LASER MICROPROCESSING POWERED BY UV PHOTONS Paper #P109

Size: px
Start display at page:

Download "LASER MICROPROCESSING POWERED BY UV PHOTONS Paper #P109"

Transcription

1 LASER MICROPROCESSING POWERED BY UV PHOTONS Paper #P109 Ralph Delmdahl, Rainer Paetzel Coherent GmbH, Hans-Boeckler-Str.12, Goettingen, 37079, Germany Abstract Lasers with ultraviolet (UV) output offer unique benefits for processing a wide range of materials. In particular, the short wavelength, high energy UV photons experience less diffraction than longer visible or infrared wavelengths, which enables materials processing at higher spatial resolution. In addition, UV lasers micromachine primarily by non-thermal means, thus minimizing the heat affected zone during laser processing. Excimer lasers emitting in the UV region deliver pulse energies scalable up to 1000 mj and output powers up to many hundred watts. Thus, they are the key to fast and effective large area ablation and to machining structures as small as one micron. As a consequence, excimer lasers are the preferred laser technology when it comes to high-performance laser microprocessing with unsurpassed quality and repeatability. As a result, excimer lasers are increasingly employed for many demanding, high precision tasks in semiconductor fabrication, display manufacture, medical device production and scientific research. This article explores some of these applications as well as recent advances in the excimer laser technology that has been developed to service them. Introduction UV wavelengths are particularly advantageous in laser microprocessing because the high energy photons can remove material by direct bond breaking in most materials, including plastics and glasses. This photoablation process generates virtually no heat and hence only marginal peripheral thermal damage as compared to longer wavelength lasers, particularly in the infrared [1]. affected zone (HAZ). In addition, most plastics have a UV absorption spectrum characterized by sharp peaks. The availability of several output wavelengths means that it is often possible to match one of these peaks very closely, leading to highly efficient material removal. Due to diffraction effects, short wavelengths can also be imaged to a much smaller feature size than longer wavelengths, which enables the production of features at much higher spatial resolution. This has proven to be a critical benefit in many applications requiring very small features down to a few microns. Pulsed UV Laser Landscape With industrial processes, throughput rate is as important as process quality. The excimer laser offers excels in this area because it delivers both very high pulse energy and very high average power. Simply stated, the higher the pulse energy, the more material is removed with each pulse or the larger the area covered with each single excimer laser pulse [2]. The high output power in combination with the unmatched resolving power enables thus the fast production of micron-sized features over large areas as required e.g. for flat panel display manufacturing. The latest generation of excimer lasers is now available with output powers of over five hundred watts. As shown in figure 1, other pulsed ultraviolet (UV) laser technologies relying on frequency conversion do not even come close to excimer technology as to the achievable average output power level. In contrast, longer wavelength lasers remove material by intense local heating, which inevitably causes a heat

2 Achievable Output Power [W] nm High Power UV Technology Landscape Excimer Lasers 248 nm 308 nm 308 nm 248 nm necessary for most industrial high-speed, high-quality annealing purposes.in order to realize sufficient UV energy densities of the order of 0.5J/cm2 at the substrate which is to be annealed, excimer lasers with high pulse energies of several hundred mj up to 1J are employed nm 248 nm UV-DPSSL 355 nm Lamppumped Nd:YAG laser 355 nm 0 UV Laser Technologies Figure 1. Comparison of pulsed UV power levels (355nm and below) provided by pulsed energy lasers. Large Area UV Beam Concepts Treating large areas in minimum times is often an essential prerequisite in industrial processing [3]. While excimer lasers offer intrinsic advantages for precise large-area treatment, exploiting their full potential in industrial UV processing relies on the appropriate beam delivery architecture. Depending on the application highest through-puts are achieved with enabling beam delivery concepts such as line-beam scanning and step and repeat mask imaging [4]. The most effective large-area excimer laser beam architectures and respective applications will be described in the following section. Line-Beam Scanning Figure 2. Layout of an optical train for shaping large line-beams from high power UV excimer lasers. Step and Repeat Mask Projection High-resolution UV mask illumination of large substrate panels or wafers aiming at producing precise surface micro-patterns such as matrices of holes, grooves or complex circuit structures is effectively done with a high power step and repeat mask imaging concept as schematically shown in figure 3. Line beam optics convert the rectangular excimer laser beam profile which has dimensions of ca. 30mm x 12mm into a line-shaped beam profile which covers entire flat panels or wafers in a scanning process. Depending on the application requirements the illumination field size can vary from 50mm to 500mm in length and from 0.3mm to 0.6mm in width. The building blocks of a high performance line beam optics setup are visible in figure 2 where a typical beam path used for low temperature silicon anneal-ing is depicted. The UV excimer laser beam enters from the middle-left in the picture where it passes an attenuator and is shaped by telescope optics. Using separate elements for long and short axis homogenization leads to the extremely homogeneous and long-term stable line-shape field which is Figure 3. UV mask projection concept for coverage of large-areas with dense and complex patterns.

