Tensile Testing. Objectives

Size: px
Start display at page:

Download "Tensile Testing. Objectives"

Transcription

1 Laboratory 3 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine to achieve the required tensile properties. Students are able to explain load-extension and stress-strain relationships and represent them in graphical forms. To evaluate the values of ultimate tensile strength, yield strength, % elongation, fracture strain and Young s Modulus of the selected metals when subjected to uniaxial tensile loading. Students can explain deformation and fracture characteristics of different materials such as aluminium, steels or brass when subjected to uniaxial tensile loading. Mechanical metallurgy laboratory

2 1. Literature Review 1.1 Uniaxial tensile testing Uniaxial tensile test is known as a basic and universal engineering test to achieve material parameters such as ultimate strength, yield strength, % elongation, % area of reduction and Young s modulus. These important parameters obtained from the standard tensile testing are useful for the selection of engineering materials for any applications required. The tensile testing is carried out by applying longitudinal or axial load at a specific extension rate to a standard tensile specimen with known dimensions (gauge length and cross sectional area perpendicular to the load direction) till failure. The applied tensile load and extension are recorded during the test for the calculation of stress and strain. A range of universal standards provided by Professional societies such as American Society of Testing and Materials (ASTM), British standard, JIS standard and DIN standard provides testing are selected based on preferential uses. Each standard may contain a variety of test standards suitable for different materials, dimensions and fabrication history. For instance, ASTM E8: is a standard test method for tension testing of metallic materials and ASTM B557 is standard test methods of tension testing wronght and cast aluminium and magnesium alloy products A standard specimen is prepared in a round or a square section along the gauge length as shown in figures 1 a) and b) respectively, depending on the standard used. Both ends of the specimens should have sufficient length and a surface condition such that they are firmly gripped during testing. The initial gauge length L o is standardized (in several countries) and varies with the diameter (D o ) or the cross-sectional area (A o ) of the specimen as listed in table 1. This is because if the gauge length is too long, the % elongation might be underestimated in this case. Any heat treatments should be applied on to the specimen prior to machining to produce the final specimen readily for testing. This has been done to prevent surface oxide scales that might act as stress concentration which might subsequently affect the final tensile properties due to premature failure. There might be some exceptions, for examples, surface hardening or surface coating on the materials. These processes should be employed after specimen machining in order to obtain the tensile properties results which include the actual specimen surface conditions. Mechanical metallurgy laboratory

3 Figure 1: Standard tensile specimens Type specimen United State (ASTM) Great Britain Germany Sheet L / A ) ( o o Rod L / D ) ( o o Table 1: Dimensional relationships of tensile specimens used in different countries. The equipment used for tensile testing ranges from simple devices to complicated controlled systems. The so-called universal testing machines are commonly used, which are driven by mechanical screw or hydraulic systems. Figure 2 a) illustrates a relatively simple screw-driven machine using large two screws to apply the load whereas figure 2 b) shows a hydraulic testing machine using the pressure of oil in a piston for load supply. These types of machines can be used not only for tension, but also for compression, bending and torsion tests. A more modernized closed-loop servo-hydraulic machine provides variations of load, strain, or testing machine motion (stroke) using a combination of actuator rod and piston. Most of the machines used nowadays are linked to a computer-controlled system in which the load and extension data can be graphically displayed together with the calculations of stress and strain. General techniques utilized for measuring loads and displacements employs sensors providing electrical signals. Load cells are used for measuring the load applied while strain gauges are used for strain measurement. A Change in a linear dimension is proportional to the change in electrical voltage of the strain gauge attached on to the specimen. Mechanical metallurgy laboratory

4 Figure 2: Schematics showing a) a screw driven machine and b) a hydraulic testing machine[3]. 1.2 Stress and strain relationship When a specimen is subjected to an external tensile loading, the metal will undergo elastic and plastic deformation. Initially, the metal will elastically deform giving a linear relationship of load and extension. These two parameters are then used for the calculation of the engineering stress and engineering strain to give a relationship as illustrated in figure 3 using equations 1 and 2 as follows P σ = (1) A o L L f o ε = = (2) L o L L o where σ is the engineering stress ε is the engineering strain P is the external axial tensile load A o is the original cross-sectional area of the specimen L o is the original length of the specimen L f is the final length of the specimen The unit of the engineering stress is Pascal (Pa) or N/m 2 according to the SI Metric Unit whereas the unit of psi (pound per square inch) can also be used. Mechanical metallurgy laboratory

