Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Size: px
Start display at page:

Download "Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries"

Transcription

1 PSI-SR-1261 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman R. Pawle K. White J. Lennhoff A. Newman, R. Pawle, K. White, J. Lennhoff, "Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries," presented at 42nd Power Sources Conference (Philadelphia, PA), (12-15 June2006). Copyright 2006 Physical Sciences Inc. All rights reserved Downloaded from the Physical Sciences Inc. Library. Abstract available at

2 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman, R. Pawle, K. White, and J. Lennhoff Physical Sciences Inc. 20 New England Business Center Andover, MA tel ; fax Abstract: Lithium-ion cells placed in series are prone to overcharging, leading to shortened cycle life. The current method of control is expensive, yet ineffective, external control circuitry. We have addressed this problem by developing an alternative separator that reversibly becomes conductive when a cell reaches an overvoltage condition, shunting electrons between the electrodes at current densities up to 10 ma/cm 2. At cell operating voltages, the porous separator functions as a typical ion shuttle. For manufacturing concerns, the tensile yield strength of the durable film is 6.8 MPa (normalized force to film width of 0.17 N/mm). Keywords: conductive polymer; overcharge; cycle life; hybrid electric vehicle Introduction Lithium-ion cells need to be charged to a specified cut-off voltage in order to maintain safe operation and to achieve high cycle and calendar life. Generally, lithium-ion cells are used in battery packs with cells in series, e.g. laptop computers and hybrid electric vehicles. Even when cells are balanced for capacity and impedance, the capacity fade of the battery will vary. These cell to cell capacity variations result in overcharging of the low capacity cells without the additional monitoring and control circuitry. Controlling overcharge with either a redox shuttle or with an electroactive polymer have met with limited success due to voltage and current density constraints. Redox shuttles decompose at the charging voltages of commercial lithiumion cells and can not carry sufficient current [1]. Electroactive polymers have been suggested for controlling overcharge, but also have voltage and current density limitations. The polymer film switches from an insulator to a conductor upon overcharging. After the charging current is removed, the polymer returns to an insulator. This reversible process is shown in Figure 1. The shortcomings are due to the low oxidation potential and low loading of the electroactive polymer into an industry standard separator. [2]. In this work, PSI has developed a separator that contains electroactive poly(alkylthiophene) as an integral component of the separator rather than as an added polymer to an existing separator, while not compromising porosity. This technology provides higher overcharge current density shunting. Li + (a) Cell Charge V cell <4.3 (b) G-9231 Cell Overcharge V cell >4.3 Figure 1. Cell schematic for reversible electroactive polymer separator. Experimental Thin film separators, which were solvent cast, are composed of electroactive poly(alkylthiophene), binder polymer, and battery electrolyte soluble polymer. The porosity is created in-situ with selective dissolution of the soluble polymer. Electrochemical and mechanical testing of these films were performed. Coin cell-type testing uses a commercial LiCoO 2 positive versus lithium foil negative electrodes with 1M LiPF 6 in 1:1 EC:DMC electrolyte. Cyclic voltammatry (CV) was performed on poly(alkylthiophene) in flooded cell versus lithium as counter and reference. Using ASTM standard D882-02, we measured the tensile load and yield strength of the film using an Instron 4442 tensile tester [3]. Results and Discussion We have produced various formulations of experimental films that switch between insulator and conductor. The following results include thin film cyclic voltammetry, full cell testing, and film tensile testing.

