Powder Metallurgy Preparation of metal powders by Atomization Electrolytic process Reduction. 15CY104: Material Technology SRM University 2

Size: px
Start display at page:

Download "Powder Metallurgy Preparation of metal powders by Atomization Electrolytic process Reduction. 15CY104: Material Technology SRM University 2"

Transcription

1 Powder Metallurgy Preparation of metal powders by Atomization Electrolytic process Reduction 15CY104: Material Technology SRM University 2

2 Powder metallurgy is a term covering a wide range of ways in which materials or components are made from metal powders This processes can avoid, or greatly reduce, the need to use metal removal processes, Thereby drastically reducing yield losses in manufacture and often resulting in lower costs 15CY104: Material Technology SRM University 3

3 Thought to originally in Udayagirierected by one of the Gupta monarchs(~402 CE). In 1233 CE, It was transported to its current location. Iron Pillar located in Delhi, India, is a 7 m column in the Qutbcomplex Notable for the rust-resistant composition of the metals used in its construction. Stands as strong evidence for something to the skill of ancient Indian blacksmiths because of its high resistance to corrosion. The corrosion resistance results from an even layer of crystalline iron hydrogen phosphate hydrate forming on the high phosphorus content iron, which serves to protect it from the effects of the local Delhi climate 15CY104: Material Technology SRM University 4

4 Modern powder metallurgy technology commenced in the 1920s With the production of tungsten carbides and the mass production of porous bronze bushes for bearings. Further development took place, during the Second World War Steady growth period developed during the postwar years until the early 1960s Since then, growth of powder metallurgy has expanded more rapidly, mainly because of three potential reasons Economical processing, Unique properties and Captive processes. 15CY104: Material Technology SRM University 5

5 Primarily, the powder metallurgy process is a rapid, economical and high volume production method for making precision components from powders. However, there are a number of related consolidation techniques whereby powders can be rolled into sheet, extruded into bars, etc., or compacted isostaticallyinto parts of more involved geometry. Over the last decade, the technology of powder forging has established itself for fabricating powders into precise engineering parts which have properties comparable with those of conventional forgings. Conventional forgings Precision forgings 15CY104: Material Technology SRM University 6

6 Metal Powder Lubricants Blending Additives Loose Powder Die Compaction Cold Compaction Cold Isostatic Pressing Other Methods Rolling Extruction Explosive Compaction Hot Consolidation Hot Pressing Hot Isostatic Pressing Extrusion Pseudoisostatic Sintering Secondary Treatment Hot Forging Finished PM Parts 15CY104: Material Technology SRM University 7

7 15CY104: Material Technology SRM University 8

8 Powder metallurgy(p/m) process is many times more competitive than other fabrication methods like casting, stamping or machining. P/M is the choice when requirements for strength, wear resistance or high operating temperatures exceed the capabilities of die casting alloys. P/M offers greater precision, eliminating most or all of the finish machining operations required for castings. It avoids casting defects such as blow holes, shrinkage and inclusions. Powder injection mouldingis coming out as a big challenge for investment casting. P/M is highly competitive with fine blanking, which runs at a slower cycle than conventional stamping and higher equipment cost. Screw machines use bar stock as raw metal and the process is characterized by very poor material utilization, sometimes less than 50 %. However the P/M process is economical only when production rates are higher, since the tooling cost is quite appreciable. 15CY104: Material Technology SRM University 9

9 Any material that can be melted can be made into powder by disintegration of the liquid 15CY104: Material Technology SRM University 10

10 Aside from chemical reactivity, which may necessitate specific atmosphere or materials, the process is independent of the normal physical and mechanical propertiesassociated with the solid material. The method is being widely adopted, especially, because of the relative case of making high purity metals and prealloyedpowders directly from the melt. The basic procedure employed is to force a liquid through an orifice, possibly at a bottom of a crucible and impinge a gas or liquid stream on the emerging melt. A great deal depends on the exact design of the orifice. It may induce turbulence in the melt which atomizes the material directly and allows the impinging gas or liquid to reduce the size of the particle still faster. Classified into categories (1) Gas atomization (2) Liquid atomization (water) (3) Centrifugal atomization 15CY104: Material Technology SRM University 11

11 Gas atomization The general atomizing media are nitrogen, argon or air. Various atomization geometries are used in commercial practice. External mixing is used exclusively for the atomization of metals Internal mixing is common for the atomization of materials which are liquid at room temperature. 15CY104: Material Technology SRM University 12

12 Gas atomization The powders are typically spherical, with relatively smooth surfaces. Higher pressure and/or a smaller jet distance produce finer powder. Gas atomization pressures are typically in the range Pa to Pa at gas velocities from 50 m.s 1 to 150 m.s 1 ; Under these conditions, the particle quench rate is ~10 2 K.s 1. Such production method is used for preparing powders of the superalloys, titanium, high speed steel and other reactive metals. The method suffers from a very low overall energy efficiency (~3 %) and is expensive if inert gases other than nitrogen have to be used. 15CY104: Material Technology SRM University 13

