Electron microscopy II

Size: px
Start display at page:

Download "Electron microscopy II"

Transcription

1 Electron microscopy II Nanomaterials characterization I RNDr. Věra Vodičková, PhD.

2 Interaction ction: electrons solid matter Signal types SE.secondary e - AE Auger s e - BSE back scattered e - X-ray photons, and others TE transmitted e - DE diffracted e - Scanning electron microscopy (SEM) Transmission electron microscopy (TEM) Interactive area 2

3 Transmission electron microscopy- information provided by transmitted e- (TE, DE) TEM makes possible studying of the internal material structure (dislocations, stacking faults) specimens must be transparent thickness cca nm foils or replicas special preparation TEM better resolution than REM (usually) 3

4 Transmission microskope scheme, constructive elements Construction is similar to SEM (only specimen location is different) Source of e - cathode (heated or autoemitting) Imaging system electromagnetic lenses (condenser and projector lenses) Image is visible on fluorescent screen 4

5 Image generation and interpretation EM difractograph TEM Pattern rises in back focal plane Pattern rises in image plane Either diffraction pattern or specimen image is projected on screen SAD selected area diffraction diffraction from selected part of specimen (realization selected area aperture) Accuracy of SAD decreases with diffraction angle 5

6 Image generation and interpretation Specimen image Diffraction pattern 6

7 Image formation and interpretation CAMERA CONSTANT K describes the magnification of diffraction pattern For small diffraction angles (2θ 2 sinθ tg 2θ) is R = Ltg2θ = L2θ (R - distance between primary and diffracted beam) From Brag s law: K = Rdhkl = λl 7

8 Image formation and interpretation Basic ways of imaging delimitation of beams that create image on screen delimitation of straight beam only bright field image (BF) delimitation of one of diffracted beams only dark field image (DF) deflection of primary e - beam (one of those diffracted beams must pass through the optical axis of the microscope) centered dark field (CDF) TEM Contrast : Mass-thickness contrast in image mode, due to differences in intensity of scattering diffraction contrast in diffraction mode 8

9 Scattering contrast formation Aproximation of exponential absorption law Total intensity of transmitted beam σ s t σ a σ 0ρ I = I e 0 s Ar Condition for thickness of TEM specimen 0,5 σ t s so: contrast is given as partial variation of scattered e - density, defined by parameters σ s and t 1 = N 9

10 Electron diffraction Diffraction pattern concentric circles polycrystalic specimen point patterns (dot diagram) thin monocrystals Kikuchi lines more massive monocrystals 10

11 Diffraction on polycrystals - circular TEM diffractograms dot density is proportional to - number of grains in unit volume - size of selected area aperture circles indexing: sequence of diameters must be corresponding to sequence of specimen d hkl Diffraction on monocrystals - dot TEM diffractograms pattern image of reciprocal lattice plane k every spot (dot) represents one system of lattice planes Indexing assign of Miller indices hkl to every spot according to distance from central spot (by means of camera constant, Burgers vectors and angles) simplification of indexing via Kikuchi lines 11

12 Kikuchi lines parallel bright and dark lines change of position at specimen tilt formation is connected with nonelastic scattering of e - system of Kikuchi line defines of specimen crystalography lines from crystal planes split of distance between corresponding lines maps of Kikuchi lines fast orientation in specimen crystalography 12

13 Extraordinary diffraction spots finer structure of diffraction pattern broadening, elongation of spots, satellite or extraordinary spots Formation factors: shape of particles deformation and faults Examples: Double diffraction extraordinary spots Long range ordering forbidden reflections Planar defects splitting of spots Thermal oscillation Point defects Satellite spots Bending (from periodic and modulated structure) Spinodal decomposition 13

14 Methods of electron diffraction Selected area diffraction (SAD) metals, minerals (d<2,5-4 nm). Selected area aperture using maximalization of image, better delimitation of diffraction area Diffra raction with high resolution specimen location under projector imaging aberration suppression, higher resolution Small-angle angle dif Reflective diffra Diffra raction with too much diffraction thickness d=2 200 nm raction surface layers (oxides) with scanning specimens that heat up 14