5 1.2.1 Young s modulus, E During elastic deformation, the engineering stress-strain relationship follows the Hook s Law and the slope of the curve indicates the Young s modulus (E) σ E = ε (3) Young s modulus is of importance where deflection of materials is critical for the required engineering applications. This is for examples: deflection in structural beams is considered to be crucial for the design in engineering components or structures such as bridges, building, ships, etc. The applications of tennis racket and golf club also require specific values of spring constants or Young s modulus values. Figure 3: Stress-strain relationship under uniaxial tensile loading Mechanical metallurgy laboratory

6 1.2.2 Yield strength, σ y By considering the stress-strain curve beyond the elastic portion, if the tensile loading continues, yielding occurs at the beginning of plastic deformation. The yield stress, σ y, can be obtained by dividing the load at yielding (P y ) by the original cross-sectional area of the specimen (A o ) as shown in equation 4. P y σ y = (4) Ao The yield point can be observed directly from the load-extension curve of the BCC metals such as iron and steel or in polycrystalline titanium and molybdenum, and especially low carbon steels, see figure 3 a). The yield point elongation phenomenon shows the upper yield point followed by a sudden reduction in the stress or load till reaching the lower yield point. At the yield point elongation, the specimen continues to extend without a significant change in the stress level. Load increment is then followed with increasing strain. This yield point phenomenon is associated with a small amount of interstitial or substitutional atoms. This is for example in the case of low-carbon steels, which have small atoms of carbon and nitrogen present as impurities. When the dislocations are pinned by these solute atoms, the stress is raised in order to overcome the breakaway stress required for the pulling of dislocation line from the solute atoms. This dislocation pinning is related to the upper yield point as indicated in figure 4 a). If the dislocation line is free from the solute atoms, the stress required to move the dislocations then suddenly drops, which is associated with the lower yield point. Furthermore, it was found that the degree of the yield point effect is affected by the amounts of the solute atoms and is also influenced by the interaction energy between the solute atoms and the dislocations. Aluminium on the other hand having a FCC crystal structure does not show the definite yield point in comparison to those of the BCC structure materials, but shows a smooth engineering stressstrain curve. The yield strength therefore has to be calculated from the load at 0.2% strain divided by the original cross-sectional area as follows P 0.2% 0.2% y = Ao σ...(5) Mechanical metallurgy laboratory

7 Note: the yield strength values can also be obtained at 0.5 and 1.0% strain. The determination of the yield strength at 0.2% offset or 0.2% strain can be carried out by drawing a straight line parallel to the slope of the stress-strain curve in the linear section, having an intersection on the x-axis at a strain equal to as illustrated in figure 3 b). An interception between the 0.2% offset line and the stress-strain curve represents the yield strength at 0.2% offset or 0.2% strain. However offset at different values can also be made depending on specific uses: for instance; at 0.1 or 0.5% offset. The yield strength of soft materials exhibiting no linear portion to their stress-strain curve such as soft copper or gray cast iron can be defined as the stress at the corresponding total strain, for example, ε = The yield strength, which indicates the onset of plastic deformation, is considered to be vital for engineering structural or component designs where safety factors are normally used as shown in equation 6. For instance, if the allowable working strength σ w = 500 MPa to be employed with a safety factor of 1.8, the material with a yield strength of 900 MPa should be selected. It should be noted that the yield strength value can also be replaced by the ultimate tensile strength, σ TS, for engineering designs. Safety factors are based on several considerations; the accuracy of the applied loads used in the structural or components, estimation of deterioration, and the consequences of failed structures (loss of life, financial, economical loss, etc.) Generally, buildings require a safety factor of 2, which is rather low since the load calculation has been well understood. Automobiles has safety factor of 2 while pressure vessels utilize safety factors of 3-4. σy σ w, Safety Factor σ TS = (6) Safety Factor Mechanical metallurgy laboratory