3 The basic building blocks of a mask projection UV beam delivery system are of similar order as in the line-beam optics shown before. The main difference is, however, that a mask containing the pattern information is homogeneously illuminated and imaged down to the substrate with a projection lens by a factor of typically 5 to 25. Since the energy density achieved on the substrate increases with the square of the demagnification factor energy densities measured on the substrate range from some hundred mj/cm 2 to some ten J/cm 2. On account of the high UV power and short wavelength of today s industrial excimer lasers (see figure 1), such mask imaging optical systems are capable of covering large substrate areas of up to 400mm 2 within a single excimer laser pulse. Thus providing lateral (horizontal) feature resolutions to the micron level and depth (vertical) resolution to the sub-hundred nanometer level. In low-temperature excimer laser annealing of amorphous silicon layers the line-beam profile at a wavelength of 308nm is directed at a silicon coated substrate which is then scanned relative to the pulsing line-beam. With large line-beam dimensions for high process throughput, a high excimer laser pulse energy of ca. 1J is necessary to reach the threshold for near-complete melt of a ca. 50 nm silicon layer depth. Recrystallization direction is upwards initiated by amorphous silicon remainders left at the bottom of the layer as depicted in figure 4. With large line-beam dimensions for high process throughput, a high excimer laser pulse energy of ca. 1J is necessary to reach the threshold for near-complete melt of a ca. 50nm silicon layer depth. Recrystallization direction is upwards initiated by amorphous silicon remainders left at the bottom of the layer as depicted in figure 3. Step and repeat mask projection type large-area treatment is used for both surface annealing and surface abla-tion processing tasks and provide a high degree of pattern reproducibility. The following section is aimed at illustrating the capabilities of large-area UV micro-processing as to achievable production rate and potential for process upscaling giving real-world industrial application examples. Large-Area UV Applications Precision and productivity are indispensable factors in industrial microprocessing. Sophisticated UV beam delivery systems fuelled by the enabling UV output power of today`s mature excimer laser technology meet these requirements as will be demonstrated with the upcoming production floor applications. Figure 4. Schematic view of the excimer laser silicon annealing process transforming amorphous into polycrystalline silicon. Silicon Annealing In low-temperature excimer laser annealing of amorphous silicon layers the line-beam profile at a wavelength of 308nm is directed at a silicon coated substrate which is then scanned relative to the pulsing line-beam. State-of-the-art line-beam optics in combination with high power excimer lasers deliver line-beam dimensions of 465mm x 0.4mm. In the flat-panel display industry, the excimer laser line-beam architecture enables fast silicon recrystallization speeds of over 30cm²/s at an excimer laser pulse repetition rate of 300Hz. The result is a homogeneous polycrystalline silicon backplane with about 0.3µm x 0.3μm grain size shown

4 in figure 5 enabling electron mobilities greater than 100cm²/Vs. This value is two orders of magnitude higher compared to employing amorphous silicon and represents the basis for next generation high performance flat panel display devices. Dopant ion activation by low-thermal budget excimer laser annealing is pivotal for the development of highperformance miniaturized electronic switching devices [5]. Full surface melt annealing activation of boron ions implanted at a dose of 1.6*10 14 cm - ² and with an energy of 15keV yield wafer surface resistances as low as 110mV/mA [6]. Due to the single crystalline nature of the wafers melt annealing is done at relatively high energy density of 3J/cm² in a single pulse process. Large field sizes of several square milimeters and high power excimer lasers support throughput rates of 200 wafers per hour. Laser Direct Patterning A particularly effective concept is combining mask projection with reel-to-reel processing as shown in figure 7. Figure 5. Microscopic view of grain boundaries in an excimer laser recrystallized silicon surface. Low-temperature melt annealing of silicon wafer surfaces is effectively conducted by means of step and repeat large-field mask projection as visible in figure 6 where homogeneous 2.5mm x 2.5mm square fields at 308nm were stepped over a 5 inch silicon wafer surface. Figure 7. Layout of an excimer laser based mask projection system with reel-to-reel sample handling and flexible substrate. Figure 6. Microscope image of one-shot excimer laser annealed Si (100) wafer surface using step and repeat processing. Laser direct patterning enables repetitive production of complex patterns such as sensor circuits on flexible substrates. In this technique, the homogenized excimer laser beam passes a mask containing the pattern for one or even several complex circuits and is imaged onto a flexible polymer substrate on which a thin nm metal layer has been deposited.

5 At 300Hz repetition rate single-pulse direct patterning can generate 18,000 circuits per minute at substrate feed rates of tens of meters per second [7]. Laser direct patterning can be used with several different flexible plastic substrates (PET, polyimide, PEN, and PMMA) and a full range of conductors including copper, gold, silver, platinum, aluminum, and even titanium. due to their short 193nm output wavelength. The high photon energy of 6.4eV associated with this wavelength effectively breaks the molecular bonds present in glass, diamond or polymer substrates and thus selectively removes the material by evaporating it without melting or heat transfer into the bulk material as indicated in figure 9. Also for high reel-to-reel feed rates structure sizes of better than 10µm are easily obtained using excimer laser wavelengths of 248 or 308nm as is shown in figure 8. Figure 9. Laser material interaction regimes of far UV laser wavelengths far infrared laser wavelengths in transparent substrates. Figure 8. Single-shot ablation of 30nm thick aluminum on polyethylene terephthalate (PET) foil at 248nm and 250mJ/cm 2. There is growing demand for low unit cost, miniaturized electrical circuits and large-area, reel-toreel UV processing lends the required precision and productivity for antennae circuits, disposable medical sensors and the like. UV Laser Marking and Engraving Imprinting tiny brand logos as well as providing miniaturized functional inscriptions on hard and transparent high value parts such as eye glass lenses and diamonds requires a material-friendly and highresolution marking and engraving tool. Recently, excimer lasers have emerged as the enabling technology in highest precision marking and engraving The resulting accuracy and resolution obtained in the marks and engravings is unachieved by the thermal interaction of longer wavelength lasers such as CO 2 and Nd:YAG lasers. Excimer lasers are easy and flexible to use and deliver their nanosecond width, ultrashort 193nm wavelength pulses with up to 500Hz pulse frequency. The inherently cold characteristics of the lasermaterial-interaction enable excellent repeatability and process control in industrial precision marking and engraving tasks. Additives for adjusting the absorptivity of polymers or glasses to the laser wavelength as often is the case width visible or IR wavelength lasers are not required. By appropriate selection of the laser beam fluence and spot size, the contrast and appearance of the marks and engraving remains freely selectable. Commercial eye glass marking systems based on 193nm excimer lasers typically run five days a week in a three shift operation marking about 1,500 lenses a day [8]. Diamond marking proceeds at a rate of about 1s/character.

