EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

Size: px
Start display at page:

Download "EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009"

Transcription

1 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/ mm Fab Tour Overview of IC Technology Slide 1

2 Slide 2

3 45 1µm = 10-4 cm = 10-6 m = 1000 nm nm n + n + Micron and Nanometer State-of-the-art transistor in mass production ~ 500 Transistors Diameter of human hair ~50µm 3 Slide 3

4 4 Slide 4

5 Slide 5

6 Perspective on Moore s Law In 2005, cost of a transistor = cost of printing one letter in NY Times we are already producing transistors per year. Enough to supply every ant on the planet with ten transistors. Twenty years from now, if the trend continues, there will be more transistors than there will be cells in the total number of human bodies on Earth. Slide 6

7 Chip Power consumption is a big concern!!!! 7 Slide 7 Source: Intel Developer Forum 2002

8 Integrated Circuit Fabrication Goal: Mass fabrication (i.e. simultaneous fabrication) of many chips, each a circuit (e.g. a microprocessor or memory chip) containing millions or billions of transistors Planar Technology Slide 8

9 The Chip Making Process Slide 9

10 Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer Slide 10 10

11 Adding Dopants into Si Suppose we have a wafer of Si which is p-type and we want to change the surface to n-type. The way in which this is done is by ion implantation. Dopant ions are shot out of an ion gun called an ion implanter, into the surface of the wafer. Eaton HE3 High-Energy Implanter, showing the ion beam hitting the end-station x + As + or P + or B + ions SiO 2 Si Typical implant energies are in the range kev. After the ion implantation, the wafers are heated to a high temperature (~1000 o C). This annealing step heals the damage and causes the implanted dopant atoms to move into substitutional lattice sites. Slide 11

12 Dopant Diffusion The implanted depth-profile of dopant atoms is peaked. dopant atom concentration (logarithmic scale) as-implanted profile depth, x In order to achieve a more uniform dopant profile, hightemperature annealing is used to diffuse the dopants Dopants can also be directly introduced into the surface of a wafer by diffusion (rather than by ion implantation) from a dopant-containing ambient or doped solid source Slide 12

13 Rapid Thermal Annealing (RTA) Sub-micron MOSFETs need ultra-shallow junctions (x j <50 nm) Dopant diffusion during activation anneal must be minimized Short annealing time (<1 min.) at high temperature is required Ordinary furnaces (e.g. used for thermal oxidation and CVD) heat and cool wafers at a slow rate (<50 o C per minute) Special annealing tools have been developed to enable much faster temperature ramping, and precise control of annealing time ramp rates as fast as 200 o C/second anneal times as short as 0.5 second typically single-wafer process chamber: Slide 13

14 Rapid Thermal Annealing Tools There are 2 types of RTA systems: 1. Furnace-based steady heat source + fast mechanical wafer transport 2. Lamp-based stationary wafer + time-varying optical output from lamp(s) Furnace RTA Lamp RTA A.T. Fiory, Proc. RTP2000 Slide 14

15 Formation of Insulating Films The favored insulator is pure silicon dioxide (SiO 2 ). A SiO 2 film can be formed by one of two methods: 1. Oxidation of Si at high temperature in O 2 or steam ambient 2. Deposition of a silicon dioxide film ASM A412 batch oxidation furnace Applied Materials lowpressure chemical-vapor deposition (CVD) chamber Slide 15

16 Thermal Oxidation Si + O 2 SiO 2 or Si + 2H O + H 2 SiO2 2 2 dry oxidation wet oxidation Temperature range: 700 o C to 1100 o C Process: O 2 or H 2 O diffuses through SiO 2 and reacts with Si at the interface to form more SiO 2 1 µm of SiO 2 formed consumes ~0.5 µm of Si oxide thickness t time, t t Slide 16

17 Physical Vapor Deposition ( Sputtering ) Used to deposit Al films: Highly energetic argon ions batter the surface of a metal target, knocking atoms loose, which then land on the surface of the wafer Sometimes the substrate is heated, to ~300 o C Al Ar + Al I Ar + Al Negative Bias ( kv) Al target wafer Ar plasma Al film Gas pressure: 1 to 10 mtorr Deposition rate I S Slide 17 ion current sputtering yield

18 Chemical Vapor Deposition (CVD) of Si Polycrystalline silicon ( poly-si ): Like SiO 2, Si can be deposited by Chemical Vapor Deposition: Wafer is heated to ~600 o C Silicon-containing gas (SiH 4 ) is injected into the furnace: SiH = 4 Si + 2H 2 Si film made up of crystallites SiO 2 Silicon wafer Properties: sheet resistance (heavily doped, 0.5 µm thick) = 20 Ω/ can withstand high-temperature anneals major advantage Slide 18