13 Liquid (water) atomization In water atomization, a high pressure water stream is forced through nozzles to form a disperse phase of droplets which then impact the metal stream. In this method, large quantities of energy are required to supply the water at high pressure. It is estimated that the overall energy process efficiency is 4 %. This production method is significant for low and high alloy steels, including stainless steel. In general, the shapes are irregular with rough oxidized surfaces Because of oxide formation, water atomization is not likely to be used in the atomization of highly reactive metals such as titanium and the super alloys.. 15CY104: Material Technology SRM University 14

14 Liquid (water) atomization Advantages of atomized powders and more specifically, of high pressure water atomized powders are summarized by Gummeson 1) Freedom to alloy 2) All particles have the same uniform composition 3) Control of particle shape, size and structure 4) Higher purity 5) Lower capital cost. A recent innovation involves the use of synthetic oil rather than water to reduce oxidation. 15CY104: Material Technology SRM University 15

15 Liquid (water) atomization Fine particle sizes are favoured by: 1) Low metal viscosity 2) Low metal surface tension 3) Superheated metal 4) Small nozzle diameter, i.e. low metal feed rate. 5) High atomizing pressure 6) High atomizing agent volume 7) High atomizing agent velocity 8) High atomizing agent viscosity 9) Short metal stream (F) 10)Short jet length (E) 11)Optimum apex angle ( α o ). 15CY104: Material Technology SRM University 16

16 Liquid (water) atomization Particle shapes of atomized powders can be modified From almost perfectly spherical to highly irregular By controlling the processes which take place in the interval between disintegration of the liquid metal stream and the solidification of the drop. 15CY104: Material Technology SRM University 17

17 Liquid (water) atomization Sphericityof a metal powder is favoured by 1) High metal surface tension 2) Narrow melting range 3) High pouring temperature 4) Gas atomization, especially inert gas 5) Low jet velocity 6) Long apex angles in water atomization 7) Long flight paths 15CY104: Material Technology SRM University 18

18 Centrifugal atomization The basis of centrifugal atomization is the ejection of molten metal from a rapidly spinning container, plate or disc Several methods are based on centrifugal atomization. In one approach, the rotating disk method, the liquid metal stream pours onto a rapidly rotating disk that sprays the metal in all directions to produce powders. 15CY104: Material Technology SRM University 19

19 Centrifugal atomization Rotating Electrode Process (REP) The material in the form of a rod electrode is rotated rapidly while being melted at one end by an electric arc. Molten metal spins off the bar and solidifies before hitting the walls of the inert gas filled outer container Powder particles are smooth and spherical (an average diameter of~200 mm; the size range is mm). Typically, yields run to ~75% for 35 mesh powder Limitation -Tungsten contamination Rotating Electrode Process 15CY104: Material Technology SRM University 20

20 Centrifugal atomization Plasma Rotating Electrode Process (PREP) No Tungsten contamination It is important that the electrodes are precisely dimensioned and straight. This can be achieved by subjecting cold drawn rod to cross roll straightening Accurately controlled rotation of the anode is important to obtain desired range of particle size distribution. Various mechanical atomization methods -Roller atomization, Vibratory electrode atomization and Ultrasonic atomization Short Bar PREP Machine 15CY104: Material Technology SRM University 21

21 Vacuum atomization Vacuum or soluble gas atomization is a commercial batch process Based on the principle that when a molten metal supersaturated with gas under pressure is suddenly exposed to vacuum The gas expands, comes out of solution, and causes the liquid metal to be atomized Alloy powders based on Ni, Cu, Co, Fe and Al can be vacuum atomized with hydrogen Powders are spherical, clean and of a high purity compared other methods (a)trap door, (b) transfer tube (c) molten metal Production of gas turbine disks and intricate parts by injection moulding. 15CY104: Material Technology SRM University 22

22 Chemical reduction involves chemical compound most frequently an oxide, but sometimes a halide or other salt of the metal. This may be carried out: from the solid state from the gaseous state from the aqueous solution 15CY104: Material Technology SRM University 23

23 From the solid state Reduction of iron oxide with carbon or of tungsten oxide with hydrogen. Höganäs process based in the use of quite pure magnetite (Fe 3 O 4 ) ores The iron ore is reduced with a carbonaceous material Another Example Sponge iron powder production from iron ore 15CY104: Material Technology SRM University 24

24 From Gaseous state The reduction of titanium tetrachloride vapourwith molten magnesium the well-known Kroll process From Aqueous solution Precipitation of cement copper from copper sulphate solution with iron Cement copper produced are a by-product of the copper refinery industry. This cement copper is eventually melted and cast rather than used as powder for two reasons The cement copper produced as a by-product is rather impure unless special precautions are taken The powder is quite fluffy, i.e. it has a low apparent density, which is not satisfactory for many copper powder applications. 15CY104: Material Technology SRM University 25