6 Regarding the wavelength of the laser, the optical penetration depth of the material has to be taken into account. Figure 10 shows the penetration depth (reciprocal of absorption coefficient) of hard material versus the wavelength by orders of magnitude. While the long wavelengths penetrate into the material as much as many microns, the short-wavelength 193nm radiation is effectively absorbed already in the first nanometers. The upper axis in Figure 10 converts the optical penetration depth into wavelengths, the right axis shows the pulse durations that goes with the thermal diffusion lengths on the left axis. Commercially available marking lasers, their optical penetration depth and thermal diffusion length As a consequence, the ideal laser source should have a very short wavelength in the far-uv in conjunction with short pulse duration. Such a favorable combination of parameters is provided by 193nm excimer lasers and minimizes both optical penetration depth and thermal load as shown in Figure 10. Today s excimer lasers for marking and engraving markets are extremely compact with the footprint of a notebook and a weight of about 50 kg. An integrated premix gas bottle with less than 0.2% halogen content eliminates the need for gas installation and complies with general gas and pressure safety regulations. Pulse energies and pulse frequency can be varied over a large dynamic range without affecting other parameters such as pulse width and beam profile dimensions. Under typical marking and engraving operation conditions, solid-state compact 193 nm excimer lasers provide hands-free running periods of more than 10 million pulses on each single gas fill which corresponds to periods of 2 to 4 weeks between automated gas fills. The laser tube and optics can be used over years of operation before a replacement is necessary. Modern state-of the-art excimer lasers for marking and engraving are driven by solid state switches and employ advanced corona preionization technology in combination with cleanroom assembled, metalceramic tube design. Figure 10. Thermal diffusion lengths and optical penetration depths of commercially available laser sources used in marking and engraving. As a result, not only superior operational gas lifetime is achieved, as shown in figure 11, but also exceptional long-term pulse-to-pulse energy stability of less than 1%, rms. Investigations regarding the wavelength dependence of the laser induced damage showed that a damage zone of 20μm in depth is produced using an infrared laser of 1064nm and still a damage of many microns in depth is observable applying a frequency converted Nd:YAG laser of 532nm. Accordingly, a wavelength in the far-uv range is most appropriate for achieving high marking resolution, since the pulse energy is absorbed essentially at the surface over a small volume. Of equal importance for marking and engraving applications is the pulse duration of the laser source. The longer the pulse duration the deeper the thermal energy is conducted into the bulk and thus a larger material volume is thermally damaged. Figure 11. Gas life run of a marking excimer laser at 500Hz and at a wavelength of 193nm.

7 Conclusions Increasing product miniaturization has created challenges for manufacturers in many branches. Often, traditional production processes are too slow, unable to achieve the necessary precision, or simply not costeffective. Miniaturization and use of thin film technology in particular is an ongoing trend seen in industrial manufacturing. In selectively patterning or annealing thin and functional layers which often exhibit a thickness between 50nm and 1µm over large areas the excimer laser with its unparalleled UV power and appropriate beam delivery concepts is a key enabler in industrial large-area micro-processing. The maximum penetration depth up to which the material is influenced by the laser radiation correlates with the optical and thermal properties of the materials. When considering transparent substrates such as diamonds, eye glass blanks or dielectrics, highest marking and engraving precision is obtained using 193nm excimer lasers. [4] Masters, A., Geuking, T. (2005) Beam-shaping optics expand excimer-laser applications, Laser Focus World 41, [5] Rajendran, B., Shenoy, R. S., Witte, D. J., Chokshi, N. S., DeLeon, R. L., Tompa, G. S., Pease, R. W. (2007) Silicon Devices - Low Thermal Budget Processing for Sequential 3-D IC Fabrication, IEEE Transactions on Electron Devices 54, [6] Paetzel, R., Turk, B., Brune, J., Govorkov, S., Simon, F. (2008) Laser solutions for wafer and thin film annealing, physica status solidi 10, [7] Delmdahl, R. (2010) The excimer laser: Precision engineering, Nature Photonics 4, 286. [8] Paetzel, R., Haidl, M. (2005) Excimer lasers make the reliability mark, Industrial Laser Solutions 11, 5-8. Due to their extremely short wavelength and correspondingly high photon energy in conjunction with the nanosecond-scale pulse width, heat conduction plays a minor role and the absorption coefficient rises strongly toward the far-uv spectral range. Therefore, efficient large-area laser processing in a depth ranging from sub-micron (engraving of eye glasses and diamonds) to about 10µm to 20µm (photochemical marking of polymers) is achieved in a controlled and crack-free manner leading to highest laser machining precision and process reproducibility. References [1] Ihlemann, J., Schulz-Ruhtenberg, M., Fricke- Begemann, T. (2007) Micropatterning of fused silica by ArF- and F 2 -laser ablation, Journal of Physics: Conference Series 59, [2] Delmdahl, R., Paetzel, R. (2008) Pulsed laser deposition-uv laser sources and applications, Journal of Applied Physics A 93, [3] Usoskin, A., Kirchhoff, L., Knoke, J., Prause, B., Rutt, A., Selskij, V., Farrell, D. (2007) Processing of long-length YBCO coated conductors based on stainless steel tapes, IEEE Transactions on Applied Superconductivity 17,

8

Thin Film Processing with UV Excimer Lasers

Thin Film Processing with UV Excimer Lasers Thin Film Processing with UV Excimer Lasers Burkhard FECHNER, Jan BRUNE and Ralph DELMDAHL Coherent GmbH, Hans-Boeckler-Str. 12, D-37079 Goettingen, Germany E-mail: ralph.delmdahl@coherent.com Driving