19 Conformality CVD Properties: Can be deposited on top of anything. Can follow ups & downs (topography) of pre-existing layers Slide 19

20 The Photo-Lithographic Process oxidation optical mask photoresist removal (ashing) photoresist coating photoresist exposure process step spin, rinse, dry acid etch photoresist develop Slide 20

21 Photoresist Exposure A glass mask with a black/clear pattern is used to expose a wafer coated with ~1 µm thick photoresist UV light Mask Lens Image of mask appears here (3 dark areas, 4 light areas) photoresist Si wafer Smallest feature size printable photon wavelength λ Areas exposed to UV light are susceptible to chemical removal Slide 21

22 Photoresist Development Solutions with high ph dissolve the areas which were exposed to UV light; unexposed areas are not dissolved Exposed areas of photoresist Developed photoresist Slide 22

23 Exposure using Stepper Tool scribe line field size increases with technology generation images 1 2 wafer Translational motion Slide 23

24 Importance of Layer-to-Layer Alignment Example: metal line (blue) to contact hole (black) marginal contact Top View no contact! Metal line is bigger than contact hole for safety margin to allow for misalignment Design Rules are needed: Slide 24

25 Photo Lithography Trends Lithography determines the minimum feature size and limits the throughput that can be achieved in an IC manufacturing process. Thus, lithography research & development efforts are directed at 1. achieving higher resolution shorter wavelengths 365 nm 248 nm 193 nm 13 nm i-line DUV EUV 2. improving resist materials higher sensitivity, for shorter exposure times (throughput target is 60 wafers/hr) Slide 25

26 Pattern Transfer by Etching Selective etch processes (using plasma or aqueous chemistry) have been developed for most IC materials First: pattern photoresist Next: Etch oxide Si photoresist SiO 2 We have exposed mask pattern, and developed the resist oxide etchant photoresist is resistant. etch stops on silicon ( selective etchant ) Last: strip resist only resist is attacked Slide 26

27 Dry Etching vs. Wet Etching Pattern resist mask Etching thin film Etching completed Remove resist mask Processing Temperature Ambient Anisotropic (e.g. Reactive Ion Etching) Isotropic (e.g. Wet Etching) Slide 27 27

28 Multilevel Metallization Via Interconnect Slide 28

29 Chemical Mechanical Polishing (CMP) Chemical mechanical polishing is used to planarize the surface of a wafer at various steps in the process of fabricating an integrated circuit. interlevel dielectric (ILD) layers shallow trench isolation (STI) copper metallization damascene process IC with 5 layers of Al wiring Oxide Isolation of Transistors p+ n p+ SiO 2 n+ p n+ p Slide 29

30 CMP Tool Wafer is polished using a slurry containing silica particles (10-90nm particle size) chemical etchants (e.g. HF) Slide 30

31 Copper Metallization Dual Damascene Process (IBM Corporation) (1) courtesy of Sung Gyu Pyo, Hynix Semiconductor (2) (4) (3) (5) Slide 31

32 CMOS Technology Challenge: Build both NMOS & PMOS transistors on a single silicon chip NMOSFETs need a p-type substrate PMOSFETs need an n-type substrate Requires extra process steps! p+ p+ oxide n+ n+ n-type Si p-well Slide 32

33 n-type wafer *Create p-well Grow thick oxide Slide 33 oxide *Remove thick oxide in transistor areas ( active region ) Grow gate oxide Deposit & *pattern poly-si gate electrodes *Dope n channel source and drains (need to protect PMOS areas) *Dope p-channel source and drains (need to protect NMOS areas) Deposit insulating layer (oxide) *Open contact holes Conceptual CMOS Process Flow p+ p+ Deposit and *pattern metal interconnects n-type Si n+ n+ p-well At least 3 more masks, as compared to NMOS process

34 Additional Process Steps Required for CMOS 1. Well Formation Top view of p-well mask (dark field) Cross-sectional view of wafer boron p-well SiO 2 n-type Si Before transistor fabrication, we must perform the following process steps: 1. grow oxide layer; pattern oxide using p-well mask 2. implant phosphorus; anneal to form deep p-type regions Slide 34