25 From Aqueous solution The reduction of an ammoniacalnickel salt solution with hydrogen under pressure (1.38 Mpa(200 psi) ) and a temperature of C in an autoclave (hydrometallurgical method) - Sherrit Gordon process A nickel salt solution is obtained by leaching complex Cu Ni Co ores Copper is removed from the solution by precipitation as sulphide Catalyst (e.g. ferrous sulphate) is used, for the precipitation of the first nickel powder nuclei from the solution The very fine nickel powder nuclei are allowed to settle in the autoclave, the barren solution is decanted and a new batch of solution is introduced into the autoclave. The nickel powder nuclei are suspended in the solution by agitation and the nickel in the solution is reduced with hydrogen at 1.38 MPa(200 psi) and precipitated on the existing nuclei. The process permits control of the size and shape of the nickel powder being produced 15CY104: Material Technology SRM University 26

26 It is used extensively in the preparation of copper, beryllium, iron and nickel powders The method yields a high purity metal with excellent properties for conventional powder metallurgy processing The process involves the control and manipulation of many variables and in some cases is significantly more costly than other techniques. For example, electrolytic iron powder is more costly than reduced or atomized powder with the same characteristics, while electrolytic copper powder is quite competitive with reduced and precipitated types The following are the factors promoting powdery deposits: (1) High current densities (5) Avoidance of agitation; High viscosities (2) weak metal concentrations (6) Suppression of convection (3) Additions of colloids and acids (4) Low temperature 15CY104: Material Technology SRM University 27

27 It may be very difficult to produce a high purity powdery deposit at relatively fast rates economically. Consequently, in many cases the deposit is a solid and must be powdered Electrolytic deposits, powders or solids are usually very reactive and brittle. For both these reasons the material may be given a special annealing treatment. Powders formed during electrolysis have a characteristic dendriticshape; however, this could be changed substantially due to subsequent processing. 15CY104: Material Technology SRM University 28

28 Electrolytic process for making metal powders 15CY104: Material Technology SRM University 29

The following steps are used in the powder metallurgy techniques:

The following steps are used in the powder metallurgy techniques: Advantages of Powder Metallurgy Virtually unlimited choice of alloys and non metallicswith associated properties. * A variety of metal or non metal powders can be used. * Refractory materials are popularly

More information

Chapter 3: Powders Production and Characterization

Chapter 3: Powders Production and Characterization Chapter 3: Powders Production and Characterization Course Objective... To introduce selective powder production processes and characterization methods. This course will help you : To understand properties

More information

BMM3643 Manufacturing Processes Powder Metallurgy Process

BMM3643 Manufacturing Processes Powder Metallurgy Process BMM3643 Manufacturing Processes Powder Metallurgy Process by Dr Mas Ayu Bt Hassan Faculty of Mechanical Engineering masszee@ump.edu.my Chapter Synopsis This chapter will expose students to the sequence

More information

Powder metallurgy. R.D.Makwana, IT, NU

Powder metallurgy. R.D.Makwana, IT, NU Powder metallurgy History 1829 Woolaston- paper published Edison-electric light-filament 1909 Coolidge tungsten worked at elevated temperature New method of fabrication-refractory metals 1 Advantages of

More information

Metal Powder - the Raw Material of Future Production

Metal Powder - the Raw Material of Future Production Metal Powder - the Raw Material of Future Production BY GÜNTER BUSCH* SYNOPSIS Alongside Mobile Internet, Cloud Computing, Robotics, Energy Storage and Autonomous Vehicles, Additive Manufacturing is one

More information

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 12/2

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 12/2 POWDER METALLURGY Characterization of Engineering Powders Production of Metallic Powders Conventional Pressing and Sintering Alternative Pressing and Sintering Techniques Materials and Products for PM

More information

Metallurgical Processes

Metallurgical Processes Metallurgical Processes Chapter Sixteen: Powder Metallurgy Dr. Eng. Yazan Al-Zain Department of Industrial Engineering 1 Introduction Powder Metallurgy (PM): is a metal processing technology in which parts

More information

POWDER METALLURGY TECHNOLOGY

POWDER METALLURGY TECHNOLOGY POWDER METALLURGY TECHNOLOGY POWDER METALLURGY TECHNOLOGY G. S. Upadhyaya Department of Materials and Metallurgical Engineering Indian Institute of Technology, Kanpur, India CAMBRIDGE INTERNATIONAL SCIENCE

More information

Chapter 18: Powder Metallurgy

Chapter 18: Powder Metallurgy Chapter 18: Powder Metallurgy ผ ช วยศาสตราจารย เร อโท ดร. สมญา ภ นะยา Reference: DeGarmo s Materials and Processes in Manufacturing 18.1 Introduction Powder metallurgy is the name given to the process