More information

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION Journal of Optoelectronics and Advanced Materials Vol. 7, No. 3, June 2005, p. 1191-1195 Invited lecture PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION J. Ihlemann * Laser-Laboratorium Göttingen e.v.,

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

CRYSTALAS. UV Optics System for Excimer Laser Based Crystallization of Thin Silicon Films

CRYSTALAS. UV Optics System for Excimer Laser Based Crystallization of Thin Silicon Films L A S E R S Y S T E M G M B H CRYSTALAS UV Optics System for Excimer Laser Based Crystallization of Thin Silicon Films CRYSTALAS The New Optical Crystallization System CRYSTALAS is an excimer laser-based

More information

3 Pulsed laser ablation and etching of fused silica

3 Pulsed laser ablation and etching of fused silica 3 Pulsed laser ablation and etching of fused silica 17 3 Pulsed laser ablation and etching of fused silica Material erosion caused by short laser pulses takes place far from equilibrium and may be based

More information

Lasers in Advanced Packaging

Lasers in Advanced Packaging Lasers in Advanced Packaging Xiangyang Song, Cristian Porneala, Dana Sercel, Kevin Silvia, Joshua Schoenly, Rouzbeh Sarrafi, Sean Dennigan, Eric DeGenova, Scott Tompkins, Brian Baird, Vijay Kancharla,

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal

Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal Laser Micromachining of Bulk Substrates and Thin Films Celine Bansal Oxford Lasers Ltd Moorbrook Park Didcot, Oxfordshire, OX11 7HP Tel: +44 (0) 1235 810088 www.oxfordlasers.com Outline Oxford Lasers Importance

More information

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Advances in Intense Pulsed Light Solutions For Display Manufacturing XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Talk Outline Introduction to Pulsed Light Applications in Display UV Curing Applications

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Large-area laser-lift-off processing in microelectronics

Large-area laser-lift-off processing in microelectronics Available online at www.sciencedirect.com Physics Procedia 41 (2013 ) 241 248 Lasers in Manufacturing Conference 2013 Large-area laser-lift-off processing in microelectronics R. Delmdahl*, R. Pätzel, J.

More information

Photonic Drying Pulsed Light as a low Temperature Sintering Process

Photonic Drying Pulsed Light as a low Temperature Sintering Process Photonic Drying Pulsed Light as a low Temperature Sintering Process Lou Panico Xenon Corporation W E S T E R N M I C H I G A N U N I V E R S I T Y PRESENTATION OVERVIEW What is Printed Electronics Materials

More information

11.3 Polishing with Laser Radiation

11.3 Polishing with Laser Radiation 196 E. Willenborg 11.3 Polishing with Laser Radiation Edgar Willenborg The surface roughness of a part or product strongly influences its properties and functions. Among these can be counted abrasion and

More information

Amorphous and Polycrystalline Thin-Film Transistors

Amorphous and Polycrystalline Thin-Film Transistors Part I Amorphous and Polycrystalline Thin-Film Transistors HYBRID AMORPHOUS AND POLYCRYSTALLINE SILICON DEVICES FOR LARGE-AREA ELECTRONICS P. Mei, J. B. Boyce, D. K. Fork, G. Anderson, J. Ho, J. Lu, Xerox

More information

EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES

EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES G. Fortunato, A. Pecora, L. Maiolo, M. Cuscunà, D. Simeone, A. Minotti, and L. Mariucci CNR-IMM,

More information

Production and analysis of optical gratings and nanostructures created by laser based methods

Production and analysis of optical gratings and nanostructures created by laser based methods Summary of the Ph.D. thesis Production and analysis of optical gratings and nanostructures created by laser based methods Kiss Bálint Supervisor: Dr. Vass Csaba Research fellow Doctoral School in Physics

More information

KrF Excimer Laser Micromachining of Silicon for Micro- Cantilever Applications

KrF Excimer Laser Micromachining of Silicon for Micro- Cantilever Applications OPEN ACCESS Conference Proceedings Paper Sensors and Applications www.mdpi.com/journal/sensors KrF Excimer Laser Micromachining of Silicon for Micro- Cantilever Applications A.F.M. Anuar 1*, Y. Wahab,

More information

Laser Micromilling :

Laser Micromilling : Laser Micromilling : An Enabling Technology for MicroComponent Replication Martyn Knowles Oxford Lasers Ltd. Unit 8, Moorbrook Park Didcot, Oxon OX11 7HP Tel: +44-1235-814433 Outline Introduction Process

More information

SELECTIVE REMOVAL OF CONFORMAL COATINGS BY PULSED ULTRAVIOLET LASERS

SELECTIVE REMOVAL OF CONFORMAL COATINGS BY PULSED ULTRAVIOLET LASERS As originally published in the SMTA Proceedings SELECTIVE REMOVAL OF CONFORMAL COATINGS BY PULSED ULTRAVIOLET LASERS Cristian Porneala, Joshua Schoenly, Xiangyang Song, Rouzbeh Sarrafi, Dana Sercel, Sean

More information

Femtosecond Laser Materials Processing. B. C. Stuart P. S. Banks M. D. Perry

Femtosecond Laser Materials Processing. B. C. Stuart P. S. Banks M. D. Perry UCRL-JC-126901 Rev 2 PREPRINT Femtosecond Laser Materials Processing B. C. Stuart P. S. Banks M. D. Perry This paper was prepared for submittal to the Manufacturing '98 Chicago, IL September 9-16, 1998

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Page 1 of 5 Welding plastics with near-ir lasers Improvements in the performance and cost-effectiveness of lasers have led to their wider use for welding thermoplastics. Increasing use of bonded plastics

More information

Lasers and Laser Systems for Micro-machining

Lasers and Laser Systems for Micro-machining Lasers and Laser Systems for Micro-machining Martyn Knowles Oxford Lasers Ltd Unit 8, Moorbrook Park Didcot, Oxfordshire, OX11 7HP Tel: +44 (0) 1235 810088 www.oxfordlasers.com Lasers and Laser Systems

More information

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates. ET3034TUx - 5.2.1 - Thin film silicon PV technology 1 Last week we have discussed the dominant PV technology in the current market, the PV technology based on c-si wafers. Now we will discuss a different

More information

COLLABORATIVE PROJECT

COLLABORATIVE PROJECT COLLABORATIVE PROJECT Collaborative pilot project: combination of advanced laser processes for the rapid fabrication of microfluidic devices made of polymer materials Kohler/KIT TABLE OF CONTENTS 1. Introduction...

