings of 6th Thin Film Materials & Devices Meeting November 2-3, 2009, Kyoto, Japan http://www.tfmd.jp/ Characterization of SiO x /Si Interface Properties by Photo Induced Carrier Microwave Absorption

More information

6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term Solution to Problem Set 2 (16 pts)

6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term Solution to Problem Set 2 (16 pts) 6.777J/2.732J Design and Fabrication of Microelectromechanical Devices Spring Term 2007 By Brian Taff (Adapted from work by Feras Eid) Solution to Problem Set 2 (16 pts) Issued: Lecture 4 Due: Lecture

More information

ScienceDirect. Efficiency potential of p- and n-type high performance multicrystalline silicon

ScienceDirect. Efficiency potential of p- and n-type high performance multicrystalline silicon Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 633 638 5th International Conference on Silicon Photovoltaics, SiliconPV 2015 Efficiency potential of p- and n-type high

More information

Schottky-barrier and MIS solar cells

Schottky-barrier and MIS solar cells Schottky-barrier and MIS solar cells (Metal-Insulator- Semiconductor) Steve Byrnes NSE 290 Final Presentation December 1, 2008 Outline Background on Schottky barriers Dark and light I-V curves, and effect

More information

24th European Photovoltaic Solar Energy Conference, September 2009, Hamburg, Germany

24th European Photovoltaic Solar Energy Conference, September 2009, Hamburg, Germany 4th European Photovoltaic Solar Energy Conference, -5 September 9, Hamburg, Germany OPTIMIZATION OF LASER PROCESSES IN n + EMITTER FORMATION FOR c-si SOLAR CELLS A. Orpella, I. Martín, S. Blanque, C. Voz,

More information

Architectures for high-efficiency. crystalline silicon solar cells

Architectures for high-efficiency. crystalline silicon solar cells Architectures for high-efficiency 27 april 2011 crystalline silicon solar cells Miro Zeman, G. Yang, P. P. Moya, G. Limodio, A. Weeber, O. Isabella Department of Electrical Sustainable Energy Photovoltaic

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

Crystalline silicon surface passivation with SiON:H films deposited by medium frequency magnetron sputtering

Crystalline silicon surface passivation with SiON:H films deposited by medium frequency magnetron sputtering Available online at www.sciencedirect.com Physics Procedia 18 (2011) 56 60 The Fourth International Conference on Surface and Interface Science and Engineering Crystalline silicon surface passivation with

More information

Available online at ScienceDirect. Energy Procedia 92 (2016 )

Available online at   ScienceDirect. Energy Procedia 92 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 92 (2016 ) 880 885 6th International Conference on Silicon Photovoltaics, SiliconPV 2016 Characterization of Cu and Ni precipitates

More information

Presented at the 32nd European PV Solar Energy Conference and Exhibition, June 2016, Munich, Germany

Presented at the 32nd European PV Solar Energy Conference and Exhibition, June 2016, Munich, Germany IMPACT OF HIGH-TEMPERATURE PROCESSES ON CARRIER LIFETIME OF N-TYPE CZ SILICON S. Werner 1, A. Wolf 1, S. Mack 1, E. Lohmüller 1, R.C.G. Naber 2 1 Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at  ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 702 707 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Observation of the contact formation of

More information

Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafers, Blocks, and Ingots

Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafers, Blocks, and Ingots Test Methods for Contactless Carrier Recombination Lifetime in Silicon Wafers, Blocks, and Ingots Ronald A. Sinton Sinton Instruments, Inc. Boulder, Colorado USA SEMI Standards Meeting Hamburg, 21 September,

More information

Advances in PassDop technology: recombination and optics

Advances in PassDop technology: recombination and optics Available online at www.sciencedirect.com ScienceDirect Energy Procedia 124 (2017) 313 320 www.elsevier.com/locate/procedia 7th International Conference on Silicon Photovoltaics, SiliconPV 2017 Advances

More information

Lifetime degradation on n-type wafers with boron-diffused and SiO2/SiN-passivated surface

Lifetime degradation on n-type wafers with boron-diffused and SiO2/SiN-passivated surface Lifetime degradation on n-type wafers with boron-diffused and SiO2/SiN-passivated surface Clémentine Renevier, Erwann Fourmond, Maxime Forster, Stéphanie Parola, Marine Le Coz, Erwan Picard To cite this

More information

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018 ME 432 Fundamentals of Modern Photovoltaics Discussion 30: Contacts 7 November 2018 Fundamental concepts underlying PV conversion input solar spectrum light absorption carrier excitation & thermalization

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at  ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 618 623 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Cast silicon of varying purity for high

More information