More information

ALUMINUM POWDER METALLURGY

ALUMINUM POWDER METALLURGY ALUMINUM POWDER METALLURGY Increased demand for light weight components, primarily driven by the need to reduce energy consumption in a variety of societal and structural components, has led to increased

More information

Powder-Metal Processing and Equipment

Powder-Metal Processing and Equipment Powder-Metal Processing and Equipment Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 17 Powder Metallurgy Metal powders are compacted into desired and

More information

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009 Powder Metallurgy Powder-Metal Processing and Equipment Metal powders are compacted into desired and often complex shapes and sintered* to form a solid piece * Sinter: To heat without melting Text Reference:

More information

Metal Powder the Raw Material of Future Production

Metal Powder the Raw Material of Future Production Metal Powder the Raw Material of Future Production Introduction and Overview Applications for Powder Metallurgy Methods &Systems for Powder Production Physical and Chemical Properties of Metal Powder Economic

More information

a service offered by the Hempel Special Metals Group

a service offered by the Hempel Special Metals Group Hot Isostatic Pressing of Near Net Shaped Parts a service offered by the Hempel Special Metals Group content introduction description of the method supply chain aspects & quality management applications

More information

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH POWDER METALLURGY Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH 1- INTRODUCTION Powder metallurgy is the name given to the process by which fine powdered materials

More information

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS 1 R.Raja, 2 M.Rajkumar 1 Assistant Lecturer, St. Joseph College

More information

An Introduction to Powder Metallurgy

An Introduction to Powder Metallurgy An Introduction to Powder Metallurgy F. THÜMMLER Dr.-Ing.habil, FIM Professor Emeritus for Materials University and Nuclear Research Centre Karlsruhe and R. OBERACKER Dr.-Ing., Central Laboratory Institute

More information

THERMAL SPRAY COATINGS

THERMAL SPRAY COATINGS THERMAL SPRAY COATINGS THERMAL SPRAY is a group of processes in which metals, alloys, ceramics, plastics and composite materials in the form of powder, wire, or rod are fed to a torch or gun with which

More information

Metallurgy, Alloys, and Applications p. 1 Introduction and Overview p. 3 Major Groups of Copper and Copper Alloys p. 3 Properties of Importance p.

Metallurgy, Alloys, and Applications p. 1 Introduction and Overview p. 3 Major Groups of Copper and Copper Alloys p. 3 Properties of Importance p. Preface p. vii Metallurgy, Alloys, and Applications p. 1 Introduction and Overview p. 3 Major Groups of Copper and Copper Alloys p. 3 Properties of Importance p. 3 Fabrication Characteristics p. 5 Alloy

More information

Metal Powder Processing

Metal Powder Processing Metal Powder Processing ver. 1 1 Powder Compaction and Sintering 2 Powder-Metallurgy (a) (c) (b) (a) Examples of typical parts made by powdermetallurgy processes. (b) Upper trip lever for a commercial

More information

Powder Manufacturing & Characterization. Dimitris Chasoglou, Ph.D, Material Development, PM-Components

Powder Manufacturing & Characterization. Dimitris Chasoglou, Ph.D, Material Development, PM-Components Powder Manufacturing & Characterization Dimitris Chasoglou, Ph.D, Material Development, PM-Components dimitris.chasoglou@hoganas.com Outline I Powder Production Methods: Mechanical Disintegration without

More information

Introduction to PM. Marco Actis Grande

Introduction to PM. Marco Actis Grande Introduction to PM Marco Actis Grande What is PM? Materials forming technique Create powders (metallic & non-metallic) Assemble them into artefacts of desired shape Cause the powder particles to adhere

More information

1-Materials Science & Materials Engineering

1-Materials Science & Materials Engineering 1-Materials Science & Materials Engineering 1-1-Structure & Properties Relationship (Materials Science or Materials Engineering) Processing Structure Properties Performance Sub Atomic Atomic Sub Atomic

More information

Powder Metallurgy. Science, Technology. and Materials. Anish Upadhyaya. G S Upadhyaya. Department of Materials Science and Engineering

Powder Metallurgy. Science, Technology. and Materials. Anish Upadhyaya. G S Upadhyaya. Department of Materials Science and Engineering Powder Metallurgy Science, Technology and Materials Anish Upadhyaya Associate Professor Department of Materials Science and Engineering Indian Institute of Technology Kanpur, India G S Upadhyaya Former

More information

Improved Quality by Electro Slag Re-Melting

Improved Quality by Electro Slag Re-Melting Improved Quality by Electro Slag Re-Melting BY GÜNTER BUSCH* SYNOPSIS Electro Slag Re-Melting is a process performed after the primary melting steps in electro arc, induction or vacuum induction furnaces.