8 Figure 4: a) Comparative stress-strain relationships of low carbon steel and aluminium alloy and b) the determination of the yield strength at 0.2% offset Ultimate Tensile Strength, σ TS Beyond yielding, continuous loading leads to an increase in the stress required to permanently deform the specimen as shown in the engineering stress-strain curve. At this stage, the specimen is strain hardened or work hardened. The degree of strain hardening depends on the nature of the deformed materials, crystal structure and chemical composition, which affects the dislocation motion. FCC structure materials having a high number of operating slip systems can easily slip and create a high density of dislocations. Tangling of these dislocations requires higher stress to uniformly and plastically deform the specimen, therefore resulting in strain hardening. If the load is continuously applied, the stress-strain curve will reach the maximum point, which is the ultimate tensile strength (UTS, σ TS ). At this point, the specimen can withstand the highest stress before necking takes place. This can be observed by a local reduction in the crosssectional area of the specimen generally observed in the centre of the gauge length as illustrated in figure 5. Mechanical metallurgy laboratory

9 P max σ TS = (6) A o Fracture Strength, σ f After necking, plastic deformation is not uniform and the stress decreases accordingly until fracture. The fracture strength (σ fracture ) can be calculated from the load at fracture divided by the original cross-sectional area, A o, as expressed in equation 7. P fracture σ fracture = (7) Ao Fracture Strain, ε f Figure 5: Necking of a tensile specimen occurring prior to fracture Tensile ductility Tensile ductility of the specimen can be represented as % elongation or % reduction in area as expressed in the equations given below Mechanical metallurgy laboratory

10 L % Elongation = 100 (8) L o % RA = A A A o A 100 = 100 A o f (9) 0 where A f is the cross-sectional area of specimen at fracture. The fracture strain of the specimen can be obtained by drawing a straight line starting at the fracture point of the stress-strain curve parallel to the slope in the linear relation. The interception of the parallel line at the x axis indicates the fracture strain of the specimen being tested Work hardening exponent, n Furthermore, material behavior beyond the elastic region where stress-strain relationship is no loner linear (uniform plastic deformation) can be shown as a power law expression as follows n σ = Kε (10) Where σ ε n K is the true stress is the true strain is the strain-hardening exponent is the strength coefficient The strain-hardening exponent values, n, of most metals range between , which can be estimated from a slope of a log true stress-log true strain plot up to the maximum load as shown in figure 5. Equation 10 can then be written as follows log = nlogε + logk σ (11) Y = mx + C (12) Mechanical metallurgy laboratory

11 While n is the slope (m) and the K value indicates the value of the true stress at the true strain equal to unity as illustrated in figure 6. High value of the strain-hardening exponent indicates an ability of a metal to be readily plastically deformed under applied stresses. This is also corresponding with a large area under the stress-strain curve up to the maximum load. This power law expression has been modified variably according to materials of interest especially for steels and stainless steels. K Figure 6: Slope of log true stress- log true strain curve up to the ultimate tensile strength indicating the work hardening exponent (n value) [3] Modulus of Resilence, U R Apart from tensile parameters mentioned previously, analysis of the area under the stressstrain curve can give informative material behavior and properties. By considering the area under the stress-strain curve in the elastic region (triangular area) as illustrated in figure 7, this area represents the stored elastic energy or resilence. The latter is the ability of the materials to store elastic energy which is measured as a modulus of resilence, U R, as follows U R 2 1 σo σ oεo = 2 2E = (13) Mechanical metallurgy laboratory

12 The significance of this parameter is considered by looking at the application of mechanical springs which requires high yield stress and low Young s modulus. For example, high carbon spring steel has the modulus of resilence of 2250 kpa while that of medium carbon steel is only 232 kpa Tensile toughness, U T Tensile toughness, U T, can be considered as the area under the entire stress-strain curve which indicates the ability of the material to absorb energy in the plastic region. In other words, tensile toughness is the ability of the material to withstand the external applied forces without experiencing failure. Engineering applications that requires high tensile toughness is for example gear, chains and crane hooks, etc. The tensile toughness can be estimated from an expression as follows U T σ + σ o u σuε f or ε f (14) 2 Fig 7: Area under the stress-strain curve of high carbon spring steel and structural steel [2]. 1.3 Fracture characteristics of the tested specimens Metals with good ductility normally exhibit a so-called cup and cone fracture characteristic observed on either halves of a broken specimen as illustrated in figure 8. Necking starts when the stress-strain curve has passed the maximum point where plastic deformation is no longer uniform. Across the necking area within the specimen gauge length (normally located in the middle), microvoids are formed, enlarged and then merged to each other as the load is increased. This creates a crack having a plane perpendicular to the applied tensile stress. Just before the specimen breaks, the Mechanical metallurgy laboratory