15 TEM specimen preparation Foils for internal structure study, thin transparent specimens - thinning of material: polishing - final thinning: electrolytic polishing or ion bombardment Replicas prints of surface for study of surface details - material of replicas must copy the surface perfectly (carbon or polymers ) - by proceeding produce of replicas: one-step, two-step or extraction replicas 15

16 TEM foils preparation 16

17 TEM foils preparation Electolytic jet polisher 17

18 Examples of foils using Study of dislocation structure Phase identification Study of grain boundaries 18

19 TEM replicas preparation FIB preparation Two-step replica 19

EMSE Weak-Beam Dark-Field Technique

EMSE Weak-Beam Dark-Field Technique Weak-Beam Dark-Field Technique 1 Weak-Beam Dark-Field Imaging Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 near the dislocation core, some planes curved

More information

Microstructural Characterization of Materials

Microstructural Characterization of Materials Microstructural Characterization of Materials 2nd Edition DAVID BRANDON AND WAYNE D. KAPLAN Technion, Israel Institute of Technology, Israel John Wiley & Sons, Ltd Contents Preface to the Second Edition

More information

Imaging with Diffraction Contrast

Imaging with Diffraction Contrast Imaging with Diffraction Contrast Duncan Alexander EPFL-CIME 1 Introduction When you study crystalline samples TEM image contrast is dominated by diffraction contrast. An objective aperture to select either

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information

TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati

TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati Electron Microscopes: Electron microscopes, such as the scanning electron microscope (SEM) and transmission electron microscope (TEM)

More information

Practical 2P8 Transmission Electron Microscopy

Practical 2P8 Transmission Electron Microscopy Practical 2P8 Transmission Electron Microscopy Originators: Dr. N.P. Young and Prof. J. M. Titchmarsh What you should learn from this practical Science This practical ties-in with the lecture course on

More information

CHEM-E5225 :Electron Microscopy Imaging II

CHEM-E5225 :Electron Microscopy Imaging II CHEM-E5225 :Electron Microscopy Imaging II D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer Science & Business Media, 2009. Z. Luo, A Practical Guide

More information

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY Ayush Garg Department of Chemical and Materials Engineering, University of Auckland, Auckland,

More information

Kinematical theory of contrast

Kinematical theory of contrast Kinematical theory of contrast Image interpretation in the EM the known distribution of the direct and/or diffracted beam on the lower surface of the crystal The image on the screen of an EM = the enlarged

More information

Practical 2P8 Transmission Electron Microscopy

Practical 2P8 Transmission Electron Microscopy Practical 2P8 Transmission Electron Microscopy Originators: Dr. M. L. Jenkins and Prof. J. M. Titchmarsh What you should learn from this practical Science This practical ties-in with the lecture course

More information

Electron Microscopy. Dynamical scattering

Electron Microscopy. Dynamical scattering Electron Microscopy 4. TEM Basics: interactions, basic modes, sample preparation, Diffraction: elastic scattering theory, reciprocal space, diffraction pattern, Laue zones Diffraction phenomena Image formation:

More information

TEM imaging and diffraction examples

TEM imaging and diffraction examples TEM imaging and diffraction examples Duncan Alexander EPFL-CIME 1 Diffraction examples Kikuchi diffraction Epitaxial relationships Polycrystalline samples Amorphous materials Contents Convergent beam electron

More information

INTERPRETATION OF TRANSMISSION ELECTRON MICROGRAPHS

INTERPRETATION OF TRANSMISSION ELECTRON MICROGRAPHS 3 INTERPRETATION OF TRANSMISSION ELECTRON MICROGRAPHS Already published in this series 1. The Operation and Calibration of the Electron Microscope 2. Electron Diffraction in the Electron Microscope In

More information

The principles and practice of electron microscopy

The principles and practice of electron microscopy The principles and practice of electron microscopy Second Edition Ian M. Watt CAMBRIDGE UNIVERSITY PRESS Contents Preface tofirstedition page ix Preface to second edition xi 1 Microscopy with light and

More information

Dislocations Linear Defects

Dislocations Linear Defects Dislocations Linear Defects Dislocations are abrupt changes in the regular ordering of atoms, along a line (dislocation line) in the solid. They occur in high density and are very important in mechanical

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences Page 1 UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in MENA3100 Characterization of materials Day of exam: 12th. June 2015 Exam hours: 14:30 This examination paper consists of 5