35 2. Masking the Source/Drain Implants Select p-channel Select n-channel We must protect the n-channel devices during the boron implantation step, and We must protect the p-channel devices during the arsenic implantation step Example: Select p-channel boron p+ p+ oxide photoresist n+ n+ n-type Si p-well Slide 35

36 Forming Body Contacts Modify oxide mask and select masks: 1. Open holes in original oxide layer, for body contacts 2. Include openings in select masks, to dope these regions n+ oxide p+ p+ n+ n+ p+ p-well n-type Si Slide 36

37 Select Masks N-select: n+ oxide n-type Si n+ n+ p-well P-select: n+ oxide p+ p+ n+ n+ p+ p-well n-type Si Slide 37

38 Visualizing Layouts and Cross-Sections with SIMPLer SIMPL is a CAD tool created by Prof. Neureuther s group of UCB allows IC designers to visualize device cross-sections corresponding to a fabrication process and physical layout. You can access SIMPLat Slide 38

39 Slide 39

40 Slide 40

41 Slide 41

42 Slide 42

43 Slide 43

Lecture #18 Fabrication OUTLINE

Lecture #18 Fabrication OUTLINE Transistors on a Chip Lecture #18 Fabrication OUTLINE IC Fabrication Technology Introduction the task at hand Doping Oxidation Thin-film deposition Lithography Etch Lithography trends Plasma processing

More information

Czochralski Crystal Growth

Czochralski Crystal Growth Czochralski Crystal Growth Crystal Pulling Crystal Ingots Shaping and Polishing 300 mm wafer 1 2 Advantage of larger diameter wafers Wafer area larger Chip area larger 3 4 Large-Diameter Wafer Handling

More information

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther EECS 40 Spring 2003 Lecture 19 Microfabrication 4/1/03 Prof. ndy Neureuther How are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other films Pattern transfer by lithography

More information

Microfabrication of Integrated Circuits

Microfabrication of Integrated Circuits Microfabrication of Integrated Circuits OUTLINE History Basic Processes Implant; Oxidation; Photolithography; Masks Layout and Process Flow Device Cross Section Evolution Lecture 38, 12/05/05 Reading This

More information

Complexity of IC Metallization. Early 21 st Century IC Technology

Complexity of IC Metallization. Early 21 st Century IC Technology EECS 42 Introduction to Digital Electronics Lecture # 25 Microfabrication Handout of This Lecture. Today: how are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other

More information

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley Microstructure of Electronic Materials Amorphous materials Single-Crystal Material 1 The Si Atom The Si Crystal diamond structure High-performance semiconductor devices require defect-free crystals 2 Crystallographic

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Lecture 1A: Manufacturing& Layout

Lecture 1A: Manufacturing& Layout Introduction to CMOS VLSI Design Lecture 1A: Manufacturing& Layout David Harris Harvey Mudd College Spring 2004 Steven Levitan Fall 2008 1 The Manufacturing Process For a great tour through the IC manufacturing

More information

CMOS Technology. Flow varies with process types & company. Start with substrate selection. N-Well CMOS Twin-Well CMOS STI

CMOS Technology. Flow varies with process types & company. Start with substrate selection. N-Well CMOS Twin-Well CMOS STI CMOS Technology Flow varies with process types & company N-Well CMOS Twin-Well CMOS STI Start with substrate selection Type: n or p Doping level, resistivity Orientation, 100, or 101, etc Other parameters

More information

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica

Microelettronica. Planar Technology for Silicon Integrated Circuits Fabrication. 26/02/2017 A. Neviani - Microelettronica Microelettronica Planar Technology for Silicon Integrated Circuits Fabrication 26/02/2017 A. Neviani - Microelettronica Introduction Simplified crosssection of an nmosfet and a pmosfet Simplified crosssection

More information

UT Austin, ECE Department VLSI Design 2. CMOS Fabrication, Layout Rules

UT Austin, ECE Department VLSI Design 2. CMOS Fabrication, Layout Rules 2. CMOS Fabrication, Layout, Design Rules Last module: Introduction to the course How a transistor works CMOS transistors This module: CMOS Fabrication Design Rules CMOS Fabrication CMOS transistors are

More information

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag FABRICATION OF CMOS INTEGRATED CIRCUITS Dr. Mohammed M. Farag Outline Overview of CMOS Fabrication Processes The CMOS Fabrication Process Flow Design Rules EE 432 VLSI Modeling and Design 2 CMOS Fabrication