More information

Laser treatment of gravure-printed ITO films on PET

Laser treatment of gravure-printed ITO films on PET Laser treatment of gravure-printed ITO films on PET Howard V Snelling, Anton A Serkov, Jack Eden, Rob J Farley Physics, School of Mathematical and Physical Sciences, University of Hull, HU6 7RX, UK Presentation

More information

UV15: For Fabrication of Polymer Optical Waveguides

UV15: For Fabrication of Polymer Optical Waveguides CASE STUDY UV15: For Fabrication of Polymer Optical Waveguides Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 main@masterbond.com CASE STUDY UV15:

More information

Enabling Technology in Thin Wafer Dicing

Enabling Technology in Thin Wafer Dicing Enabling Technology in Thin Wafer Dicing Jeroen van Borkulo, Rogier Evertsen, Rene Hendriks, ALSI, platinawerf 2G, 6641TL Beuningen Netherlands Abstract Driven by IC packaging and performance requirements,

More information

Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250 C

Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250 C Japanese Journal of Applied Physics Vol. 44, No. 3, 2005, pp. 1186 1191 #2005 The Japan Society of Applied Physics Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon

More information

Laser Crystallization for Low- Temperature Poly-Silicon (LTPS)

Laser Crystallization for Low- Temperature Poly-Silicon (LTPS) Laser Crystallization for Low- Temperature Poly-Silicon (LTPS) David Grant University of Waterloo ECE 639 Dr. Andrei Sazonov What s the current problem in AM- LCD and large-area area imaging? a-si:h has

More information

Nanosecond Laser Processing of Diamond Materials

Nanosecond Laser Processing of Diamond Materials Lasers in Manufacturing Conference 2015 Nanosecond Laser Processing of Diamond Materials Jan-Patrick Hermani a, *, Christian Brecher a, Michael Emonts a a Fraunhofer IPT, Steinbachstr. 17, 52074 Aachen,

More information

In-situ laser-induced contamination monitoring using long-distance microscopy

In-situ laser-induced contamination monitoring using long-distance microscopy In-situ laser-induced contamination monitoring using long-distance microscopy Paul Wagner a, Helmut Schröder* a, Wolfgang Riede a a German Aerospace Center (DLR), Institute of Technical Physics, Pfaffenwaldring

More information

Polycrystalline and microcrystalline silicon

Polycrystalline and microcrystalline silicon 6 Polycrystalline and microcrystalline silicon In this chapter, the material properties of hot-wire deposited microcrystalline silicon are presented. Compared to polycrystalline silicon, microcrystalline

More information

Amorphous Materials Exam II 180 min Exam

Amorphous Materials Exam II 180 min Exam MIT3_071F14_ExamISolutio Name: Amorphous Materials Exam II 180 min Exam Problem 1 (30 Points) Problem 2 (24 Points) Problem 3 (28 Points) Problem 4 (28 Points) Total (110 Points) 1 Problem 1 Please briefly

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

Obviously the type of product or coating required will determine the surface required & technique to produce it.

Obviously the type of product or coating required will determine the surface required & technique to produce it. Etching & texturing polymer films - different options for patterned deposition or encouraging nucleation. Charles A. Bishop C.A.Bishop Consulting Ltd. Abstract. A number of the nanotechnologies or psuedonanotechnologies

More information

Chapter 2 Manufacturing Process

Chapter 2 Manufacturing Process Digital Integrated Circuits A Design Perspective Chapter 2 Manufacturing Process 1 CMOS Process 2 CMOS Process (n-well) Both NMOS and PMOS must be built in the same silicon material. PMOS in n-well NMOS

More information

MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES

MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES Journal of Optoelectronics and Advanced Materials Vol. 4, No. 3, September 2002, p. 809-812 MICROFABRICATION OF OPTICALLY ACTIVE InO X MICROSTRUCTURES BY ULTRASHORT LASER PULSES Foundation for Research

More information

ULTRA-SMALL VIA-TECHNOLOGY OF THINFILM POLYMERS USING ADVANCED SCANNING LASER ABLATION

ULTRA-SMALL VIA-TECHNOLOGY OF THINFILM POLYMERS USING ADVANCED SCANNING LASER ABLATION ULTRA-SMALL VIA-TECHNOLOGY OF THINFILM POLYMERS USING ADVANCED SCANNING LASER ABLATION Michael Töpper Fraunhofer Research Institution for Reliability and Microintegration IZM Germany Martin Wilke, Klaus-Dieter

More information

Damage Threats and Response of Final Optics for Laser-Fusion Power Plants

Damage Threats and Response of Final Optics for Laser-Fusion Power Plants Damage Threats and Response of Final Optics for Laser-Fusion Power Plants M. S. Tillack 1, S. A. Payne 2, N. M. Ghoniem 3, M. R. Zaghloul 1 and J. F. Latkowski 2 1 UC San Diego, La Jolla, CA 92093-0417

More information

THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY. Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA

THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY. Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA THIN METALLIC LAYERS STRUCTURED BY E-BEAM LITHOGRAPHY Miroslav HORÁČEK, Vladimír KOLAŘÍK, Michal URBÁNEK, František MATĚJKA, Milan MATĚJKA Ústav přístrojové techniky AV ČR, v. v. i., Královopolská 147,

More information

Radiation Damage of Polycrystalline CVD Diamond with Graphite Electrical Contacts

Radiation Damage of Polycrystalline CVD Diamond with Graphite Electrical Contacts Radiation Damage of Polycrystalline CVD Diamond with Graphite Electrical Contacts E. Alemanno 1,2, M. Martino 1,2, A.P. Caricato 1,2, M. Corrado 1,2, C. Pinto 1,2, S. Spagnolo 1,2, G. Chiodini 2, R. Perrino

More information

Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element

Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element C.W. Chien and C.W. Cheng* ITRI South Campus, Industrial Technology Research Institute, No. 8, Gongyan

More information

Figure 1: Ablation with a traditional laser causes thermal damage, heating peripheral areas.