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in MENA3100 Characterization of materials Day of exam: 8 th June 2017 Exam hours: 14:30 18:30 This examination paper consists of 7 pages

More information

TEM imaging and diffraction examples

TEM imaging and diffraction examples TEM imaging and diffraction examples Duncan Alexander EPFL-CIME 1 Diffraction examples Kikuchi diffraction Epitaxial relationships Polycrystalline samples Amorphous materials Contents Convergent beam electron

More information

Diffraction Going further

Diffraction Going further Diffraction Going further Duncan Alexander! EPFL-CIME 1 Contents Higher order Laue zones (HOLZ)! Kikuchi diffraction! Convergent beam electron diffraction (CBED)! HOLZ lines in CBED! Thickness measurements!

More information

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth?

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? Part II: Worked Examples H. K. D. H. Bhadeshia Question 14 Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? The surface of a metal can be nitrided to form

More information

Defect and chemical analysis in the TEM

Defect and chemical analysis in the TEM THE UNIVERSITY Defect and chemical analysis in the TEM Defect and chemical analysis in the TEM I.P. Jones. Chemical analysis: EDX. Chemical analysis: PEELS Centre for Electron Microscopy OF BIRMINGHAM

More information

Crystallographic Textures Measurement

Crystallographic Textures Measurement Crystallographic Textures Measurement D. V. Subramanya Sarma Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras E-mail: vsarma@iitm.ac.in Macrotexture through pole

More information

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE W.L. Sarney 1, L. Salamanca-Riba 1, V. Ramachandran 2, R.M Feenstra 2, D.W. Greve 3 1 Dept. of Materials & Nuclear Engineering,

More information

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma Chapter 3 Basic Crystallography and Electron Diffraction from Crystals Lecture 9 Outline The geometry of electron diffraction Crystallography Kinetic Theory of Electron diffraction Diffraction from crystals

More information

Introduction to Engineering Materials ENGR2000 Chapter 4: Imperfections in Solids. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 4: Imperfections in Solids. Dr. Coates Introduction to Engineering Materials ENGR000 Chapter 4: Imperfections in Solids Dr. Coates Learning Objectives 1. Describe both vacancy and self interstitial defects. Calculate the equilibrium number

More information

On-axis Transmission Kikuchi Diffraction in the SEM. Performances and Applications

On-axis Transmission Kikuchi Diffraction in the SEM. Performances and Applications On-axis Transmission Kikuchi Diffraction in the SEM. Performances and Applications Etienne Brodu, Emmanuel Bouzy, Jean-Jacques Fundenberger Séminaire «les microscopies électroniques à Metz et à Nancy»

More information

Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples

Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples Stefan Zaefferer with contributions of N. Elhami, (general & steels) Z. Li F. Ram,

More information

Dynamical Scattering and Defect Imaging

Dynamical Scattering and Defect Imaging Dynamical Scatterin and Defect Imain Duncan Alexander! EPFL-CIME 1 Contents Dynamical scatterin! Thickness frines! Double diffraction! Defect imain! 2-beam (stron beam) set-up!.b dislocation analysis!

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

The structure of near-spherical carbon nano-shells

The structure of near-spherical carbon nano-shells PERGAMON Carbon 38 (2000) 1437 1444 The structure of near-spherical carbon nano-shells J.M. Cowley *, Ching-Hwa Kiang a, b a Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504,

More information

Carnegie Mellon MRSEC

Carnegie Mellon MRSEC Carnegie Mellon MRSEC Texture, Microstructure & Anisotropy, Fall 2009 A.D. Rollett, P. Kalu 1 ELECTRONS SEM-based TEM-based Koseel ECP EBSD SADP Kikuchi Different types of microtexture techniques for obtaining

More information

11.3 The analysis of electron diffraction patterns

11.3 The analysis of electron diffraction patterns 11.3 The analysis of electron diffraction patterns 277 diameter) Ewald reflecting sphere, the extension of the reciprocal lattice nodes and the slight buckling of the thin foil specimens all of which serve

More information

3. Anisotropic blurring by dislocations

3. Anisotropic blurring by dislocations Dynamical Simulation of EBSD Patterns of Imperfect Crystals 1 G. Nolze 1, A. Winkelmann 2 1 Federal Institute for Materials Research and Testing (BAM), Berlin, Germany 2 Max-Planck- Institute of Microstructure