More information

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS Contents: VI Sem ECE 06EC63: Analog and Mixed Mode VLSI Design PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS 1. Introduction 2. CMOS Fabrication 3. Simplified View of Fabrication Process 3.1 Alternative

More information

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook CMOS Fabrication Dr. Bassam Jamil Adopted from slides of the textbook CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each step, different

More information

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design Introduction to CMOS VLSI Design Layout, Fabrication, and Elementary Logic Design CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each

More information

Fabrication and Layout

Fabrication and Layout ECEN454 Digital Integrated Circuit Design Fabrication and Layout ECEN 454 3.1 A Glimpse at MOS Device Polysilicon Aluminum ECEN 475 4.2 1 Material Classification Insulators Glass, diamond, silicon oxide

More information

Chapter 2 Manufacturing Process

Chapter 2 Manufacturing Process Digital Integrated Circuits A Design Perspective Chapter 2 Manufacturing Process 1 CMOS Process 2 CMOS Process (n-well) Both NMOS and PMOS must be built in the same silicon material. PMOS in n-well NMOS

More information

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI INTRODUCTION P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents UNIT I INTRODUCTION: Introduction to IC Technology MOS, PMOS, NMOS, CMOS & BiCMOS technologies. BASIC ELECTRICAL PROPERTIES : Basic Electrical

More information

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects

EE 330 Lecture 8. IC Fabrication Technology Part II. - Oxidation - Epitaxy - Polysilicon - Interconnects EE 330 Lecture 8 IC Fabrication Technology Part II - Oxidation - Epitaxy - Polysilicon - Interconnects Review from Last Time MOS Transistor Bulk Source Gate Drain p-channel MOSFET Lightly-doped n-type

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration (VLSI): bucketloads! Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Lecture 2: CMOS Fabrication Mark McDermott Electrical and Computer Engineering The University of Texas at Austin

Lecture 2: CMOS Fabrication Mark McDermott Electrical and Computer Engineering The University of Texas at Austin Lecture 2: CMOS Fabrication Mark McDermott Electrical and Computer Engineering The University of Texas at Austin Agenda Last module: Introduction to the course How a transistor works CMOS transistors This

More information

CS/ECE 5710/6710. N-type Transistor. N-type from the top. Diffusion Mask. Polysilicon Mask. CMOS Processing

CS/ECE 5710/6710. N-type Transistor. N-type from the top. Diffusion Mask. Polysilicon Mask. CMOS Processing CS/ECE 5710/6710 CMOS Processing Addison-Wesley N-type Transistor D G +Vgs + Vds S N-type from the top i electrons - Diffusion Mask Mask for just the diffused regions Top view shows patterns that make

More information

Chapter 3 CMOS processing technology

Chapter 3 CMOS processing technology Chapter 3 CMOS processing technology (How to make a CMOS?) Si + impurity acceptors(p-type) donors (n-type) p-type + n-type => pn junction (I-V) 3.1.1 (Wafer) Wafer = A disk of silicon (0.25 mm - 1 mm thick),

More information

EE 330 Lecture 9. IC Fabrication Technology Part 2

EE 330 Lecture 9. IC Fabrication Technology Part 2 EE 330 Lecture 9 IC Fabrication Technology Part 2 Quiz 8 A 2m silicon crystal is cut into wafers using a wire saw. If the wire diameter is 220um and the wafer thickness is 350um, how many wafers will this

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

9/4/2008 GMU, ECE 680 Physical VLSI Design

9/4/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter II CMOS Manufacturing Process 1 Dual-Well Trench-Isolated CMOS Process gate-oxide TiSi 2 AlCu Tungsten SiO 2 p-well poly n-well SiO 2 n+ p-epi p+ p+ 2 Schematic Layout

More information

FABRICATION of MOSFETs

FABRICATION of MOSFETs FABRICATION of MOSFETs CMOS fabrication sequence -p-type silicon substrate wafer -creation of n-well regions for pmos transistors, -impurity implantation into the substrate. -thick oxide is grown in the

More information

Semiconductor Manufacturing Technology. IC Fabrication Process Overview

Semiconductor Manufacturing Technology. IC Fabrication Process Overview Semiconductor Manufacturing Technology Michael Quirk & Julian Serda October 00 by Prentice Hall Chapter 9 IC Fabrication Process Overview /4 Objectives After studying the material in this chapter, you

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

HOMEWORK 4 and 5. March 15, Homework is due on Monday March 30, 2009 in Class. Answer the following questions from the Course Textbook:

HOMEWORK 4 and 5. March 15, Homework is due on Monday March 30, 2009 in Class. Answer the following questions from the Course Textbook: HOMEWORK 4 and 5 March 15, 2009 Homework is due on Monday March 30, 2009 in Class. Chapter 7 Answer the following questions from the Course Textbook: 7.2, 7.3, 7.4, 7.5, 7.6*, 7.7, 7.9*, 7.10*, 7.16, 7.17*,

More information

Manufacturing Process

Manufacturing Process Manufacturing Process 1 CMOS Process 2 A Modern CMOS Process gate-oxide TiSi 2 AlCu Tungsten SiO 2 n+ p-well p-epi poly n-well p+ SiO 2 p+ Dual-Well Trench-Isolated CMOS Process 3 Single-crystal ingot

More information

Semiconductor device fabrication

Semiconductor device fabrication REVIEW Semiconductor device fabrication is the process used to create the integrated circuits (silicon chips) that are present in everyday electrical and electronic devices. It is a multiplestep sequence

More information

CMOS Manufacturing process. Design rule set

CMOS Manufacturing process. Design rule set CMOS Manufacturing process Circuit design Set of optical masks Fabrication process Circuit designer Design rule set Process engineer All material: Chap. 2 of J. Rabaey, A. Chandrakasan, B. Nikolic, Digital

More information

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects EE 330 Lecture 9 IC Fabrication Technology Part II -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects Review from Last Time IC Fabrication Technology Crystal Preparation

More information

VLSI. Lecture 1. Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University. Based on slides of David Money Harris

VLSI. Lecture 1. Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University. Based on slides of David Money Harris VLSI Lecture 1 Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University Based on slides of David Money Harris Goals of This Course Learn the principles of VLSI design Learn to design

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

Process Flow in Cross Sections

Process Flow in Cross Sections Process Flow in Cross Sections Process (simplified) 0. Clean wafer in nasty acids (HF, HNO 3, H 2 SO 4,...) --> wear gloves! 1. Grow 500 nm of SiO 2 (by putting the wafer in a furnace with O 2 2. Coat

More information

EE 143 CMOS Process Flow

EE 143 CMOS Process Flow EE 143 CMOS rocess Flow CT 84 D D G Sub G Sub S S G D S G D S + + + + - MOS Substrate Well - MOS Substrate EE 143 CMOS rocess Flow CT 85 hotoresist Si 3 4 SiO 2 Substrate selection: moderately high resistivity,

More information

Department of Electrical Engineering. Jungli, Taiwan

Department of Electrical Engineering. Jungli, Taiwan Chapter 3 Fabrication of CMOS Integrated Circuits Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Background Outline The CMOS Process Flow Design Rules Latchup

More information

EE 330 Lecture 8. IC Fabrication Technology Part II. - Masking - Photolithography - Deposition - Etching - Diffusion

EE 330 Lecture 8. IC Fabrication Technology Part II. - Masking - Photolithography - Deposition - Etching - Diffusion EE 330 Lecture 8 IC Fabrication Technology Part II?? - Masking - Photolithography - Deposition - Etching - Diffusion Review from Last Time Technology Files Provide Information About Process Process Flow

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 19: CMOS Fabrication Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: payman@ece.unm.edu Slide: 1 Miller Effect Interconnect

More information

INTEGRATED-CIRCUIT TECHNOLOGY

INTEGRATED-CIRCUIT TECHNOLOGY INTEGRATED-CIRCUIT TECHNOLOGY 0. Silicon crystal growth and wafer preparation 1. Processing Steps 1.1. Photolitography 1.2. Oxidation 1.3. Layer Deposition 1.4. Etching 1.5. Diffusion 1.6 Backend: assembly,

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

EE CMOS TECHNOLOGY- Chapter 2 in the Text

EE CMOS TECHNOLOGY- Chapter 2 in the Text 1 EE 212 FALL 1999-00 CMOS TECHOLOGY- Chapter 2 in the Text In this set of notes we will describe a modern CMOS process flow. In the simplest CMOS technologies, we need to realize simply MOS and MOS transistors

More information

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects EE 330 Lecture 9 IC Fabrication Technology Part II -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects Review from Last Time Etching Dry etch (anisotropic) SiO

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation CMOS Processing Technology Topics CMOS Processing Technology Semiconductor Processing How do we make a transistor? Fabrication Process Wafer Processing Silicon single crystal

More information

CMOS VLSI Design. Introduction. All materials are from the textbook Weste and Harris, 3 rd Edition CMOS VLSI DESIGN. Introduction