13 shear plane of approximately 45 o to the tensile axis is formed along the peripheral of the specimen. This shear plane then joins with the former crack to generate the cup and cone fracture as demonstrated in figure 8. The rough or fibrous fracture surfaces appear in grey by naked eyes. Under SEM, copious amounts of microvoids are observed as depicted in figure 9. This type of fracture surface signifies high energy absorption during the fracture process due to large amount of plastic deformation taking place, also indicating good tensile ductility. Metals such as aluminium and copper normally exhibit ductile fracture behavior due to a high number of slip systems available for plastic deformation. For brittle metals or metals that failed at relatively low temperatures, the fracture surfaces usually appear bright and consist of flat areas of brittle facets when examined under SEM as illustrated in figure 10. In some cases, clusters of these brittle facets are visible when the grain size of the metal is sufficiently large. The energy absorption is quite small in this case which indicates relatively low tensile ductility due to limited amount of plastic deformation prior to failure. Figure 8: Cup and cone fracture [4] Mechanical metallurgy laboratory

14 Figure 9: Ductile fracture surface (Ductile metals) Figure 10: Brittle fracture surface (Brittle metals) In summary, tensile properties should be considered as important design parameters for the selection of engineering materials for their desired application. Engineers have played a significant role in that they should be able to analyze and understand material behavior and properties through these mechanical testing parameters. Table 2 lists tensile properties of various engineering materials. Table 2 Tensile properties of metals [2] Mechanical metallurgy laboratory

15 2. Materials and equipment 2.1 Tensile specimens 2.2 Micrometer or vernia calipers 2.3 Universal testing machine 2.4 Stereoscope 3. Experimental procedure 3.1 The specimens provided are made of aluminium, steel and brass. Measure and record specimen dimensions (diameter and gauge length) in a table provided for the calculation of the engineering stress and engineering strain. Marking the location of the gauge length along the parallel length of each specimen for subsequent observation of necking and strain measurement. 3.2 Fit the specimen on to the universal Testing Machine (UTM) and carry on testing. Record load and extension for the construction of stress-strain curve of each tested specimen. 3.3 Calculate Young s modulus, yield strength, ultimate tensile strength, fracture strain, % elongation and % area of reduction of each specimen and record on the provided table. 3.4 Analyze the fracture surfaces of broken specimens using stereoscope, sketch and describe the results. 3.5 Discuss the experimental results and give conclusions. Mechanical metallurgy laboratory

16 4. Results Details Aluminium Steel Brass Diameter (mm) Width (mm) Thickness (mm) Cross-sectional area (mm 2 ) Gauge length (mm) Young s modulus (GPa) Load at yield point (N) Yield strength (MPa) Maximum load (N) Ultimate tensile strength (MPa) % Elongation % Area of reduction Fracture strain Work hardening exponent (n) Fracture mode Fracture surfaces (Sketch) Table 3: Experimental data for tensile testing. Mechanical metallurgy laboratory

17 Engineering stress-strain curve of aluminium Describe the engineering stress-strain curve Mechanical metallurgy laboratory

18 Engineering stress-strain curve of steel Describe the engineering stress-strain curve Mechanical metallurgy laboratory

19 Engineering stress-strain curve of brass Describe the engineering stress-strain curve Mechanical metallurgy laboratory

20 5. Discussion Mechanical metallurgy laboratory

21 6. Conclusions Mechanical metallurgy laboratory

22 7. Questions 7.1 What is work hardening exponent (n)? How is this value related to the ability of metal to be mechanically formed? 7.2 If the tensile specimen is not cylindrical rod shaped but a flat rectangular plate, how do you expect necking to occur in this type of specimen? Mechanical metallurgy laboratory