Figure 1: Ablation with a traditional laser causes thermal damage, heating peripheral areas. The ability to machine precision parts without heat has dramatic implications for micro manufacturing. No heat means zero damage to the material or the part during the fabrication process. Manufacturers

More information

More on VLSI Fabrication Technologies. Emanuele Baravelli

More on VLSI Fabrication Technologies. Emanuele Baravelli More on VLSI Fabrication Technologies Emanuele Baravelli Some more details on: 1. VLSI meaning 2. p-si epitaxial layer 3. Lithography 4. Metallization 5. Process timings What does VLSI mean, by the way?

More information

Grazing-Incidence Metal Mirrors for Laser-IFE

Grazing-Incidence Metal Mirrors for Laser-IFE Grazing-Incidence Metal Mirrors for Laser-IFE M. S. Tillack, J. E. Pulsifer, K. L. Sequoia J. F. Latkowski, R. P. Abbott 21-22 March 2005 US-Japan Workshop on Laser IFE San Diego, CA The final optic in

More information

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam

PHYS 534 (Fall 2008) Process Integration OUTLINE. Examples of PROCESS FLOW SEQUENCES. >Surface-Micromachined Beam PHYS 534 (Fall 2008) Process Integration Srikar Vengallatore, McGill University 1 OUTLINE Examples of PROCESS FLOW SEQUENCES >Semiconductor diode >Surface-Micromachined Beam Critical Issues in Process

More information

High Efficiency UV LEDs Enabled by Next Generation Substrates. Whitepaper

High Efficiency UV LEDs Enabled by Next Generation Substrates. Whitepaper High Efficiency UV LEDs Enabled by Next Generation Substrates Whitepaper Introduction A primary industrial market for high power ultra-violet (UV) LED modules is curing equipment used for drying paints,

More information

Introduction to Lithography

Introduction to Lithography Introduction to Lithography G. D. Hutcheson, et al., Scientific American, 290, 76 (2004). Moore s Law Intel Co-Founder Gordon E. Moore Cramming More Components Onto Integrated Circuits Author: Gordon E.

More information

Electronics from the Printing Press

Electronics from the Printing Press Electronics from the Printing Press Hannover Messe 2011 April 4 8, 2011, Hannover Research & Technology Leading Trade Fair for R & D and Technology Transfer Hall 2, Booth C18 Research Teaching Innovation

More information

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Contents 9.1 Introduction 9.2 Experiment 9.3 Results and Discussions 9.4 Conclusion 9.1 Introduction Magnetostrictive

More information

Effects of Laser Peening Parameters. on Plastic Deformation in Stainless Steel

Effects of Laser Peening Parameters. on Plastic Deformation in Stainless Steel Effects of Laser Peening Parameters on Plastic Deformation in Stainless Steel Miho Tsuyama* 1, Yasuteru Kodama* 2, Yukio Miyamoto* 2, Ippei Kitawaki* 2, Masahiro Tsukamoto* 3 and Hitoshi Nakano* 1 *1 Faculty

More information

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool.

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool. Proceedings of the 4th Annual ISC Research Symposium ISCRS 2010 April 21, 2010, Rolla, Missouri LOW COST IMAGING OF MELTPOOL IN MICRO LASER AIDED MANUFACTURING PROCESS (µlamp) ABSTRACT This paper describes

More information

Reproducible copper welding

Reproducible copper welding Reproducible copper welding Combining IR and green light is key ROFIN-LASAG AG: Christoph Ruettimann, Richard Bartlome, Noémie Dury GreenMix laser in action A prerequisite for laser material processing

More information

High-accuracy laser mask repair technology using ps UV solid state laser

High-accuracy laser mask repair technology using ps UV solid state laser RIKEN Review No. 43 (January, 2002): Focused on 2nd International Symposium on Laser Precision Microfabrication (LPM2001) High-accuracy laser mask repair technology using ps UV solid state laser Yukio

More information

Laser ablation of ITO thin films on glass for flat panel display manufacture

Laser ablation of ITO thin films on glass for flat panel display manufacture Laser ablation of ITO thin films on glass for flat panel display manufacture Matt Henry, Paul M Harrison, Jozef Wendland Powerlase Ltd, Imperial House, Link 10, Napier Way, Crawley, Sussex. RH10 9RA. United

More information

UV-LED Curing for Industrial Printing

UV-LED Curing for Industrial Printing UV-LED Curing for Industrial Printing (March 2012) posted on Tue Apr 24, 2012 UV-LED curing units have become more efficient in delivering higher energy to the By Richa Anand UV-LED curing refers to a

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

Applications Catheters. Polymer Tube Processing Catheter Hole Drilling

Applications Catheters. Polymer Tube Processing Catheter Hole Drilling Applications Catheters Polymer Tube Processing Catheter Hole Drilling Stainless Steel Tube Processing Laser Light Technologies can achieve virtually burr-free cuts in stainless steel tubing of various