3 Cyclic voltammograms were produced on candidate PATs for selecting the appropriate electroactive poly(alkylthiophene) (PAT). Figure 2 shows two types of poly(alkylthiophenes) (PAT). With the selection of the PAT, the oxidation potential can be tuned for different electrode couples. The oxidation potential difference between these two types of polymers is 500 mv. Current (ma) mV/sec PAT PAT Voltage (V vs. Li/Li+) H-7588 Figure 2. Cyclic Voltammogram for two types of PAT. aprotic solvent. Due to the polymer blend s limited solubility, multiple passes of solution were cast to build the separator film. The number of passes should be kept to a minimum in order to ensure a conductive pathway through the separator. Figure 4 shows an example for sample. The in-situ created open structure, an electrolyte conduit, is formed by the dissolution of one of the three polymers in the film. Current (µm) Voltage (V vs. Li/Li+) Figure 3. Poly(alkylthiophene) CV. H-7589 PAT1 is the conductive polymer used for making the separator due to its higher oxidation potential. Sample PAT2 with a lower oxidation potential is more conductive, as indicated by the larger measured current, while testing at the same scan rate of 1 mv/sec. PAT1 was selected for the formulation studies. Table 1 lists the experimental formulations investigated and their sample identification. Table 1. Sample Descriptions Sample ID 3XPT 4XPT 5XPT Relative PAT Level Base level of PAT 3 x PAT 4 x PAT 5 x PAT Figure 4. Cross-section of film. Figure 3 shows the CV of PAT1, which is the active component of this film. Note that the oxidizing voltage is ~ 3.9 volts and the reduction peak is ~ 3.7 volts. Nevertheless, the OCV is 3.96 volts with the experimental polymer film for a fully charged cell. This higher OCV may be attributed to cell polarization across the separator that produces conditions to switch the electroactive polymer to an insulator on the anode side of the separator. In addition, the finely distributed electroactive polymer may be more electrochemically addressable, i.e. improved kinetics, than the fully dense thin film on the Pt. The fabrication of this experimental separator involves dissolving the three component polymer blend in a polar Scanning electron microscopy (SEM) images show the cross-sectional microstructure of the film. The crosssectioned sample of the separator film was mounted in epoxy and polished. The conductive pathway is provided by the elongated regions of the electroactive polymer. Porosity will be formed in the balance of the film where this two-phase region contains the binder and electrolytesoluble polymer. The thickness of this cross-sectioned film is 18 µm. Fabricated separators range in thickness from 12 µm to 30 µm. Overcharging of the experimental film and an industry standard separator, for comparison purposes, result in the voltage plots shown in Figure 5. The sustained overcharge

4 current density is 6 ma/cm 2, while redox shuttles perform at less than 2.3 ma/cm 2 [4]. This lower voltage on overcharging will improve cycle and calendar life. The voltage of the industry standard separator peaks at 4.8 V. The drop in voltage is attributed to corrosion of the components within the cell, either on the cathode or anode. Cell Voltage Industry Standard Separator 3XPT Time (min) H-7591 Figure 5. Overcharge voltages at 6 ma/cm 2. Figure 6 shows the voltages of fully charged cells after applying current densities in the range from 2 ma/cm 2 to 10 ma/cm 2 at 5 minutes for each current density. The current density, experienced by the electrodes in an HEV battery pack, during pulse charging is expected to be lower than 10 ma/cm 2. All of the samples performed at advantageously lower voltages than the industry standard separator except sample 5XPT. This sample s microstructure may have limited porosity or lack a conductive pathway. Voltage XPT Industry Standard 3XPT 4XPT ma/cm 2 H-7592 Figure 6. Overcharging various separator formulations. The effect of poly(alkythiophene) (PAT) concentration in the film on the average voltage of the cell is shown in Figure 7. The 4-times concentration of PAT results in the lowest potential. As expected, adding more of the conductive phase increases the conductivity of the separator in the overcharged state. This improved conductivity results in a lowering of the cell potential. There are two benefits of having a lower potential: 1.) There is less electrochemical damage (side reactions) at the electrodes. 2.) Resistive heating will be lower. Based on the power relationship: P = i 2 R = i V, (1) where P is J/s, i is amps, R is ohms, and V is volts, ten second charging will produce a temperature rise of less than 3 C in the electrolyte-filled electrode assembly. This assumes a heat capacity of 2 J/gK for the electrode assembly. Average Voltage (V) Relative PAT Concentration Figure 7. Effect of PAT concentration. H-7593 The electrochemical performance of separator was evaluated at a C/2 discharge rate and compared to an industry standard separator, Figure 8. The lower initial voltage is attributed to potential at which the switches from a conductor to an insulator. The cell potential is lower due to higher concentration polarization created by the separator s tortuous porosity. Voltage (V vs. Li/Li+) Industry Standard Separator Capacity (Ahr) H-7594