More information

ATI 13-8 Supertough. ATI 13-8 Supertough Alloy. Technical Data Sheet INTRODUCTION SPECIFICATIONS PHYSICAL PROPERTIES HEAT TREATMENT HARDNESS

ATI 13-8 Supertough. ATI 13-8 Supertough Alloy. Technical Data Sheet INTRODUCTION SPECIFICATIONS PHYSICAL PROPERTIES HEAT TREATMENT HARDNESS ATI 13-8 Supertough Alloy (UNS S13800) INTRODUCTION ATI 13-8 Supertough Alloy (UNS S13800) is a modification of the standard ATI 13-8 alloy, and has superior fracture toughness and Charpy impact energies,

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

Solidification and Crystallisation 5. Formation of and control of granular structure

Solidification and Crystallisation 5. Formation of and control of granular structure MME 345 Lecture 08 Solidification and Crystallisation 5. Formation of and control of granular structure Ref: [1] A. Ohno, The Solidification of Metals, Chijin Shokan Co. Ltd., 1976 [2] P. Beeley, Foundry

More information

Innovative Process for Manufacturing Hydrogenated Titanium Powder for Solid State Production of P/M Titanium Alloy Components

Innovative Process for Manufacturing Hydrogenated Titanium Powder for Solid State Production of P/M Titanium Alloy Components Innovative Process for Manufacturing Hydrogenated Titanium Powder for Solid State Production of P/M Titanium Alloy Components O.M. Ivasishin 1, M.V.Matviychuk 1, C.A.Lavender 2, G.I.Abakumov 3, V.A.Duz

More information

PROPERTIES OF AL-BASED ALLOYS PREPARED BY CENTRIFUGAL ATOMISATION AND HOT EXTRUSION. Filip PRŮŠA, Dalibor VOJTĚCH

PROPERTIES OF AL-BASED ALLOYS PREPARED BY CENTRIFUGAL ATOMISATION AND HOT EXTRUSION. Filip PRŮŠA, Dalibor VOJTĚCH PROPERTIES OF AL-BASED ALLOYS PREPARED BY CENTRIFUGAL ATOMISATION AND HOT EXTRUSION Filip PRŮŠA, Dalibor VOJTĚCH Institute of Chemical Technology Prague, Department of Metals and Corrosion Engineering,

More information

ATI 13-8 ATI Technical Data Sheet. Precipitation Hardening Alloy INTRODUCTION FORMS AND CONDITIONS. (UNS S13800, ASTM Type XM-13)

ATI 13-8 ATI Technical Data Sheet. Precipitation Hardening Alloy INTRODUCTION FORMS AND CONDITIONS. (UNS S13800, ASTM Type XM-13) ATI 13-8 Precipitation Hardening Alloy (UNS S13800, ASTM Type XM-13) INTRODUCTION ATI 13-8 alloy (UNS S13800) is a martensitic precipitation-hardening stainless steel that has excellent strength, high

More information

Materials & Processes in Manufacturing. Introduction. Introduction ME 151. Chapter 6 Ferrous Metals and Alloys

Materials & Processes in Manufacturing. Introduction. Introduction ME 151. Chapter 6 Ferrous Metals and Alloys 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 6 Ferrous Metals and Alloys 1 Introduction Figure 6-1 Page 106 2003 Bill Young 2 Introduction Metals are example of a material (The

More information

Ti Titanium. Leading the Way in the Production of Plasma Atomized Spherical Metal Powders. Specialists in Powders for Additive Manufacturing

Ti Titanium. Leading the Way in the Production of Plasma Atomized Spherical Metal Powders. Specialists in Powders for Additive Manufacturing Leading the Way in the Production of Plasma Atomized Spherical Metal Powders Specialists in Powders for Additive Manufacturing 22 Ti 47.867 Titanium 10+ years servicing major customers AP&C: Large Scale

More information

Metal components getting too complex? Start from the smallest particles!

Metal components getting too complex? Start from the smallest particles! Metal components getting too complex? Start from the smallest particles! From powder to 15 tonnes of solid specialty steel Steam turbine rotor (650 kg) Courtesy of Siemens Industrial Turbomachinery AB,

More information

APPLICATIONS OF Fe-C PHASE DIAGRAM

APPLICATIONS OF Fe-C PHASE DIAGRAM APPLICATIONS OF Fe-C PHASE DIAGRAM KEY POINTS OF Fe-C Diagram Phases: Liquid Fe-Tmin=1148C @ 4.3%C 1394 C

More information

Application and importance of copper and copper powder on powder metallurgy field

Application and importance of copper and copper powder on powder metallurgy field Application and importance of copper and copper powder on powder metallurgy field In recent years, powder metallurgy scholars have paid more attention to materials that have nanometer and composite feature.