23 7.3 Both yield strength and ultimate tensile strength exhibit the ability of a material to withstand a certain level of load. Which parameter do you prefer to use as a design parameter for a proper selection of materials for structural applications? Explain 8. References 8.1 Hashemi, S. Foundations of materials science and engineering, 2006, 4 th edition, McGraw- Hill, ISBN Dieter, G.E., Mechanical metallurgy, 1988, SI metric edition, McGraw-Hill, ISBN Norman E. Dowling, Mechanical Behavior of Materials, Prentice-Hall International, W.D. Callister, Fundamental of materials science and engineering/an interactive e. text, 2001, John Willey & Sons, Inc., New York, ISBN x Mechanical metallurgy laboratory

Correlation between Engineering Stress-Strain and True Stress-Strain Curve

Correlation between Engineering Stress-Strain and True Stress-Strain Curve American Journal of Civil Engineering and Architecture, 2014, Vol. 2, No. 1, 53-59 Available online at http://pubs.sciepub.com/ajcea/2/1/6 Science and Education ublishing DOI:10.12691/ajcea-2-1-6 Correlation

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Outline Tension and compression

More information

MECHANICAL PROPERTIES AND TESTS. Materials Science

MECHANICAL PROPERTIES AND TESTS. Materials Science MECHANICAL PROPERTIES AND TESTS Materials Science Stress Stress is a measure of the intensity of the internal forces acting within a deformable body. Mathematically, it is a measure of the average force

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Engineering Materials

Engineering Materials Engineering Materials Mechanical Properties of Engineering Materials Mechanical testing of engineering materials may be carried out for a number of reasons: The tests may simulate the service conditions

More information

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS 1. INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective is

More information

Movement of edge and screw dislocations

Movement of edge and screw dislocations Movement of edge and screw dislocations Formation of a step on the surface of a crystal by motion of (a) n edge dislocation: the dislocation line moves in the direction of the applied shear stress τ. (b)

More information

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom Chapter 4 MECHANICAL PROPERTIES OF MATERIAL By: Ardiyansyah Syahrom Chapter 2 STRAIN Department of Applied Mechanics and Design Faculty of Mechanical Engineering Universiti Teknologi Malaysia 1 Expanding

More information

11/2/2018 7:58 PM. Chapter 6. Mechanical Properties of Metals. Mohammad Suliman Abuhaiba, Ph.D., PE

11/2/2018 7:58 PM. Chapter 6. Mechanical Properties of Metals. Mohammad Suliman Abuhaiba, Ph.D., PE 1 Chapter 6 Mechanical Properties of Metals 2 Assignment 7, 13, 18, 23, 30, 40, 45, 50, 54 4 th Exam Tuesday 22/11/2018 3 WHY STUDY Mechanical Properties of Metals? How various mechanical properties are

More information

Chapter 2: Mechanical Behavior of Materials

Chapter 2: Mechanical Behavior of Materials Chapter : Mechanical Behavior of Materials Definition Mechanical behavior of a material relationship - its response (deformation) to an applied load or force Examples: strength, hardness, ductility, stiffness

More information

MECHANICS OF MATERIALS. Mechanical Properties of Materials

MECHANICS OF MATERIALS. Mechanical Properties of Materials MECHANICS OF MATERIALS Mechanical Properties of Materials By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Understand the concept of tension and

More information

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414 FME201 Solid & Structural Mechanics I Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 11am -1pm (CELT) Tutorial Tue 12-1pm (E207) 10/1/2013 1 CHAPTER OBJECTIVES Show relationship of stress

More information

Mechanical Characterisation of Materials

Mechanical Characterisation of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology, Dhaka MME298 Structure and Properties of Biomaterials Sessional 1.50 Credits 3.00 Hours/Week July

More information

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals 1496T_c06_131-173 11/16/05 17:06 Page 166 166 Chapter 6 / Mechanical Properties of Metals IMPORTANT TERMS AND CONCEPTS Anelasticity Design stress Ductility Elastic deformation Elastic recovery Engineering

More information

ENGINEERING MATERIAL 100

ENGINEERING MATERIAL 100 Department of Applied Chemistry Division of Science and Engineering SCHOOL OF ENGINEERING ENGINEERING MATERIAL 100 Experiments 4 and 6 Mechanical Testing and Applications of Non-Metals Name: Yasmin Ousam