5 Figure 8. Discharge curves.

6 The measured low capacity fade for a fully charged cell is 1%/day, which is below the 2.8% daily fade specification for the 42V USABC power assist battery. The electrical resistance of the experimental separator, in its insulative state, is compatible with industry standard separators. Figure 9 shows the discharge curves of the experimental separator at c-rates from C/10 to C/2. Within this range of testing, the electroactive separator was able to discharge to the same capacity. There is expected to be a greater challenge for this separator to perform at high rates due to its fine pore structure, but this data indicates that the separator is stable in the lithium ion cell and does not consume lithium nor collapse after 25 hours of testing for greater than six cycles. Voltage (vs Li/Li+) C/6.5 C/5 C/2.5 C/2 C/ Capacity (Ah) H-7595 Figure 9. Effect of rate on discharge capacity. The in-situ porosity of these experimental separators has higher tortuosity because of its sub-micron lenticular pores, as observed by SEM, rather than the straight-thru porosity of industry standard separators. Electrolyte mobility remains high for the experimental separator due to the decreased thickness and increased porosity. This electroactive film is 12 µm thick and 60% porous while typical separators are 25 µm thick and 37% porous. The tensile load of the electroactive separator film approaches the load required for roll-to-roll winding. Tonen Tapyrus Co. has stated in a recent patent that the film needs to be able to manage 0.2 N/mm for a separator with a width of 50 mm [5]. The tensile load for two separator films are shown in Figure 10. The yield strength of sample is 6.8 MPa, based on the load and cross-sectional area of the film. Poly(alkylthiophene) has a low tensile strength, so the addition of 4 times the loading of PAT, sample 4XPT, is expected to have a lower strength than sample. The strength of the film needs to be increased by 15%, which can be addressed by adding a more rigid polymer to increase the separator s strength. This polymer can either be the electrolyte soluble component or binder component of the film. Tensile Load (N/mm) XPT Displacement (mm) H-7596 Figure 10. Tensile load of PAT separator. In summary, these findings show that electroactive polymer separators can operate within the voltage constraints of lithium ion cells with a LiCoO 2 cathode and can carry over 10 ma/cm 2 overcharge current. We have shown that with material selection, the cut-off voltage can be tuned for the desired battery couple. In addition, this separator has the potential to carry sufficient tensile load to be processed with conventional winding equipment. Acknowledgement This work was supported by the Department of Energy, contract number FA M References 1. J. Dahn, J. Jiang, L. Moshurchak, M. Fleischauer, C. Buhrmester, and L. Krausec, J. Electrochem. Soc., 152 (6) A1283-A1289 (2005). 2. K. Thomas-Alyea, J. Newman, G. Chen, and T. Richardson, J. Electrochem. Soc., 151(4) pp A509- A521 (2004). 3. ASTM D882-02, Standard Standard Test Method for Tensile Properties of Thin Plastic Sheeting. 4. J. Dahn, J. Jiang, L. Moshurchak, M. Fleischaur, C. Buhrmester, and L. Krause, J. Electrochem. Soc., 152, pp A1283-A1289 (2005). 5. T. Kamei and M. Yamazaki, Heat-resistant Separator, US Patent No , May 4th, 2004.

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

HALF - CELLS BASED ON SOLID VITREOUS ELECTROLYTE AND THERMO EXPANDED GRAPHITE

HALF - CELLS BASED ON SOLID VITREOUS ELECTROLYTE AND THERMO EXPANDED GRAPHITE HALF - CELLS BASED ON SOLID VITREOUS ELECTROLYTE AND THERMO EXPANDED GRAPHITE E. Shembel, A. Kvasha 2, A. Nosenko 2, Y. Pustovalov, P. Novak Ener,Inc. Ft. Lauderdale, Florida, USA 2 Research laboratory

More information

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University IBM Almaden June 27, 2017 Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University (ktlee@snu.ac.kr) 1) Introduction 2) Failure mechanism of a redox mediator

More information

Investigation of anode materials for lithium-ion batteries

Investigation of anode materials for lithium-ion batteries University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Investigation of anode materials for lithium-ion batteries Ling Yuan University

More information

A Brief History of Non-aqueous Metal-Air Batteries

A Brief History of Non-aqueous Metal-Air Batteries 67 ECS Transactions, 3 (42) 67-71 (2008) 10.1149/1.2838193, copyright The Electrochemical Society A Brief History of Non-aqueous Metal-Air Batteries K. M. Abraham E-KEM Sciences Needham, MA 02492, USA

More information

Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells

Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells NAATBATT Conference March 2016 Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells Presented By: John Hart Business Development Manager Power Technologies j.hart@dexmet.com

More information

Supporting Information

Supporting Information Supporting Information In Situ-formed Li 2 S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries Yongzhu Fu, Chenxi Zu, Arumugam Manthiram Electrochemical Energy Laboratory & Materials Science

More information

Supporting Information for

Supporting Information for Supporting Information for Self-stabilized solid electrolyte interface on host-free Li metal anode towards high areal capacity and rate utilization Zhenglin Hu 1,3, Shu Zhang 1, Shanmu Dong*,1, Quan Li

More information

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes International Symposium on Electrical Fatigue in Functional Materials September 15, 2014 Sellin, Rügen, Germany Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

More information

Electrode and Molecular Architectures for Iron based Multivalent Systems

Electrode and Molecular Architectures for Iron based Multivalent Systems Electrode and Molecular Architectures for Iron based Multivalent Systems Jagjit Nanda Materials Science and Technology Division 2 nd MRES, North Eastern University August 20 th 2014 Collaborators S. K.