CMOS VLSI Design. Introduction. All materials are from the textbook Weste and Harris, 3 rd Edition CMOS VLSI DESIGN. Introduction CMOS VLSI Design Introduction ll materials are from the textbook Weste and Harris, 3 rd Edition CMOS VLSI DESIGN Introduction Chapter previews the entire field, subsequent chapters elaborate on specific

More information

Fabrication Technology

Fabrication Technology Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski

More information

Fabrication and Layout

Fabrication and Layout Fabrication and Layout Kenneth Yun UC San Diego Adapted from EE271 notes, Stanford University Overview Semiconductor properties How chips are made Design rules for layout Reading Fabrication: W&E 3.1,

More information

Chapter 2 MOS Fabrication Technology

Chapter 2 MOS Fabrication Technology Chapter 2 MOS Fabrication Technology Abstract This chapter is concerned with the fabrication of metal oxide semiconductor (MOS) technology. Various processes such as wafer fabrication, oxidation, mask

More information

Chapter 4 : ULSI Process Integration (0.18 m CMOS Process)

Chapter 4 : ULSI Process Integration (0.18 m CMOS Process) Chapter : ULSI Process Integration (0.8 m CMOS Process) Reference. Semiconductor Manufacturing Technology : Michael Quirk and Julian Serda (00). - (00). Semiconductor Physics and Devices- Basic Principles(/e)

More information

Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance

Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance Ch. 5: p-n Junction Most semiconductor devices contain at least one junction between p-type and n-type material. These p-n junctions are fundamental to the performance of functions such as rectification,

More information

Manufacturing Process

Manufacturing Process CMOS Manufacturing Process CMOS Process 1 A Modern CMOS Process gate-oxide TiSi AlCu Tungsten SiO n+ p-well p-epi poly n-well p+ SiO p+ Dual-Well Trench-Isolated CMOS Process Circuit Under Design V DD

More information

Silicon Manufacturing

Silicon Manufacturing Silicon Manufacturing Group Members Young Soon Song Nghia Nguyen Kei Wong Eyad Fanous Hanna Kim Steven Hsu th Fundamental Processing Steps 1.Silicon Manufacturing a) Czochralski method. b) Wafer Manufacturing

More information

Make sure the exam paper has 9 pages total (including cover page)

Make sure the exam paper has 9 pages total (including cover page) UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2010 EE143 Midterm Exam #2 Family Name First name SID Signature Solution Make sure the exam

More information

Mostafa Soliman, Ph.D. May 5 th 2014

Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. 1 Basic MEMS Processes Front-End Processes Back-End Processes 2 Mostafa Soliman, Ph.D. Wafers Deposition Lithography Etch Chips 1- Si Substrate

More information

CHAPTER - 4 CMOS PROCESSING TECHNOLOGY

CHAPTER - 4 CMOS PROCESSING TECHNOLOGY CHAPTER - 4 CMOS PROCESSING TECHNOLOGY Samir kamal Spring 2018 4.1 CHAPTER OBJECTIVES 1. Introduce the CMOS designer to the technology that is responsible for the semiconductor devices that might be designed

More information

CMOS Manufacturing Process

CMOS Manufacturing Process CMOS Manufacturing Process CMOS Process A Modern CMOS Process gate-oxide TiSi 2 AlCu Tungsten SiO 2 n+ p-well p-epi poly n-well p+ SiO 2 p+ Dual-Well Trench-Isolated CMOS Process Circuit Under Design V

More information

Manufacturing Process

Manufacturing Process Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Manufacturing Process July 30, 2002 1 CMOS Process 2 A Modern CMOS Process gate-oxide TiSi 2 AlCu Tungsten

More information

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in Chapter 5 PROCESSING OF DEVICES A discussion of crystal growth, lithography, etching, doping, and device structures is presented in the following overview gures. SEMICONDUCTOR DEVICE PROCESSING: AN OVERVIEW

More information

ECE 659. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, Digital EE141 Integrated Circuits 2nd Manufacturing.

ECE 659. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, Digital EE141 Integrated Circuits 2nd Manufacturing. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Manufacturing Process July 0, 00 1 CMOS Process 1 A Modern CMOS Process gate-oxide TiSi AlCu Tungsten

More information

We are moving to 155 Donner Lab From Thursday, Feb 2 We will be able to accommodate everyone!