More information

Tensile/Tension Test Advanced Topics

Tensile/Tension Test Advanced Topics CIVE.3110 Engineering Materials Laboratory Fall 2017 Tensile/Tension Test Advanced Topics Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

Materials Properties 2

Materials Properties 2 Materials Properties 2 Elastic Deformation Most metals can only obey hook s law for s up to 0.005 Elastic Plastic y P Nearly all engineering is performed in the elastic region 0.002 Elastic Plastic y P

More information

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr)

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr) 1 st Semester 1431/1432 3 rd Mid-Term Exam (1 hr) Question 1 a) Answer the following: 1. Do all metals have the same slip system? Why or why not? 2. For each of edge, screw and mixed dislocations, cite

More information

MECHANICAL PROPERTIES PROPLEM SHEET

MECHANICAL PROPERTIES PROPLEM SHEET MECHANICAL PROPERTIES PROPLEM SHEET 1. A tensile test uses a test specimen that has a gage length of 50 mm and an area = 200 mm 2. During the test the specimen yields under a load of 98,000 N. The corresponding

More information

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. 11.1 AXIAL STRAIN When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. In addition, the bar increases in length, as shown: 11.1

More information

Tensile/Tension Test Fundamentals

Tensile/Tension Test Fundamentals CIVE.3110 Engineering Materials Laboratory Fall 2016 Tensile/Tension Test Fundamentals Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) of Materials Course KGP003 Ch. 6 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Mohs scale

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

P A (1.1) load or stress. elongation or strain

P A (1.1) load or stress. elongation or strain load or stress MEEN 3145 TENSION TEST - BACKGROUND The tension test is the most important and commonly used test in characterizing properties of engineering materials. This test gives information essential

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices on Pavement Structure NDT measurement of pavement surface

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction

More information

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties?

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties? Mechanical Properties Why mechanical properties? Folsom Dam Gate Failure, July 1995 Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles,

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

Deformation, plastic instability

Deformation, plastic instability Deformation, plastic instability and yield-limited design Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Material

More information

Question Paper Code : 11410

Question Paper Code : 11410 Reg. No. : Question Paper Code : 11410 B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 Fourth Semester Mechanical Engineering ME 2254 STRENGTH OF MATERIALS (Common to Automobile Engineering and Production

More information

Lab Exercise #2: Tension Testing (Uniaxial Stress)

Lab Exercise #2: Tension Testing (Uniaxial Stress) Lab Exercise #2: (Uniaxial Stress) Learning Outcomes: 1. Understand the basic concepts of stress and strain 2. Identify the engineering material properties 3. Connect stress and strain through Hooke s

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

Mechanical Properties

Mechanical Properties Stress-strain behavior of metals Elastic Deformation Plastic Deformation Ductility, Resilience and Toughness Hardness 108 Elastic Deformation bonds stretch δ return to initial Elastic means reversible!

More information

The Mechanical Properties of Polymers

The Mechanical Properties of Polymers The Mechanical Properties of Polymers Date: 14/07/2018 Abu Zafar Al Munsur Behavior Of Material Under Mechanical Loads = Mechanical Properties. Term to address here Stress and strain: These are size-independent

More information

Engineering Materials

Engineering Materials Engineering Materials PREPARED BY IAT Curriculum Unit August 2010 Institute of Applied Technology, 2010 Module Objectives After the completion of this module, the student will be able to: Explain the difference

More information

Chapter Outline Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline Mechanical Properties of Metals How do metals respond to external loads? Chapter Outline Mechanical Properties of Metals How do metals respond to external loads?! Stress and Strain " Tension " Compression " Shear " Torsion! Elastic deformation! Plastic Deformation " Yield Strength

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Experiment 4 - Testing of Materials in Tension

Experiment 4 - Testing of Materials in Tension Experiment 4 - Testing of Materials in Tension Object: The object of this experiment is to measure the tensile properties of two polymeric materials, steel and aluminum at a constant strain rate on the

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS Stress-Strain Relationships Hardness Effect of Temperature on Properties Fluid Properties Viscoelastic Behavior of Polymers Mechanical Properties in Design and Manufacturing

More information

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4.