More information

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE 1 Chapter 3 The structure of crystalline solids 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 12/10/2014 Quiz # 1 will be held on Monday 13/10/2014 at 11:00 am

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES NATURAL SCIENCES TRIPOS Part IA Friday 4 June 1999 1.30 to 4.30 MATERIALS AND MINERAL SCIENCES Answer five questions; two from each of sections A and B and one from section C. Begin each answer at the

More information

3. Solidification & Crystalline Imperfections

3. Solidification & Crystalline Imperfections 3. Solidification & Crystalline Imperfections solidification (casting process) of metals divided into two steps (1) nucleation formation of stable nuclei in the melt (2) growth of nuclei into crystals

More information

Specimen configuration

Specimen configuration APPLICATIONNOTE Model 1040 NanoMill TEM specimen preparation system Specimen configuration Preparing focused ion beam (FIB) milled specimens for submission to Fischione Instruments. The Model 1040 NanoMill

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

The object of this experiment is to test the de Broglie relationship for matter waves,

The object of this experiment is to test the de Broglie relationship for matter waves, Experiment #58 Electron Diffraction References Most first year texts discuss optical diffraction from gratings, Bragg s law for x-rays and electrons and the de Broglie relation. There are many appropriate

More information

CHAPTER 7 MICRO STRUCTURAL PROPERTIES OF CONCRETE WITH MANUFACTURED SAND

CHAPTER 7 MICRO STRUCTURAL PROPERTIES OF CONCRETE WITH MANUFACTURED SAND 99 CHAPTER 7 MICRO STRUCTURAL PROPERTIES OF CONCRETE WITH MANUFACTURED SAND 7.1 GENERAL Characterizing the mineralogy of the samples can be done in several ways. The SEM identifies the morphology of the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armor Ling Li and Christine Ortiz* Department of Materials Science and Engineering, Massachusetts

More information

Transmission Kikuchi Diffraction in the Scanning Electron Microscope

Transmission Kikuchi Diffraction in the Scanning Electron Microscope Transmission Kikuchi Diffraction in the Scanning Electron Microscope Robert Keller, Roy Geiss, Katherine Rice National Institute of Standards and Technology Nanoscale Reliability Group Boulder, Colorado

More information

TRANSMISSION ELECTRON MICROSCOPY OF OPTOELECTRONIC MATERIALS BASICS AND ADVANCED TECHNIQUES

TRANSMISSION ELECTRON MICROSCOPY OF OPTOELECTRONIC MATERIALS BASICS AND ADVANCED TECHNIQUES TRANSMISSION ELECTRON MICROSCOPY OF OPTOELECTRONIC MATERIALS BASICS AND ADVANCED TECHNIQUES Fritz Phillipp Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany ABSTRACT

More information

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam , Tamilnadu.

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam , Tamilnadu. Academic Year : Year / Semester : 17MF103 - MATERIALS TESTING AND MECHANICAL CHARACTERIZATION 2017-2018 Programme: M.E Manufacturing Engineering Question Bank I / I Course V.Sivaramakrishnan Coordinator:

More information

LA-UR-01-3685 Approved for public release; distribution is unlimited. Title: USING A MULTI-DISCIPLINARY APPROACH, THE FIRST ELECTRON BACKSCATTERED KIKUCHI PATTERNS WERE CAPTURED FOR A PLUTONIUM ALLOY Author(s):

More information

Phase Transformation of 00 Martensite Structure by Aging in Ti-8 mass%mo Alloy

Phase Transformation of 00 Martensite Structure by Aging in Ti-8 mass%mo Alloy Materials Transactions, Vol. 45, No. 5 (2004) pp. 1629 to 1634 Special Issue on Recent Research and Developments in Titanium and Its Alloys #2004 The Japan Institute of Metals Phase Transformation of 00

More information

Atomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.

Atomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction. Atomic Densities Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction. Planar Density Number of atoms per unit area that are centered

More information

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning

More information

Observation in the GB (Gentle Beam) Capabilities

Observation in the GB (Gentle Beam) Capabilities A field-emission cathode in the electron gun of a scanning electron microscope provides narrower probing beams at low as well as high electron energy, resulting in both improved spatial resolution and

More information

EBSD Basics EBSD. Marco Cantoni 021/ Centre Interdisciplinaire de Microscopie Electronique CIME. Phosphor Screen. Pole piece.