More information

Syllabus: Different levels of structure in materials. Relation among material processing, structure, properties, and performance

Syllabus: Different levels of structure in materials. Relation among material processing, structure, properties, and performance Syllabus: Types of materials Properties of materials Different levels of structure in materials Relation among material processing, structure, properties, and performance The main objective is to understand

More information

Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014

Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What Is Powder Metallurgy (P.M)? Powder Metallurgy Processes Blending And Mixing Compaction

More information

Dimensional Analysis of Sintered Compacts of Atomized Ferrous Powders from Indian Sponge Iron

Dimensional Analysis of Sintered Compacts of Atomized Ferrous Powders from Indian Sponge Iron International Journal of Engineering and Manufacturing Science. ISSN 2249-3115 Volume 8, Number 1 (2018), pp. 47-54 Research India Publications http://www.ripublication.com Dimensional Analysis of Sintered

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... What are some of the common fabrication techniques for metals? What heat treatment procedures are used to improve the mechanical

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

Materials Services Materials Trading. Powder Metals. Additive Manufacturing

Materials Services Materials Trading. Powder Metals. Additive Manufacturing Materials Services Materials Trading Powder Metals Additive Manufacturing 2 Contents Contents Powder Production 3 thyssenkrupp and Additive Manufacturing 4 The AM Value Chain 5 Product Portfolio 5 Developing

More information

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion.

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion. Glossary of Terms Alloying Elements ALUMINIUM - Al is used to deoxidise steel and control grain size. Grain size control is effected by forming a fine dispersion with nitrogen and oxygen which restricts

More information

Effect of the Molten Metal Stream s Shape on Particle Size Distribution of Water Atomized Metal Powder

Effect of the Molten Metal Stream s Shape on Particle Size Distribution of Water Atomized Metal Powder Article Effect of the Molten Metal Stream s Shape on Particle Size Distribution of Water Atomized Metal Powder Suchart Yenwiset a and Tawichart Yenwiset b, * Department of Industrial Education, Faculty

More information

Metal Matrix Composite (MMC)

Metal Matrix Composite (MMC) Matrix Metal Matrix Composite (MMC) The matrix is the monolithic material into which the reinforcement is embedded, and is completely continuous. This means thatt there is apath throughh the matrix ti

More information

Fundamentals of Casting

Fundamentals of Casting Fundamentals of Casting Chapter 11 11.1 Introduction Products go through a series of processes before they are produced Design Material selection Process selection Manufacture Inspection and evaluation

More information

Introduction. 1. Sputtering process, target materials and their applications

Introduction. 1. Sputtering process, target materials and their applications Sputtering is widely used in the production of electronic devices such as liquid crystal displays (LCDs), optical media, magnetic media and semiconductors. The Kobelco Research Institute, Inc. has been

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working - Drawing & Extrusion Drawing Drawing is an operation in which the cross-section of solid rod, wire or tubing is reduced or changed in shape by pulling

More information

THE INFLUENCE OF MECHANICAL ALLOYING DURATION ON SELECTED PROPERTIES OF SINTERED DISTALOY SE SAMPLES

THE INFLUENCE OF MECHANICAL ALLOYING DURATION ON SELECTED PROPERTIES OF SINTERED DISTALOY SE SAMPLES ANNALS of Faculty Engineering Hunedoara International Journal of Engineering Tome XIV [2016] Fascicule 2 [May] ISSN: 1584-2665 [print; online] ISSN: 1584-2673 [CD-Rom; online] a free-access multidisciplinary

More information

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY ME8109: Casting And Solidification of Material A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY Department of Mechanical & Industrial Engineering Graduate Program in Mechanical Engineering

More information

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 14 Reaction in Weld Region & Welding Defects

More information

Incoloy Alloy 800H/800HT (UNS N08810/088011)

Incoloy Alloy 800H/800HT (UNS N08810/088011) Incoloy 800H/800HT (UNS N08810/088011) Incoloy 800H/HT is an outstanding corrosion resistant alloy that is recommended for use in the high temperature industrial conditions. It has higher strength than

More information

ATI 332 ATI 332. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES TYPICAL ANALYSIS PHYSICAL PROPERTIES

ATI 332 ATI 332. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES TYPICAL ANALYSIS PHYSICAL PROPERTIES ATI 332 Stainless Steel: Austenitic (UNS N08800) GENERAL PROPERTIES ATI 332 alloy is a nickel and chromium austenitic stainless steel designed to resist oxidation and carburization at elevated temperatures.