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Mechanical behaviour of ceramics 7.5. Mechanical behaviour of polymers

More information

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

The Design and Fabrication of Compression and Extension Testing Machine

The Design and Fabrication of Compression and Extension Testing Machine The Design and Fabrication of Compression and Extension Testing Machine S.O. Amiebenomo 1 and S.Yesufu 2 1 Department of Mechanical Engineering, Ambrose Alli University, Ekpoma, Edo State, Nigeria, 2 Contech

More information

PLASTIC DEFORMATION AND THE ONSET OF TENSILE INSTABILITY

PLASTIC DEFORMATION AND THE ONSET OF TENSILE INSTABILITY PLASTIC DEFORMATION AND THE ONSET OF TENSILE INSTABILITY Introduction In this experiment the plastic deformation behavior and the onset of plastic instability of some common structural alloys is investigated.

More information

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. 11.1 AXIAL STRAIN When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. In addition, the bar increases in length, as shown: 11.1

More information

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals Materials Engineering 272-C Fall 2001, Lectures 9 & 10 Introduction to Mechanical Properties of Metals From an applications standpoint, one of the most important topics within Materials Science & Engineering

More information

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior -1-2 -3-4 ( ) -5 ( ) -6-7 -8-9 -10-11 -12 ( ) Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior 6- Plastic behavior 7- Uniaxial tensile load 8- Bi-axial tensile

More information

MECHANICAL PROPERTIES. (for metals)

MECHANICAL PROPERTIES. (for metals) MECHANICAL PROPERTIES (for metals) 1 Chapter Outline Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The

More information

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties.

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. 1 2 Mechanical properties. 3 The intended learning outcomes from this lecture summary are that you

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties Engineering Part IA Paper 2: Structures and Materials MATERIALS FIRST YEAR Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties Straightforward questions are marked with a Tripos

More information

Steps in Failure Analysis

Steps in Failure Analysis 1 Course Materials 1. W.D. Callister, Jr., D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th Ed, John Wiley and Sons, 2010. 2. G.E. Dieter, Mechanical Metallurgy (SI Metric Edition),

More information

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN CITY AND GUILDS 910 Unit 130 MECHANICS O MACHINES AND STRENGTH O MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN Outcome 1 Explain static equilibrium, Newton's laws, and calculation of reaction

More information

Engineering Materials

Engineering Materials Engineering Materials PREPARED BY Academic Services August 2011 Applied Technology High Schools, 2011 Module Objectives After the completion of this module, the student will be able to: Explain the difference

More information

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures SMU 2113 ENGINEERING SCIENCE PART 1 Introduction to Mechanics of Materials and Structures These slides are designed based on the content of these reference textbooks. OBJECTIVES To introduce basic principles

More information

3. Mechanical Properties of Materials

3. Mechanical Properties of Materials 3. Mechanical Properties of Materials 3.1 Stress-Strain Relationships 3.2 Hardness 3.3 Effect of Temperature on Properties 3.4 Fluid Properties 3.5 Viscoelastic Properties Importance of Mechanical Properties

More information

Mechanical Properties of Materials

Mechanical Properties of Materials INTRODUCTION Mechanical Properties of Materials Many materials, when in service, are subjected to forces or loads, it is necessary to know the characteristics of the material and to design the member from

More information

Engineering Materials

Engineering Materials Engineering Materials PREPARED BY Academic Services August 2011 Institute of Applied Technology, 2011 Module Objectives After the completion of this module, the student will be able to: Explain the terms

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature. Final Exam Wednesday, March 21, noon to 3:00 pm (160 points total) 1. TTT Diagrams A U.S. steel producer has four quench baths, used to quench plates of eutectoid steel to 700 C, 590 C, 350 C, and 22 C

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3.

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3. The Avogadro's number = 6.02 10 23 1 lb = 4.45 N 1 nm = 10 Å = 10-9 m SE104 Structural Materials Sample Midterm Exam Multiple choice problems (2.5 points each) For each problem, choose one and only one

More information

Mechanical Behaviour of Materials Chapter 10 Fracture morpholgy

Mechanical Behaviour of Materials Chapter 10 Fracture morpholgy Mechanical Behaviour of Materials Chapter 10 Fracture morpholgy Dr.-Ing. 郭瑞昭 Example of fracture Classification of fracture processes: Deformation behavior of materials elastic Linear-elastic fracture

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors MME 291: Lecture 10 Mechanical Properties of Materials 2 Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Plastic stress- behaviour of metals Energy of mechanical ldeformation Hardness