EBSD Basics EBSD. Marco Cantoni 021/ Centre Interdisciplinaire de Microscopie Electronique CIME. Phosphor Screen. Pole piece. EBSD Marco Cantoni 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME EBSD Basics Quantitative, general microstructural characterization in the SEM Orientation measurements, phase

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/8/eaat4712/dc1 Supplementary Materials for In situ manipulation and switching of dislocations in bilayer graphene Peter Schweizer, Christian Dolle, Erdmann Spiecker*

More information

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 4 Microscopy (III): Transmission Electron Microscopy (TEM)

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 4 Microscopy (III): Transmission Electron Microscopy (TEM) 1 AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 4 Microscopy (III): Transmission Electron Microscopy (TEM) Prof YU Kin Man E-mail: kinmanyu@cityu.edu.hk Tel: 3442-7813 Office: P6422

More information

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT)

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT) ECE280: Nano-Plasmonics and Its Applications Week5 Extraordinary Optical Transmission (EOT) Introduction Sub-wavelength apertures in metal films provide light confinement beyond the fundamental diffraction

More information

Deformation Microstructure and Texture in a Cold-Rolled Austenitic Steel with Low Stacking-Fault Energy

Deformation Microstructure and Texture in a Cold-Rolled Austenitic Steel with Low Stacking-Fault Energy Materials Transactions, Vol. 51, No. 4 (2010) pp. 620 to 624 Special Issue on Crystallographic Orientation Distribution and Related Properties in Advanced Materials II #2010 The Japan Institute of Metals

More information

Application of Advanced Techniques for Metals Identification and Characterisation

Application of Advanced Techniques for Metals Identification and Characterisation Application of Advanced Techniques for Metals Identification and Characterisation David N Githinji Department of Manufacturing, Industrial & Textile Engineering, Moi University, P.O Box 3900-30100, Eldoret,

More information

Fundamentals of X-ray diffraction and scattering

Fundamentals of X-ray diffraction and scattering Fundamentals of X-ray diffraction and scattering Don Savage dsavage@wisc.edu 1231 Engineering Research Building (608) 263-0831 X-ray diffraction and X-ray scattering Involves the elastic scattering of

More information

Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints

Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints To cite this article: S Sharafiev

More information

High Resolution X-ray Diffraction

High Resolution X-ray Diffraction High Resolution X-ray Diffraction Nina Heinig with data from Dr. Zhihao Donovan Chen, Panalytical and slides from Colorado State University Outline Watlab s new tool: Panalytical MRD system Techniques:

More information

Supplementary Material

Supplementary Material Supplementary Material Self-patterning Gd nano-fibers in Mg-Gd alloys Yangxin Li 1,2, Jian Wang 3, Kaiguo Chen 4, Meiyue Shao 2, Yao Shen 1 *, Li Jin 2 *, Guozhen Zhu 1 * 1 State Key Laboratory of Metal

More information

IMMERSION HOLOGRAPHIC RECORDING OF SUBWAVELENGTH GRATINGS IN AMORPHOUS CHALCOGENIDE THIN FILMS

IMMERSION HOLOGRAPHIC RECORDING OF SUBWAVELENGTH GRATINGS IN AMORPHOUS CHALCOGENIDE THIN FILMS Journal of Optoelectronics and Advanced Materials Vol. 7, No. 5, October 2005, p. 2581-2586 IMMERSION HOLOGRAPHIC RECORDING OF SUBWAVELENGTH GRATINGS IN AMORPHOUS CHALCOGENIDE THIN FILMS J. Teteris *,

More information

Impact of hydrogen pick up and applied stress on c component loops: radiation induced growth of recrystallized zirconium alloys

Impact of hydrogen pick up and applied stress on c component loops: radiation induced growth of recrystallized zirconium alloys Impact of hydrogen pick up and applied stress on c component loops: Toward a better understanding of the radiation induced growth of recrystallized zirconium alloys L. Tournadre 1, F. Onimus 1, J.L. Béchade