More information

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Improving cyclic performance of Si anode for lithium-ion batteries by

More information

Benzoquinone-Hydroquinone Couple for Flow Battery

Benzoquinone-Hydroquinone Couple for Flow Battery Mater. Res. Soc. Symp. Proc. 1491, mrsf12-1491-c08-09 doi:10.1557/opl.2012.1737 (2013) Benzoquinone-Hydroquinone Couple for Flow Battery Saraf Nawar, 1 Brian Huskinson, 2 and Michael Aziz 2 1 Harvard College,

More information

Dynamic and Galvanic Stability of Stretchable Supercapacitors

Dynamic and Galvanic Stability of Stretchable Supercapacitors Supporting Information for Dynamic and Galvanic Stability of Stretchable Supercapacitors By Xin Li, Taoli Gu and Bingqing Wei* Department of Mechanical Engineering, University of Delaware, Newark, DE 19716

More information

Supplemental Information for:

Supplemental Information for: Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Supplemental Information for: A Novel Lithium-sulfur Battery Cathode from Butadiene Rubber-caged

More information

PASSIVE THERMAL MANAGEMENT OF LITHIUM-ION BATTERIES USING LATENT HEAT STORAGE MATERIALS

PASSIVE THERMAL MANAGEMENT OF LITHIUM-ION BATTERIES USING LATENT HEAT STORAGE MATERIALS PASSIVE THERMAL MANAGEMENT OF LITHIUM-ION BATTERIES USING LATENT HEAT STORAGE MATERIALS WHITE PAPER Joe Kelly - Materials Scientist, March 2015 Rev: 2 INTRODUCTION As demand steadily grows for more powerful

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance All-Solid-State Li-Se Batteries induced

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information In situ electrochemical activation of Ni-based colloids from NiCl 2 electrode

More information

Preparation and characterization of thin electrodes for lead acid batteries

Preparation and characterization of thin electrodes for lead acid batteries Journal of Power Sources 113 (2003) 376 381 Preparation and characterization of thin electrodes for lead acid batteries A. Caballero, M. Cruz, L. Hernán, J. Morales *,L.Sánchez Departamento de Química

More information

STRUCTURE, PROPERTIES, AND PERFORMANCE OF INORGANIC-FILLED SEPARATORS

STRUCTURE, PROPERTIES, AND PERFORMANCE OF INORGANIC-FILLED SEPARATORS STRUCTURE, PROPERTIES, AND PERFORMANCE OF INORGANIC-FILLED SEPARATORS R. Waterhouse, J. Emanuel, J. Frenzel, D. Lee, S. Peddini, Y. Patil, G. Fraser-Bell, and R.W. Pekala The 29 th International Battery

More information

Supporting Information

Supporting Information Supporting Information A Lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism Yonggang Wang Haoshen Zhou* Energy Technology Research Institute, National Institute

More information

Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly

Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly Eric Broaddus, Jared Fernandez, and Scott A. Gold Institute for Micromanufacturing,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for An elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating Quan Pang, Laidong Zhou, Linda F. Nazar* Department of Chemistry and the Waterloo Institute for

More information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Efficient energy storage capabilities promoted by hierarchically

More information

Summer School June 2-4 th 2015

Summer School June 2-4 th 2015 MAT4BAT Advanced materials for batteries Summer School June 2-4 th 2015 «Electrode formulation and processing» Dane Sotta (CEA-Liten, France) Mat4Bat Summer School Dane Sotta (CEA) June 3 rd 2015 1 Outline

More information

Preparation of porous manganese hydroxide film and its application in supercapacitors

Preparation of porous manganese hydroxide film and its application in supercapacitors Indian Journal of Chemistry Vol. 46A, May 2007, pp. 736-741 Preparation of porous manganese hydroxide film and its application in supercapacitors Zhen Fan, Jinhua Chen*, Feng Sun, Lei Yang, Yan Xu & Yafei

More information

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle Supporting Information Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability Dahee Jin, Jeonghun Oh, Alex Friesen, Kyuman Kim,

More information

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media RIL-128 Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media Michael C. Kimble, Thomas J. Blakley, Daniel R. Carr, and Karen D. Jayne 2 Park Drive, Suite 4 Westford, MA 01886 Presented

More information

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White Experiences of PLD Technology for LIB Separators PICODEON Oy Neal White 1 Outline Introduction to Picodeon Ceramic coating rationale Separator overview Why PLD for LIB separators Current status of Picodeon

More information

Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY.

Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY. Paper ID: 373 Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY Lin Zou, Yong-Ping Zheng, Feiyu Kang, Wanci Shen, Can Xu Laboratory

More information

Cycle life performance of lithium-ion pouch cells

Cycle life performance of lithium-ion pouch cells Journal of Power Sources 158 (2006) 679 688 Cycle life performance of lithium-ion pouch cells Karthikeyan Kumaresan, Qingzhi Guo, Premanand Ramadass, Ralph E. White Department of Chemical Engineering,

More information

Green Materials & Processes of Lithium-Ion Battery

Green Materials & Processes of Lithium-Ion Battery Nano and Advanced Materials Institute (NAMI) Green Materials & Processes of Lithium-Ion Battery Paul Ho 1 Content NAMI Lithium-ion Battery Researches Green Materials & Processes for Lithiumion Battery

More information

Investigation of anode materials for lithium-ion batteries

Investigation of anode materials for lithium-ion batteries University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Investigation of anode materials for lithium-ion batteries Ling Yuan University

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

Method Excitation signal applied Wave response based on method Linear Differential pulse Square wave Cyclic Developed current recorded

Method Excitation signal applied Wave response based on method Linear Differential pulse Square wave Cyclic Developed current recorded Voltammetry Electrochemistry techniques based on current (i) measurement as function of voltage (E appl ) Working electrode (microelectrode) place where redox occurs surface area few mm 2 to limit current

More information

Vacuum and Atmospheric Coating and Lamination Techniques Applied to Li-S Battery Fabrication

Vacuum and Atmospheric Coating and Lamination Techniques Applied to Li-S Battery Fabrication Vacuum and Atmospheric Coating and Lamination Techniques Applied to Li-S Battery Fabrication AIMCAL Web Coating Conference Paper AB5, 1:00 PM Wednesday, October 26, 2011 The Rechargeable Battery Company

More information

CARBON CONDUCTIVE ADDITIVES FOR ELECTRODES IN ELECTROCHEMICAL ENERGY STORAGE DEVICES

CARBON CONDUCTIVE ADDITIVES FOR ELECTRODES IN ELECTROCHEMICAL ENERGY STORAGE DEVICES CARBON CONDUCTIVE ADDITIVES FOR ELECTRODES IN ELECTROCHEMICAL ENERGY STORAGE DEVICES 15.03.2013 Flavio F. C. Mornaghini, Dario Cericola, Pirmin Ulmann, Thomas Hucke and Michael E. Spahr CARBON CONDUCTIVE

More information

Solef. Solef PVDF Aqueous Dispersions. for Lithium Batteries

Solef. Solef PVDF Aqueous Dispersions. for Lithium Batteries Solef Solef PVDF Aqueous Dispersions for Lithium Batteries Innovative Polymerization Technology Solef PVDF is a partially fluorinated, semi-crystalline polymer with excellent thermo-mechanical and chemical

More information

Supplementary Information. Reversible superconductor-insulator transition in LiTi 2 O 4 induced by

Supplementary Information. Reversible superconductor-insulator transition in LiTi 2 O 4 induced by Supplementary Information Reversible superconductor-insulator transition in LiTi 2 O 4 induced by Li-ion electrochemical reaction K. Yoshimatsu 1,*, M. Niwa 1, H. Mashiko 1, T. Oshima 1 & A. Ohtomo 1,2

More information

Alkaline Rechargeable Ni/Co Batteries: Cobalt Hydroxides as. Negative Electrode Materials

Alkaline Rechargeable Ni/Co Batteries: Cobalt Hydroxides as. Negative Electrode Materials Supplementary Information: Alkaline Rechargeable Ni/Co Batteries: Cobalt Hydroxides as Negative Electrode Materials X. P. Gao, S. M. Yao, T. Y. Yan, Z. Zhou Institute of New Energy Material Chemistry,

More information

Safe, Inexpensive, Long Life, High Power and Efficiency Batteries For Grid Scale Energy Storage Applications

Safe, Inexpensive, Long Life, High Power and Efficiency Batteries For Grid Scale Energy Storage Applications Safe, Inexpensive, Long Life, High Power and Efficiency Batteries For Grid Scale Energy Storage Applications Investigators Yi Cui, Associate Professor; Robert Huggins, Professor; Mauro Pasta, Postdoctoral