More information

STRENGTH OF MATERIALS laboratory manual

STRENGTH OF MATERIALS laboratory manual STRENGTH OF MATERIALS laboratory manual By Prof. Shaikh Ibrahim Ismail M.H. Saboo Siddik College of Engineering, MUMBAI TABLE OF CONTENT Sr. No. Title of Experiment page no. 1. Study of Universal Testing

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Workshop Practice TA 102

Workshop Practice TA 102 Workshop Practice TA 102 Lec 2 & 3 :Engineering Materials By Prof.A.Chandrashekhar Engineering Materials Materials play an important role in the construction and manufacturing of equipment/tools. Right

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister You need to be able to: Name the properties determined in a tensile test including UTS,.2% offset yield strength, Elastic Modulus,

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? Stress and strain: What are they and why are they used instead of load

More information

The designs, depending upon the methods used, may be classified as follows:

The designs, depending upon the methods used, may be classified as follows: Definition Machine Design is the creation of new and better machines and improving the existing ones. A new or better machine is one which is more economical in the overall cost of production and operation.

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys Fatigue and Creep of Materials Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Fatigue failure Laboratory fatigue test The S-N Ncurve Fractography of fractured surface Factors improving fatigue life

More information

Concepts of stress and strain

Concepts of stress and strain Chapter 6: Mechanical properties of metals Outline Introduction Concepts of stress and strain Elastic deformation Stress-strain behavior Elastic properties of materials Plastic deformation Yield and yield

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

Transition temperature

Transition temperature Transition temperature Different criteria are used to determine the transition temperature, depending on the purpose of the application. Various criteria of transition temperature obtained from Charpy

More information

THE MECHANICAL PROPERTIES OF STAINLESS STEEL

THE MECHANICAL PROPERTIES OF STAINLESS STEEL THE MECHANICAL PROPERTIES OF STAINLESS STEEL Stainless steel is primarily utilised on account of its corrosion resistance. However, the scope of excellent mechanical properties the within the family of

More information

Sheet Metal: High ratio of surface area to thickness Thickness < 6mm Sheet Thickness > 6mm plate

Sheet Metal: High ratio of surface area to thickness Thickness < 6mm Sheet Thickness > 6mm plate Sheet Metal: High ratio of surface area to thickness Thickness < 6mm Sheet Thickness > 6mm plate Sheet metal forming is a process that materials undergo permanent deformation by cold forming to produce

More information

Chapter 6: Mechanical Properties: Part One

Chapter 6: Mechanical Properties: Part One Slide 1 Chapter 6: Mechanical Properties: Part One ` 6-1 Slide 2 Learning Objectives 1. Technological significance 2. Terminology for mechanical properties 3. The tensile test: Use of the stress strain

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 4 Properties in Bending and Shear Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures Chapter 1 The Structure of Metals Body Centered Cubic (BCC) Structures Figure 1. The body-centered cubic (bcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit

More information

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 PROPERTIES OF HEAT TREATED STEEL

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 PROPERTIES OF HEAT TREATED STEEL 1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine MIT Spring 2004 Purpose: LABORATORY ASSIGNMENT NUMBER 10 PROPERTIES OF HEAT TREATED STEEL You will learn about: (1) Measurement of

More information

Experimental and Numerical Analysis of Negative Spring back in Interstitial Free (IF) Steel

Experimental and Numerical Analysis of Negative Spring back in Interstitial Free (IF) Steel Experimental and Numerical Analysis of Negative Spring back in Interstitial Free (IF) Steel Rohit Shukla a,*, Vijay Gautam b a Department of Automobile Engineering, Delhi Technological University, Delhi,

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH Plastically deforming metal at low temperatures affects physical

More information

26. Irradiation Induced Mechanical Property Changes: Hardening and Embrittlement

26. Irradiation Induced Mechanical Property Changes: Hardening and Embrittlement 26. Irradiation Induced Mechanical Property Changes: Hardening and Embrittlement 26.1 Introduction... 2 26.2. Changes in the Stress-strain curve after irradiation... 2 26.3 Hardening by Irradiation induced

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION Prepared by Duanjie Li, PhD & Pierre Leroux 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard

More information