More information

Introduction to Electron Microscopy Andres Kaech

Introduction to Electron Microscopy Andres Kaech Center for Microscopy and Image Analysis Introduction to Electron Microscopy Andres Kaech The types of electron microscopes Transmission electron microscope (TEM) Scanning electron microscope (SEM) 1 The

More information

Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression

Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression Supporting Information Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression This PDF file contains: Figures S1 to S4 Supplementary Text : 1. Materials and initial characterization

More information

Introduction to Electron Backscattered Diffraction. TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016

Introduction to Electron Backscattered Diffraction. TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016 Introduction to Electron Backscattered Diffraction 1 TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016 SE vs BSE 2 Ranges and interaction volumes 3 (1-2 m) http://www4.nau.edu/microanalysis/microprobe/interact-effects.html

More information

Microstructures and dislocations in the stressed AZ91D magnesium alloys

Microstructures and dislocations in the stressed AZ91D magnesium alloys Materials Science and Engineering A344 (2002) 279/287 www.elsevier.com/locate/msea Microstructures and dislocations in the stressed AZ91D magnesium alloys R.M. Wang a,b,, A. Eliezer a, E. Gutman a a Ben-Gurion

More information

Photonics applications IV. Fabrication of GhG optical fiber Fabrication of ChG planar waveguide Fabrication of ChG PC structure

Photonics applications IV. Fabrication of GhG optical fiber Fabrication of ChG planar waveguide Fabrication of ChG PC structure Photonics applications IV Fabrication of GhG optical fiber Fabrication of ChG planar waveguide Fabrication of ChG PC structure 1 Why does fabrication issue matter for photonics applications? Geometrical

More information

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel Bull. Mater. Sci., Vol. 25, No. 3, June 2002, pp. 213 217. Indian Academy of Sciences. XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel LI YAJIANG*, WANG

More information

Conventional TEM. N o r t h w e s t e r n U n i v e r s i t y - M a t e r i a l s S c i e n c e

Conventional TEM. N o r t h w e s t e r n U n i v e r s i t y - M a t e r i a l s S c i e n c e Conventional TEM STEM N o r t h w e s t e r n U n i v e r s i t y - M a t e r i a l s S c i e n c e Reciprocity 1 1 C CCCCCCCC(2ππππππ. rr) CCCCCC(2ππππππ. rr) Reciprocity 2 1 C+D CC(gg)CCCCCC(2ππππππ.

More information

Crystallographic Orientation Relationship between Discontinuous Precipitates and Matrix in Commercial AZ91 Mg Alloy

Crystallographic Orientation Relationship between Discontinuous Precipitates and Matrix in Commercial AZ91 Mg Alloy Materials Transactions, Vol. 52, No. 3 (2011) pp. 340 to 344 Special Issue on New Trends for Micro- and Nano Analyses by Transmission Electron Microscopy #2011 The Japan Institute of Metals Crystallographic

More information

Application of Scanning Electron Microscope to Dislocation Imaging in Steel

Application of Scanning Electron Microscope to Dislocation Imaging in Steel Application of Scanning Electron Microscope to Dislocation Imaging in Steel Masaaki Sugiyama and Masateru Shibata Advanced Technology Research Laboratories, Nippon Steel Corporation SM Business Unit, JEOL

More information

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression Materials Transactions, Vol., No. (00) pp. 6 to 67 #00 The Japan Institute of Light Metals {00} Texture Map of AA8 Aluminum Alloy for High Temperature Uniaxial Compression Hyeon-Mook Jeong*, Kazuto Okayasu

More information

INSTRUMENTAL TECHNIQUES FOR PARTICLE SIZE DETERMINATION

INSTRUMENTAL TECHNIQUES FOR PARTICLE SIZE DETERMINATION CHAPTER V INSTRUMENTAL TECHNIQUES FOR PARTICLE SIZE DETERMINATION 5.1 INTRODUCTION Particle size determination is very essential and important while working with nanomaterials. There are a few good experimental

More information

J.Dutkiewicz and J. Morgiel Institute for Metals Research, Polish Academy of Science, Krakow, Poland.