More information

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme

More information

Advanced Lithium-ion Battery Manufacturing R&D

Advanced Lithium-ion Battery Manufacturing R&D EVS28 KINTEX, Korea, May 3-6, 2015 Advanced Lithium-ion Battery Manufacturing R&D James F. Miller Argonne National Laboratory, Argonne, Illinois, USA 60439 Introduction I. The cost of lithium-ion batteries

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Surface graphited carbon scaffold enables simple

More information

Supporting Information

Supporting Information Supporting Information Electrochemical reduction of CO 2 at Copper Nanofoams Sujat Sen a, Dan Liu a and G. Tayhas R. Palmore a, b, * a Department of Chemistry and b School of Engineering, Brown University,

More information

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator 217 BLI X, Symposium on Energy Storage, June 27-29, 217, at IBM- Research Almaden in San Jose, CA, USA Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with

More information

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Korean J. Chem. Eng., 27(1), 91-95 (2010) DOI: 10.1007/s11814-009-0298-0 RAPID COMMUNICATION Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Sung-Chul Hong*,

More information

Re-building Daniell Cell with a Li-Ion exchange Film

Re-building Daniell Cell with a Li-Ion exchange Film Supplementary Information Re-building Daniell Cell with a Li-Ion exchange Film Xiaoli Dong, Yonggang Wang*, Yongyao Xia Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative

More information

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode.

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode. Supplementary Figure 1.The lithium polysulfide distribution on the patterned electrode. SEM image of the ITO-carbon electrode after dipping into Li 2 S 8 solution and drying, which shows the random distribution

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Fundamental Chemistry of Sion Power Li/S Battery Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Outline Thermodynamics of Li-S Discharge-charge mechanism in the

More information

Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S.

Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S. 1 2 3 4 5 6 7 Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S. glauca after absorption of tin salt. (b) Photographs

More information

Supporting Information

Supporting Information Supporting Information Garnet electrolyte with an ultra-low interfacial resistance for Li-metal batteries Yutao Li, Xi Chen, Andrei Dolocan, Zhiming Cui, Sen Xin, Leigang Xue, Henghui Xu, Kyusung Park,

More information

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS REPORT OF THE FINAL PROJECT ENTITLED: DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS by Veeraraghavan S Basker Department of Chemical Engineering University of South Carolina

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

Supporting Information

Supporting Information Supporting Information Mg 2 B 2 O 5 Nanowires Enabled Multifunctional Solid-State Electrolyte with High Ionic Conductivity, Excellent Mechanical Properties and Flame-retardant Performance Ouwei Sheng,

More information

Li-S S and Li-Air Systems: The Characterization Challenge

Li-S S and Li-Air Systems: The Characterization Challenge Li-S S and Li-Air Systems: The Characterization Challenge Petr Novák Anna Evans Arnd Garsuch (BASF SE) Hermann Kaiser Pascal Maire Tiphaine Poux Holger Schneider 2 Go beyond Li-ion! But what is there???

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201704947 Bioinspired, Spine-Like, Flexible, Rechargeable Lithium-Ion

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information High-performance poly(methylethyl

More information

Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4

Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4 Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4 Brett L. Lucht Department of Chemistry University of Rhode Island Source of Energy Fade of Lithium-ion Batteries Poor calendar

More information

Supplementary Figure 1:

Supplementary Figure 1: b a c Supplementary Figure 1: Calibration of the Cs + sputtering rate on composite LiNi 0.7 Mn 0.15 Co 0.15 O 2 electrodes (500 ev ion energy, ~40 na measured sample current): (a) Optical profilometry

More information

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1)

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Corrosion Definition Electrochemical attack of metals

More information

Chemistry Instrumental Analysis Lecture 24. Chem 4631

Chemistry Instrumental Analysis Lecture 24. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 24 measurement of current as a function of applied potential using working electrode. Historically 1 st voltammetry was polarography developed by Heyrovsky

More information

Membraneless Hydrogen Peroxide Micro Semi-Fuel Cell for Portable Applications

Membraneless Hydrogen Peroxide Micro Semi-Fuel Cell for Portable Applications Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information for Membraneless Hydrogen Peroxide Micro Semi-Fuel Cell