We are moving to 155 Donner Lab From Thursday, Feb 2 We will be able to accommodate everyone! -Spring 006 Digital Integrated Circuits Lecture 4 CMOS Manufacturing Process Design Rules EECS141 1 Good News! We are moving to 155 Donner Lab From Thursday, Feb We will be able to accommodate everyone!

More information

Chapter 5 Thermal Processes

Chapter 5 Thermal Processes Chapter 5 Thermal Processes 1 Topics Introduction Hardware Oxidation Diffusion Annealing Post-Implantation Alloying Reflow High Temp CVD Epi Poly Silicon Nitride RTP RTA RTP Future Trends 2 Definition

More information

VLSI Technology. By: Ajay Kumar Gautam

VLSI Technology. By: Ajay Kumar Gautam By: Ajay Kumar Gautam Introduction to VLSI Technology, Crystal Growth, Oxidation, Epitaxial Process, Diffusion Process, Ion Implantation, Lithography, Etching, Metallization, VLSI Process Integration,

More information

CMOS FABRICATION. n WELL PROCESS

CMOS FABRICATION. n WELL PROCESS CMOS FABRICATION n WELL PROCESS Step 1: Si Substrate Start with p- type substrate p substrate Step 2: Oxidation Exposing to high-purity oxygen and hydrogen at approx. 1000 o C in oxidation furnace SiO

More information

EE 143 FINAL EXAM NAME C. Nguyen May 10, Signature:

EE 143 FINAL EXAM NAME C. Nguyen May 10, Signature: INSTRUCTIONS Read all of the instructions and all of the questions before beginning the exam. There are 5 problems on this Final Exam, totaling 143 points. The tentative credit for each part is given to

More information

Doping and Oxidation

Doping and Oxidation Technische Universität Graz Institute of Solid State Physics Doping and Oxidation Franssila: Chapters 13,14, 15 Peter Hadley Technische Universität Graz Institute of Solid State Physics Doping Add donors

More information

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline:

ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: ECE 440 Lecture 27 : Equilibrium P-N Junctions I Class Outline: Fabrication of p-n junctions Contact Potential Things you should know when you leave Key Questions What are the necessary steps to fabricate

More information

This Appendix discusses the main IC fabrication processes.

This Appendix discusses the main IC fabrication processes. IC Fabrication B B.1 Introduction This Appendix discusses the main IC fabrication processes. B.2 NMOS fabrication NMOS transistors are formed in a p-type substrate. The NMOS fabrication process requires

More information

Problem 1 Lab Questions ( 20 points total)

Problem 1 Lab Questions ( 20 points total) Problem 1 Lab Questions ( 20 points total) (a) (3 points ) In our EE143 lab, we use Phosphorus for the source and drain diffusion. However, most advanced processes use Arsenic. What is the advantage of

More information

3. Photolithography, patterning and doping techniques. KNU Seminar Course 2015 Robert Mroczyński

3. Photolithography, patterning and doping techniques. KNU Seminar Course 2015 Robert Mroczyński 3. Photolithography, patterning and doping techniques KNU Seminar Course 2015 Robert Mroczyński Critical technology processes Photolithography The aim of this process is to transfer (in the most accurate

More information

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 5: Fabrication processes

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 5: Fabrication processes CSCI 4974 / 6974 Hardware Reverse Engineering Lecture 5: Fabrication processes QUIZ 3: CMOS layout Quiz Discussion Rationale If you know how something is put together, you can figure out how to take it

More information

IC/MEMS Fabrication - Outline. Fabrication

IC/MEMS Fabrication - Outline. Fabrication IC/MEMS Fabrication - Outline Fabrication overview Materials Wafer fabrication The Cycle: Deposition Lithography Etching Fabrication IC Fabrication Deposition Spin Casting PVD physical vapor deposition

More information

CMOS Processing Technology

CMOS Processing Technology CHAPTER 2 CMOS Processing Technology Outline 2 1. CMOS Technologies 2. Layout Design Rules 3. CMOS Process Enhancements 4. Technology-related CAD Issues 5. Manufacturing Issues CMOS Technologies 3 n-well

More information

Making of a Chip Illustrations

Making of a Chip Illustrations Making of a Chip Illustrations 22nm 3D/Trigate Transistors Version April 2015 1 The illustrations on the following foils are low resolution images that visually support the explanations of the individual

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University 2014 Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University Page1 Syllabus UNIT 1 Introduction to VLSI Technology: Classification of ICs, Scale of integration,

More information

CMOS Processing Technology

CMOS Processing Technology CHAPTER 2 CMOS Processing Technology Outline 2 1. CMOS Technologies 2. Layout Design Rules 3. CMOS Process Enhancements 4. Technology-related CAD Issues 5. Manufacturing Issues CMOS Technologies 3 n-well