J.Dutkiewicz and J. Morgiel Institute for Metals Research, Polish Academy of Science, Krakow, Poland. 141 Effect of Ageing on Martensitic Transformation in CuZn and CuZnSn Alloys. J.Dutkiewicz and J. Morgiel Institute for Metals Research, Polish Academy of Science, Krakow, Poland. Introduction. The characteristic

More information

MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron

MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron MODEL 1051 TEM Mill A state-of-the-art ion milling and polishing system offering reliable, high performance specimen preparation. It is compact, precise, and consistently produces high-quality transmission

More information

Signals from a thin sample

Signals from a thin sample Signals from a thin sample Auger electrons Backscattered electrons BSE Incident beam secondary electrons SE Characteristic X-rays visible light 1-100 nm absorbed electrons Specimen electron-hole pairs

More information

Quantitative Analysis of Atomic-scale Alloying Elements Using TEM

Quantitative Analysis of Atomic-scale Alloying Elements Using TEM Technical Report UDC 543. 5 : 621. 385. 22 : 539. 18 Quantitative Analysis of Atomic-scale Alloying Elements Using TEM Takafumi AMINO* Abstract Steel properties can change greatly depending on the steel

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Electron Beam Column electron gun beam on/of control magnetic deflection

More information

In-situ TEM straining of tetragonal martensite of Ni-Mn-Ga alloy

In-situ TEM straining of tetragonal martensite of Ni-Mn-Ga alloy , 04007 (2009) DOI:10.1051/esomat/200904007 Owned by the authors, published by EDP Sciences, 2009 In-situ TEM straining of tetragonal martensite of Ni-Mn-Ga alloy Yanling Ge a 1, 1, Ilkka Aaltio a a, Simo-Pekka

More information

ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS. Stefano ARGENTERO

ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS. Stefano ARGENTERO Abstract ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS Stefano ARGENTERO Centro Sviluppo Materiali S.p.A., Via di Castel Romano 100, s.argentero@c-s-m.it The Accumulative Roll Bonding (ARB) is

More information

The application of scanning electron beam anomalous transmission patterns in mineralogy

The application of scanning electron beam anomalous transmission patterns in mineralogy MINERALOGICAL MAGAZINE, JUNE 1969, VOL. 37, NO. 286 The application of scanning electron beam anomalous transmission patterns in mineralogy M. P. JONES, B.SC., D.I.C., A.M.I.M.M., AND J. GAVRILOVIC, PH.D.,

More information

Bragg diffraction using a 100ps 17.5 kev x-ray backlighter and the Bragg Diffraction Imager

Bragg diffraction using a 100ps 17.5 kev x-ray backlighter and the Bragg Diffraction Imager LLNL-CONF-436071 Bragg diffraction using a 100ps 17.5 kev x-ray backlighter and the Bragg Diffraction Imager B. R. Maddox, H. Park, J. Hawreliak, A. Comley, A. Elsholz, R. Van Maren, B. A. Remington, J.

More information

Lesson 1 X-rays & Diffraction

Lesson 1 X-rays & Diffraction Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation, Bettlach, Switzerland February 11 14, 2013, Riga, Latvia Electromagnetic Spectrum X rays: Wavelength λ: 0.01 10 nm Energy: 100 ev 100 kev Interatomic

More information

Dissimilar Metals Welding of Galvanized Steel and Aluminum

Dissimilar Metals Welding of Galvanized Steel and Aluminum Transactions of JWRI, Vol.43 (04), No. Dissimilar Metals Welding of Galvanized Steel and Aluminum NISHIMOTO Koji*, KAWAHITO Yousuke** and KATAYAMA Seiji*** Abstract Dissimilar metals joints of galvanized

More information

12/10/09. Chapter 4: Imperfections in Solids. Imperfections in Solids. Polycrystalline Materials ISSUES TO ADDRESS...