More information

Making of a Chip Illustrations

Making of a Chip Illustrations Making of a Chip Illustrations 22nm 3D/Trigate Transistors Version April 2015 1 The illustrations on the following foils are low resolution images that visually support the explanations of the individual

More information

Photonic Sintering of Silver for Roll-to-Roll Printed Electronics. Saad Ahmed, PhD Manager-Engineering

Photonic Sintering of Silver for Roll-to-Roll Printed Electronics. Saad Ahmed, PhD Manager-Engineering Photonic Sintering of Silver for Roll-to-Roll Printed Electronics Saad Ahmed, PhD Manager-Engineering Topics Introduction Significance of nanotechnology Conductive inks Pulsed light for sintering Reel-to-reel

More information

Cavity Filters. KIGRE, INC., 100 Marshland Road, Hilton Head, SC 29926, USA PH: FAX: Web:

Cavity Filters. KIGRE, INC., 100 Marshland Road, Hilton Head, SC 29926, USA PH: FAX: Web: Cavity Filters Kigre, Inc. s expertise in laser glass technology has led the way in the company s development of a wide range of cavity filter glass for solid-state lasers. Filters are used inside the

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 1400 ma-n 1400 is a negative tone photoresist series designed for the use in microelectronics and microsystems. The resists are

More information

LASER MICROFABRICATION OF MULTIFUNCTIONAL DEVICES

LASER MICROFABRICATION OF MULTIFUNCTIONAL DEVICES LASER MICROFABRICATION OF MULTIFUNCTIONAL DEVICES Andy Goater, Gary Owen, Julian Burt & Nadeem Rizvi UK Laser Micromachining Centre Laser Microprocessing of Challenging Materials and Architectures AILU

More information

Laser Welding of Engineering Plastics

Laser Welding of Engineering Plastics Laser Welding of Engineering Plastics Technical Information Further information on individual products: www.ultramid.de www.ultradur-lux.basf.com www.ultrason.de www.plasticsportal.eu/ultraform 2 LASER

More information

Printed Electronics: Photonic Curing and Enabled Materials

Printed Electronics: Photonic Curing and Enabled Materials Printed Electronics: Photonic Curing and Enabled Materials Kurt Schroder, Dave Pope, Ian Rawson NovaCentrix 200-B Parker Dr Suite 580 Austin, TX 78728 Extended Abstract Introduction Photonic curing is

More information

Laser welding of polymers

Laser welding of polymers Laser welding of polymers State of the art and innovative trends - Part I Dipl.-Ing. Andrei Boglea 1 st Internal Workshop Laser welding - a versatile process for the high performance production of polymeric

More information

Fabrication Techniques for Thin-Film Silicon Layer Transfer

Fabrication Techniques for Thin-Film Silicon Layer Transfer Fabrication Techniques for Thin-Film Silicon Layer Transfer S. L. Holl a, C. A. Colinge b, S. Song b, R. Varasala b, K. Hobart c, F. Kub c a Department of Mechanical Engineering, b Department of Electrical

More information

Evaluation of Polymer Membrane Deformable Mirrors for High Peak Power Laser Machining Applications

Evaluation of Polymer Membrane Deformable Mirrors for High Peak Power Laser Machining Applications Evaluation of Polymer Membrane Deformable Mirrors for High Peak Power Laser Machining Applications Justin D. Mansell, Brian G. Henderson, Masataka Morita, and Gideon Robertson Active Optical Systems, LLC

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Ion Implantation Most modern devices doped using ion implanters Ionize gas sources (single +, 2+ or 3+ ionization) Accelerate dopant ions to very

Ion Implantation Most modern devices doped using ion implanters Ionize gas sources (single +, 2+ or 3+ ionization) Accelerate dopant ions to very Ion Implantation Most modern devices doped using ion implanters Ionize gas sources (single +, 2+ or 3+ ionization) Accelerate dopant ions to very high voltages (10-600 KeV) Use analyzer to selection charge/mass

More information

EUV optics lifetime Radiation damage, contamination, and oxidation

EUV optics lifetime Radiation damage, contamination, and oxidation EUV optics lifetime Radiation damage, contamination, and oxidation M. van Kampen ASML Research 10-11-2016 Preamble Slide 2 ASML builds lithography scanners High-resolution photocopiers Copies mask pattern

More information

Micro processing with laser radiation

Micro processing with laser radiation Micro processing with laser radiation Trends and perspectives Miniaturization and highly integrated functionalization are the driving factors in the production of innovative products in almost every industrial

More information

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers Anti-Reflection Custom Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition Anti-Reflection on Optical Fibers OptoSigma supplies a wide selection of optical

More information

Laser Processing and Characterisation of 3D Diamond Detectors

Laser Processing and Characterisation of 3D Diamond Detectors Laser Processing and Characterisation of 3D Diamond Detectors ADAMAS GSI meeting 3rd Dec 2015 Steven Murphy University of Manchester 3D Diamond Group / RD42 Outline Laser setup for fabricating graphitic

More information

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima Proceedings of 6th Thin Film Materials & Devices Meeting November 2-3, 2009, Kyoto, Japan http://www.tfmd.jp/ Characterization of SiO x /Si Interface Properties by Photo Induced Carrier Microwave Absorption

More information

Fields of Application / Industry:

Fields of Application / Industry: Fields of Application / Industry: Chemistry / Polymer Industry Clinical Chemistry / Medicine / Hygiene / Health Care Cosmetics Electronics Energy Environment / Water / Waste Food / Agriculture Geology

More information

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Carlos M. Bledt * a, Daniel V. Kopp a, and James A. Harrington a

More information

Industrial Applications. Cool Laser Machining.