More information

VLSI Digital Systems Design

VLSI Digital Systems Design VLSI Digital Systems Design CMOS Processing cmpe222_03process_ppt.ppt 1 Si Purification Chemical purification of Si Zone refined Induction furnace Si ingot melted in localized zone Molten zone moved from

More information

Complementary Metal Oxide Semiconductor (CMOS)

Complementary Metal Oxide Semiconductor (CMOS) Technische Universität Graz Institute of Solid State Physics Complementary Metal Oxide Semiconductor (CMOS) Franssila: Chapters 26,28 Technische Universität Graz Institute of Solid State Physics Complementary

More information

Microelectronic Device Instructional Laboratory. Table of Contents

Microelectronic Device Instructional Laboratory. Table of Contents Introduction Process Overview Microelectronic Device Instructional Laboratory Introduction Description Flowchart MOSFET Development Process Description Process Steps Cleaning Solvent Cleaning Photo Lithography

More information

Technology process. It s very small world. Electronics and Microelectronics AE4B34EM. Why is the integration so beneficial?

Technology process. It s very small world. Electronics and Microelectronics AE4B34EM. Why is the integration so beneficial? It s very small world Electronics and Microelectronics AE4B34EM 9. lecture IC processing technology Wafer fabrication Lithography How to get 1 000 000 000 Components to 1 cm 2 Human hair on the surface

More information

ECE520 VLSI Design. Lecture 7: CMOS Manufacturing Process. Payman Zarkesh-Ha

ECE520 VLSI Design. Lecture 7: CMOS Manufacturing Process. Payman Zarkesh-Ha ECE520 VLSI Design Lecture 7: CMOS Manufacturing Process Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Wednesday 2:00-3:00PM or by appointment E-mail: pzarkesh@unm.edu Slide: 1 Review of Last

More information

Semiconductor Device Fabrication

Semiconductor Device Fabrication 5 May 2003 Review Homework 6 Semiconductor Device Fabrication William Shockley, 1945 The network before the internet Bell Labs established a group to develop a semiconductor replacement for the vacuum

More information

EE 434 Lecture 9. IC Fabrication Technology

EE 434 Lecture 9. IC Fabrication Technology EE 434 Lecture 9 IC Fabrication Technology Quiz 7 The layout of a film resistor with electrodes A and B is shown. If the sheet resistance of the film is 40 /, determine the resistance between nodes A and

More information

Cost of Integrated Circuits

Cost of Integrated Circuits Cost of IC Design 1 Cost of Integrated Circuits NRE (Non-Recurrent Engineering) costs fixed design time and effort, mask generation independent of sales volume / number of products one-time cost factor

More information

IC Fabrication Technology Part III Devices in Semiconductor Processes

IC Fabrication Technology Part III Devices in Semiconductor Processes EE 330 Lecture 10 IC Fabrication Technology Part III Metalization and Interconnects Parasitic Capacitances Back-end Processes Devices in Semiconductor Processes Resistors Diodes Review from Last Lecture

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

Graduate Student Presentations

Graduate Student Presentations Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly

More information

Total Points = 110 possible (graded out of 100)

Total Points = 110 possible (graded out of 100) Lab Report 1 Table of Contents 1. Profiles & Layout (9 Points) 2. Process Procedures (20 points) 3. Calculations (36 Points) 4. Questions (35 Points) 5. Bonus Questions (10 Points) Total Points = 110 possible

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 6 CMOS Fabrication Process & Design Rules guntzel@inf.ufsc.br

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology from A to Z Oxidation www.halbleiter.org Contents Contents List of Figures List of Tables II III 1 Oxidation 1 1.1 Overview..................................... 1 1.1.1 Application...............................

More information

Instructor: Dr. M. Razaghi. Silicon Oxidation

Instructor: Dr. M. Razaghi. Silicon Oxidation SILICON OXIDATION Silicon Oxidation Many different kinds of thin films are used to fabricate discrete devices and integrated circuits. Including: Thermal oxides Dielectric layers Polycrystalline silicon

More information

Copper Interconnect Technology

Copper Interconnect Technology Tapan Gupta Copper Interconnect Technology i Springer Contents 1 Introduction 1 1.1 Trends and Challenges 2 1.2 Physical Limits and Search for New Materials 5 1.3 Challenges 6 1.4 Choice of Materials 7

More information