More information

Tin Coated Viral-Nanoforests as Sodium-Ion. Battery Anodes

Tin Coated Viral-Nanoforests as Sodium-Ion. Battery Anodes Supporting information Tin Coated Viral-Nanoforests as Sodium-Ion Battery Anodes Yihang Liu, Yunhua Xu, Yujie Zhu, James N. Culver, Cynthia A. Lundgren, Kang Xu,*, and Chunsheng Wang*, Sn anodes fabrication:

More information

Tutorial Corrosion II. Electrochemical characterization with EC-Lab techniques

Tutorial Corrosion II. Electrochemical characterization with EC-Lab techniques Tutorial Corrosion II Electrochemical characterization with EC-Lab techniques 1 OUTLINE 1. Introduction 2. Types of corrosion a) Uniform corrosion b) Localized corrosion 3. Corrosion experiment 4. EC-Lab

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO 3 Yifan Dong, Tyler Slade, Matthew J. Stolt, Linsen Li, Steven N. Girard, Liqiang

More information

Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell

Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell Supporting material: Electrochemical characterization Carbon multiwalled nanotube (MWNT) buckypaper was fabricated

More information

In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes

In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes Haiping Wu 1, Yue Cao 1, Linxiao Geng 2 & Chao Wang 1* 1 Department of Chemistry, University of California Riverside,

More information

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System)

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) (Interim Report: Dec. 20, 2005 - Feb. 28, 2006) P. Q. Wu, Z. Qin, and D. W. Shoesmith The University of Western

More information

The Improved Performance of porous Sn-Ni Alloy as Anode Materials for Lithium- Ion Battery prepared by Electrochemical Dissolution Treatment

The Improved Performance of porous Sn-Ni Alloy as Anode Materials for Lithium- Ion Battery prepared by Electrochemical Dissolution Treatment Int. J. Electrochem. Sci., 8 (2013) 1966-1975 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org The Improved Performance of porous Sn-Ni Alloy as Anode Materials for Lithium- Ion

More information

INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS

INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS 10.1149/1.2214500, copyright The Electrochemical Society INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS T. I. Valdez 1, S. Firdosy

More information

Supporting Information

Supporting Information Supporting Information Title: Platinum Particles Supported On Titanium Nitride: An Efficient Electrode Material for the Oxidation of Methanol in Alkaline Media Authors: M. M. Ottakam Thotiyl, T. Ravikumar

More information

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Supplementary Information Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Kunpeng Cai 1,, Min-Kyu Song 1,, Elton J. Cairns 2,3, and Yuegang Zhang 1,,* 1

More information

Supplementary Information

Supplementary Information Supplementary Information Low Temperature Plasma Synthesis of Mesoporous Fe 3 O 4 Nanorods Grafted on Reduced Graphene Oxide for High Performance Lithium Storage Quan Zhou, a Zongbin Zhao,* a Zhiyu Wang,

More information

Making a Good Li-ion Cell on Bench Scale Equipment

Making a Good Li-ion Cell on Bench Scale Equipment Making a Good Li-ion Cell on Bench Scale Equipment Vince Battaglia LBNL German American Chamber of Commerce Hotel Shattuck Plaza, 2086 Allston Way, Berkley, CA January 23, 2013 The BATT Program Focus on

More information

State of Lithium Ion Battery Research

State of Lithium Ion Battery Research State of Lithium Ion Battery Research Professor Vanessa Wood Department of Information Technology and Electrical Engineering ETH Zürich 2/5/2018 1 Lithium ion batteries can be used for many applications

More information

Nitrogen-Doped Graphdiyne Applied for Lithium-

Nitrogen-Doped Graphdiyne Applied for Lithium- Supporting Information for Nitrogen-Doped Graphdiyne Applied for Lithium- Ion Storage Shengliang Zhang,, Huiping Du,, Jianjiang He,, Changshui Huang,*, Huibiao Liu, Guanglei Cui and Yuliang Li Qingdao

More information

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup. Graphite Electrode Graphite Electrode De-ionized water Nickel target Supplementary Figure S1. A schematic illustration of the experimental setup. Intensity ( a.u.) Ni(OH) 2 deposited on the graphite blank

More information

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents JOUL, Volume 1 Supplemental Information A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,

More information

Supporting Information. High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation

Supporting Information. High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation Supporting Information High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation O.T. Muhammed Musthafa and S.Sampath* Department of Inorganic and Physical Chemistry Indian Institute

More information

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Supporting Information: In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Yi Zhao, Jiaxin Li, Ning Wang, Chuxin Wu, Yunhai Ding, Lunhui Guan*