Industrial Applications. Cool Laser Machining. Industrial Applications Cool Laser Machining www.synova.ch Energy & Aerospace Synova s Laser MicroJet (LMJ) systems offer holedrilling and diffuser-machining solutions for the aerospace and power generation

More information

3. Overview of Microfabrication Techniques

3. Overview of Microfabrication Techniques 3. Overview of Microfabrication Techniques The Si revolution First Transistor Bell Labs (1947) Si integrated circuits Texas Instruments (~1960) Modern ICs More? Check out: http://www.pbs.org/transistor/background1/events/miraclemo.html

More information

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica Microelettronica Planar Technology for Silicon Integrated Circuits Fabrication 26/02/2017 A. Neviani - Microelettronica Introduction Simplified crosssection of an nmosfet and a pmosfet Simplified crosssection

More information

Laser Micromachining for Industrial Applications and R&D. 3D-Micromac AG. Symposium on Smart Integrated Systems in Chemnitz. 3D-Micromac AG

Laser Micromachining for Industrial Applications and R&D. 3D-Micromac AG. Symposium on Smart Integrated Systems in Chemnitz. 3D-Micromac AG 3D-Micromac AG Symposium on Smart Integrated Systems in Chemnitz 1 1 microdice - TLS-Dicing for separation of SiC 2 microprep - for high-throughput microstructure diagnostics 3 About 3D-Micromac AG 2 microdice

More information

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Joohan Lee, Joseph J. Griffiths, and James Cordingley GSI Group Inc. 60 Fordham Rd. Wilmington, MA 01887 jlee@gsig.com

More information

Fabrication and Layout

Fabrication and Layout ECEN454 Digital Integrated Circuit Design Fabrication and Layout ECEN 454 3.1 A Glimpse at MOS Device Polysilicon Aluminum ECEN 475 4.2 1 Material Classification Insulators Glass, diamond, silicon oxide

More information

CHAPTER 4: Oxidation. Chapter 4 1. Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are:

CHAPTER 4: Oxidation. Chapter 4 1. Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are: Chapter 4 1 CHAPTER 4: Oxidation Oxidation of silicon is an important process in VLSI. The typical roles of SiO 2 are: 1. mask against implant or diffusion of dopant into silicon 2. surface passivation

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Optimizing the processing of sapphire with ultrashort laser pulses

Optimizing the processing of sapphire with ultrashort laser pulses Optimizing the processing of sapphire with ultrashort laser pulses Geoff Lott 1, Nicolas Falletto 1, Pierre-Jean Devilder, and Rainer Kling 3 1 Electro Scientific Industries, Eolite Systems, 3 Alphanov

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Crystallization of Continuing Wave Laser Applications for Low-Temperature Polycrystalline Thin Film Transistors

Crystallization of Continuing Wave Laser Applications for Low-Temperature Polycrystalline Thin Film Transistors Chapter 4 Crystallization of Continuing Wave Laser Applications for Low-Temperature Polycrystalline Thin Film Transistors 4.1 Introduction Low temperature poly-silicon TFTs fabricated by excimer laser

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES

EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES PD Dr. Alexander Horn, V. Schütz, J. Gonzalez, C.C. Kalmbach Photovoltaics Group Dpt. for Production and

More information

Solutions with Light. Energy and environment, Information and communication, Healthcare and medical technology, Safety and mobility.

Solutions with Light. Energy and environment, Information and communication, Healthcare and medical technology, Safety and mobility. Fraunhofer Institute for Applied Optics and Precision Engineering Solutions with Light EXPERTISE in Optical system technology 2 Solutions with Light The Fraunhofer IOF conducts application oriented research

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

Advanced Manufacturing Choices

Advanced Manufacturing Choices Advanced Manufacturing Choices Table of Content Mechanical Removing Techniques Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Ultrasonic Machining In ultrasonic machining (USM),

More information

Laser Dicing of Silicon: Comparison of Ablation Mechanisms with a Novel Technology of Thermally Induced Stress

Laser Dicing of Silicon: Comparison of Ablation Mechanisms with a Novel Technology of Thermally Induced Stress Dicing of Silicon: Comparison of Ablation Mechanisms with a Novel Technology of Thermally Induced Stress Oliver HAUPT, Frank SIEGEL, Aart SCHOONDERBEEK, Lars RICHTER, Rainer KLING, Andreas OSTENDORF Zentrum

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Micro-Nano Fabrication Research

Micro-Nano Fabrication Research Micro-Nano Fabrication Research Technical Education Quality Improvement Programme 22-23 December 2014 Dr. Rakesh G. Mote Assistant Professor Department of Mechanical Engineering IIT Bombay rakesh.mote@iitb.ac.in;

More information

Laser-Induced Surface Damage of Optical Materials: Absorption Sources, Initiation, Growth, and Mitigation

Laser-Induced Surface Damage of Optical Materials: Absorption Sources, Initiation, Growth, and Mitigation Laser-Induced Surface Damage of Optical Materials: Absorption Sources, Initiation, Growth, and Mitigation 100 nm 1 mm S. Papernov and A. W. Schmid University of Rochester Laboratory for Laser Energetics

More information

Studies Toward Improving the Laser Damage Resistance of UV Coatings. Authors: Samuel Pellicori and David Sanchez Materion Coating Materials News

Studies Toward Improving the Laser Damage Resistance of UV Coatings. Authors: Samuel Pellicori and David Sanchez Materion Coating Materials News TECHNICAL PAPER Studies Toward Improving the Laser Damage Resistance of UV Coatings Authors: Samuel Pellicori and David Sanchez Materion Coating Materials News The shift in laser wavelength to UV is accompanied

More information

Chapter 3 CMOS processing technology

Chapter 3 CMOS processing technology Chapter 3 CMOS processing technology (How to make a CMOS?) Si + impurity acceptors(p-type) donors (n-type) p-type + n-type => pn junction (I-V) 3.1.1 (Wafer) Wafer = A disk of silicon (0.25 mm - 1 mm thick),

More information