More information

Plasma spheroidization of nickel powders in a plasma reactor

Plasma spheroidization of nickel powders in a plasma reactor Bull. Mater. Sci., Vol. 27, No. 5, October 2004, pp. 453 457. Indian Academy of Sciences. Plasma spheroidization of nickel powders in a plasma reactor G SHANMUGAVELAYUTHAM and V SELVARAJAN* Department

More information

Chapter 12. Flux Cored Arc Welding Equipment, Setup, and Operation Delmar, Cengage Learning

Chapter 12. Flux Cored Arc Welding Equipment, Setup, and Operation Delmar, Cengage Learning Chapter 12 Flux Cored Arc Welding Equipment, Setup, and Operation Objectives Explain the FCA welding process Describe what equipment is needed for FCA welding List the advantages of FCA welding, and explain

More information

Processing of Engineering Materials

Processing of Engineering Materials Unit 7: Unit code Machining and Processing of Engineering Materials A/615/1481 Unit level 4 Credit value 15 Introduction Practical articles that we see and use every day such as automobiles, aircraft,

More information

Methods of manufacture

Methods of manufacture 1 Methods of manufacture For Ceramics (see (b)) Crush raw materials Shape the crushed raw materials (various means) Dry & fire Apply finishing operations, as needed; to achieve required dimensional tolerances

More information

Amorphous Brazing Foil

Amorphous Brazing Foil Amorphous Brazing Foil Delivering Advantages to Your Critical Applications www.metglas.com Copyright 2015, Metglas, Inc. All Rights Reserved Metglas, Inc. is a Fully Owned Subsidiary of Hitachi Metals

More information

USN. Hosur : 6A/6B/6C 10ME665. Discuss briefly. 1 a.

USN. Hosur : 6A/6B/6C 10ME665. Discuss briefly. 1 a. USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Mechanical Engineering INTERNAL ASSESSMENT TEST 3 Solutions Subject & Code : NTM 10ME665 Name

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation

Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation 17 Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation Topics to discuss... Secondary steelmaking Synthetic slag practice Injection ladle metallurgy Deoxidation Secondary

More information

Atomized Low Apparent Density (AD) Iron Powder For Advanced PM Applications

Atomized Low Apparent Density (AD) Iron Powder For Advanced PM Applications Atomized Low Apparent Density (AD) Iron Powder For Advanced PM Applications Peter Sokolowski and Francis Hanejko Hoeganaes Corporation Cinnaminson, NJ 08077 ABSTRACT A low apparent density atomized iron

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

Solidification of Metals in Molds

Solidification of Metals in Molds Metal Casting Solidification of Metals in Molds Pure Metals - Solidify at a constant temperature Planar solidification front Columnar crystals Eutectics - Solidify at a constant temperature Planar solidification

More information

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering ISSN 2320-9135 1 International Journal of Advance Research, IJOAR.org Volume 3, Issue 9, September 2015, Online: ISSN 2320-9135 EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti

More information

Leadership in Soft Magnetic Alloys

Leadership in Soft Magnetic Alloys Leadership in Soft Magnetic Alloys Carpenter Technology Corporation offers a wide selection of soft magnetic alloys to meet your material specifications. Choose from high permeability alloys, shielding

More information

SEMASPEC Test Method for Metallurgical Analysis for Gas Distribution System Components

SEMASPEC Test Method for Metallurgical Analysis for Gas Distribution System Components SEMASPEC Test Method for Metallurgical Analysis for Gas Distribution System Components Technology Transfer 91060574B-STD and the logo are registered service marks of, Inc. 1996, Inc. SEMASPEC Test Method

More information

Fundamentals of Metal Forming

Fundamentals of Metal Forming Fundamentals of Metal Forming Chapter 15 15.1 Introduction Deformation processes have been designed to exploit the plasticity of engineering materials Plasticity is the ability of a material to flow as

More information

Primary shaping - Powder Metallurgy

Primary shaping - Powder Metallurgy Chair of Manufacturing Technology Primary shaping - Powder Metallurgy Manufacturing Technology II Exercise 2 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technology Prof.

More information

Fundamental Study on Titanium Production Process by Disproportionation of TiCl 2 in MgCl 2 Molten Salt

Fundamental Study on Titanium Production Process by Disproportionation of TiCl 2 in MgCl 2 Molten Salt Kyoto International Forum for Environment and Energy Fundamental Study on Titanium Production Process by Disproportionation of TiCl 2 in MgCl 2 Molten Salt Taiji Oi and Toru H. Okabe Institute of Industrial

More information

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85 Trends in Automotive Applications of Thermal Spray Technology in Japan p. 1 Production Plasma in the Automotive Industry: A European Viewpoint p. 7 The Effect of Microstructure on the Wear Behavior of

More information

High Quality Multi-arc Targets

High Quality Multi-arc Targets High Quality Multi-arc Targets IKS provides high-quality multi-arc targets for a wide range of applications for ferromagnetic, complex oxides, and semiconducting films. Our targets are offered in various

More information

Part B. Unit8 (Class16) Powder Metallurgy. Powder Extrusion

Part B. Unit8 (Class16) Powder Metallurgy. Powder Extrusion Part B Unit8 (Class16) Powder Metallurgy Powder Production Reduction,Electrolytic deposition, Pulverization, Mechanical Alloy and othersblending of powderscompaction of Powders Punch and Die,Rolling, Extrusion,