More information

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets Supplementary Information High Rate and Durable, Binder Free Anode Based on Silicon Loaded O 3 Nanoplatelets Alejandro Martinez-Garcia, Arjun Kumar Thapa,Ruvini Dharmadasa,, Tu Q. Nguyen, Jacek Jasinski,

More information

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplemental Information Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using

More information

The Quantitative Evaluation of Anode Thickness Change for Lithium-ion Batteries

The Quantitative Evaluation of Anode Thickness Change for Lithium-ion Batteries The Quantitative Evaluation of node Thickness Change for Lithium-ion atteries Hiroko Takahashi* 1, Masanobu ragaki* 1, Toshiya Hikami* 2 The measurement technique of the electrode thickness to measure

More information

to enable Lithium metal electrodes IBA2013, Barcelona, Spain

to enable Lithium metal electrodes IBA2013, Barcelona, Spain Fluorine free ionic liquid electrolytes to enable Lithium metal electrodes IBA2013, Barcelona, Spain A. S. Best, Martin (Hyun Gook) YOON, G. H. Lane, Y. Shekibi, P. C. Howlett, M. Forsyth & D. R. MacFarlane

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013 Sodium-ion battery based on ion exchange membranes as electrolyte and separator Chengying Cao, Weiwei Liu, Lei Tan, Xiaozhen Liao and Lei Li* School of Chemical and Chemistry Engineering, Shanghai Jiaotong

More information

TOWARD THE COMPLETE REMOVAL OF ORGANIC SOLVENTS

TOWARD THE COMPLETE REMOVAL OF ORGANIC SOLVENTS TOWARD THE COMPLETE REMOVAL OF ORGANIC SOLVENTS Andrea Glawe R&D Director KROENERT GmbH& Co KG STATE OF THE ART The Coating Machinery Experts Self-Metered CoatingTechniques Pre-Metered CoatingTechniques

More information

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Terrill B. Atwater 1,2 and Alvin J. Salkind 2,3 1 US Army RDECOM, CERDEC, Ft. Monmouth NJ 2 Rutgers University,

More information

ACCELERATED CORROSION TESTING OF GALVANIC COUPLES. James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal

ACCELERATED CORROSION TESTING OF GALVANIC COUPLES. James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal ACCELERATED CORROSION TESTING OF GALVANIC COUPLES James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal Luna Innovations 706 Forest St. Suite A Charlottesville, VA 22903 dantej@lunainnovations.com

More information

Methods for Successful Cycling of Alloy

Methods for Successful Cycling of Alloy Methods for Successful Cycling of Alloy Negative Electrodes in Li-ion ion Cells Mark Obrovac, Leif Christensen, Larry Krause, Dinh Ba Le, Jagat Singh, Kevin Eberman, Lowell Jensen, Li Liu, Jehwon Choi,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2017 Supplementary Information Self-Standing Bi 2 O 3 Nanoparticles/Carbon Nanofiber

More information

The Improvement in Energy Efficiency Based on Nano-structure Materials

The Improvement in Energy Efficiency Based on Nano-structure Materials International Workshop on 1iGO Science and Technology 2010 The Improvement in Energy Efficiency Based on Nanostructure Materials Chien Chon Chen Department of Energy and Resources, National United University,

More information

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode Supporting Information Towards High-Safety Potassium-Sulfur Battery Using Potassium Polysulfide Catholyte and Metal-Free Anode Jang-Yeon Hwang, Hee Min Kim, Chong S. Yoon, Yang-Kook Sun* Department of

More information

A Robust Hybrid Zn-Battery with Ultralong Cycle Life

A Robust Hybrid Zn-Battery with Ultralong Cycle Life A Robust Hybrid Zn-Battery with Ultralong Cycle Life Bing Li, a Junye Quan, b Adeline Loh, #a Jianwei Chai, a Ye Chen, b Chaoliang Tan, b Xiaoming Ge, a T. S. Andy Hor, a,c Zhaolin Liu, *a Hua Zhang *b

More information

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Fabian Jeschull, Daniel Brandell, Kristina Edström, Matthew J. Lacey Department of Chemistry - Ångström Laboratory, Uppsala University,

More information

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Fabian Jeschull, Daniel Brandell,

More information

Supporting Information

Supporting Information Supporting Information Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu,

More information

Supporting Information

Supporting Information Supporting Information Novel DMSO-based Electrolyte for High Performance Rechargeable Li-O 2 Batteries Dan Xu, a Zhong-li Wang, a Ji-jing Xu, a Lei-lei Zhang, a,b and Xin-bo Zhang a* a State Key Laboratory

More information