12/10/09. Chapter 4: Imperfections in Solids. Imperfections in Solids. Polycrystalline Materials ISSUES TO ADDRESS... Chapter 4: ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material

More information

Changes in Microstructure of Al/AlN Interface during Thermal Cycling

Changes in Microstructure of Al/AlN Interface during Thermal Cycling Materials Transactions, Vol. 49, No. 12 (2008) pp. 2808 to 2814 #2008 The Japan Institute of Metals Changes in Microstructure of / Interface during Thermal Cycling Yoshiyuki Nagatomo 1, Takeshi Kitahara

More information

Electron Microscopy Studies of Niobium Thin Films on Copper

Electron Microscopy Studies of Niobium Thin Films on Copper Electron Microscopy Studies of Niobium Thin Films on Copper Roy Crooks 1, Greg Thompson 2, Robb Morris 2, Michelle Adams Hughes 3, Daudi Waryoba 3, and Peter Kalu 3 1 Black Laboratories, L.L.C., Newport

More information

3, MSE 791 Mechanical Properties of Nanostructured Materials

3, MSE 791 Mechanical Properties of Nanostructured Materials 3, MSE 791 Mechanical Properties of Nanostructured Materials Module 3: Fundamental Physics and Materials Design Lecture 1 1. What is strain (work) hardening? What is the mechanism for strain hardening?

More information

EUV Transmission Lens Design and Manufacturing Method

EUV Transmission Lens Design and Manufacturing Method 1 EUV Transmission Lens Design and Manufacturing Method Kenneth C. Johnson kjinnovation@earthlink.net 7/16/2018 http://vixra.org/abs/1807.0188 Abstract This paper outlines a design for an EUV transmission

More information

Effect of Fine Particle Bombarding on Thermal Fatigue Property of Tool Steel for Die Casting

Effect of Fine Particle Bombarding on Thermal Fatigue Property of Tool Steel for Die Casting Effect of Fine Particle Bombarding on Thermal Fatigue Property of Tool Steel for Die Casting Shinichi Takagi, Masao Kumagai, Toshitaka Satsuta and Akihiko Sano 1, Eiji Shimodaira 2 1 Kanagawa Industrial

More information

The changes of ADI structure during high temperature annealing

The changes of ADI structure during high temperature annealing ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Issue Special1/2010 87-92 15/1 The changes of ADI

More information

Transmission Electron Microscopy. J.G. Wen, C.H. Lei, M. Marshall W. Swiech, J. Mabon, I. Petrov

Transmission Electron Microscopy. J.G. Wen, C.H. Lei, M. Marshall W. Swiech, J. Mabon, I. Petrov Advanced Materials Characterization Workshop Transmission Electron Microscopy J.G. Wen, C.H. Lei, M. Marshall W. Swiech, J. Mabon, I. Petrov Supported by the U.S. Department of Energy under grants DEFG02-07-ER46453

More information

Grain Contrast Imaging in UHV SLEEM

Grain Contrast Imaging in UHV SLEEM Materials Transactions, Vol. 51, No. 2 (2010) pp. 292 to 296 Special Issue on Development and Fabrication of Advanced Materials Assisted by Nanotechnology and Microanalysis #2010 The Japan Institute of

More information

A Quantitative Evaluation of Microstructure by Electron Back-Scattered Diffraction Pattern Quality Variations

A Quantitative Evaluation of Microstructure by Electron Back-Scattered Diffraction Pattern Quality Variations Microsc. Microanal. 19, S5, 83 88, 2013 doi:10.1017/s1431927613012397 A Quantitative Evaluation of Microstructure by Electron Back-Scattered Diffraction Pattern Quality Variations SukHoonKang, 1 Hyung-Ha

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

How can we describe a crystal?

How can we describe a crystal? How can we describe a crystal? Examples of common structures: (1) The Sodium Chloride (NaCl) Structure (LiH, MgO, MnO, AgBr, PbS, KCl, KBr) The NaCl structure is FCC The basis consists of one Na atom and

More information

1P1b: Introduction to Microscopy

1P1b: Introduction to Microscopy 1P1b: Introduction to Microscopy Central to the study and characterisation of metals and many other materials is the microscope, ranging from the magnification of, say, 1 to 35 in a simple stereo binocular

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 5: IMPERFECTIONS IN SOLIDS School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 4-1 ISSUES TO ADDRESS... What are the solidification mechanisms? What types

More information

EBSD Electron BackScatter Diffraction Principle and Applications

EBSD Electron BackScatter Diffraction Principle and Applications EBSD Electron BackScatter Diffraction Principle and Applications Dr. Emmanuelle Boehm-Courjault EPFL STI IMX Laboratoire de Simulation des Matériaux LSMX emmanuelle.boehm@epfl.ch 1 Outline! Introduction!

More information