More information

Continuous Casting Mould Plates For Slab/ Bloom/ Beam Blank/ Vertical Casters

Continuous Casting Mould Plates For Slab/ Bloom/ Beam Blank/ Vertical Casters R Complete Competence in Copper Continuous Casting Mould Plates For / Bloom/ Beam Blank/ Vertical Casters Mould Plate Bloom Mould Plate Beam Blank Mould Plate Casting Bloom Casting Beam Blank Casting s

More information

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax:

1. Scaling. H.O.: H-5/21, KRISHNA NAGAR, DELHI Tel.: , Fax: Boiler Water Problems and Its Causes Water is the essential medium for steam generation. Conditioning it properly can increase the efficiency of boiler and as well as extend the boiler s life. Treating

More information

Simulation of High Pressure Die Casting (HPDC) via STAR-Cast

Simulation of High Pressure Die Casting (HPDC) via STAR-Cast Simulation of High Pressure Die Casting (HPDC) via STAR-Cast STAR Global Conf. 2012, 19-21 March, Noordwijk Romuald Laqua, Access e.v., Aachen High Pressure Die Casting: Machines and Products Common Materials:

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Casting Process Part 2

Casting Process Part 2 Mech Zone Casting Process Part 2 (SSC JE Mechanical/ GATE/ONGC/SAIL BHEL/HPCL/IOCL) Sand Casting cope: top half drag: bottom half core: for internal cavities funnel sprue runners gate cavity {risers, vents}

More information

Hastelloy G-30 (UNS N06030) Chemical Composition

Hastelloy G-30 (UNS N06030) Chemical Composition Hastelloy G-30 (UNS N06030) Hastelloy G-30 is commonly used for providing excellent resistance to chemical conditions. It offers resistance to nitric acid, phosphoric acid, hydrochloric acid and hydrofluoric

More information

Kirti Kanaujiya, Yugesh Mani Tiwari

Kirti Kanaujiya, Yugesh Mani Tiwari International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1336 Experimental Investigation on Solidification Rate and Grain Size for Centrifugal Casting Kirti Kanaujiya,

More information

Chapter 17. Processing of Metal Powders

Chapter 17. Processing of Metal Powders Chapter 17. Processing of Metal Powders 17.1 Introduction This chapter describes the powder metallurgy (P/M) process, in which metal powders are compacted into desired and often complex shapes and sintered

More information

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL Jack G. Zhou and Zongyan He ABSTRACT Department of Mechanical Engineering and Mechanics Drexel University 3141 Chestnut Street

More information

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Recap Eutectic phase diagram Eutectic phase diagram Eutectic isotherm Invariant point Eutectic Reaction Compositions of components

More information

CHAPTER 3 PREPARATION OF THE POWDER METALLURGICAL POROUS BRONZE COMPACTS

CHAPTER 3 PREPARATION OF THE POWDER METALLURGICAL POROUS BRONZE COMPACTS CHAPTER 3 PREPARATION OF THE POWDER METALLURGICAL POROUS BRONZE COMPACTS 3.1 INTRODUCTION: In this chapter, the procedure for preparation of the Powder Metallurgical (P/M) porous bronze compacts has been

More information

Their widespread use is accounted for by three factors:

Their widespread use is accounted for by three factors: TYPES OF METAL ALLOYS Metal alloys, by virtue of composition, are often grouped into two classes ferrous and nonferrous. Ferrous alloys, those in which iron is the principal constituent, include steels

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

METALS AND ALLOYS WATER SOLIDIFICATION A BRIDGE FROM PYRO- TO HYDRO-METALLURGY

METALS AND ALLOYS WATER SOLIDIFICATION A BRIDGE FROM PYRO- TO HYDRO-METALLURGY METALS AND ALLOYS WATER SOLIDIFICATION A BRIDGE FROM PYRO- TO HYDRO-METALLURGY Bateman EngineeringBV Bartlett Rd, Boksburg, PO Box 25937, East Rand 1462, Republic of South Africa Abstract The increased

More information

Topic 2.7 EXTRACTION OF METALS. Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling

Topic 2.7 EXTRACTION OF METALS. Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling Topic 2.7 EXTRACTION OF METALS Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling EXTRACTING METALS FROM THEIR ORES Most metals do not occur native. They exist in compounds, usually

More information

Lecture-52 Surface Modification Techniques: HVOF and Detonation Spraying

Lecture-52 Surface Modification Techniques: HVOF and Detonation Spraying Fundamentals of Surface Engineering: Mechanisms, Processes and Characterizations Prof.D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology-Roorkee Lecture-52

More information

Strong under tension and compression. Malleable. Low density. Have a dull appearance. Good conductors of electricity and heat

Strong under tension and compression. Malleable. Low density. Have a dull appearance. Good conductors of electricity and heat Revision from Year 10: Properties of Metals and Non-Metals Read CC pp182-183 Use arrows to link the properties with the materials: Strong under tension and compression Malleable Low density Have a dull

More information

Production of Iron and Steels

Production of Iron and Steels MME 131: Lecture 24 Production of Iron and Steels Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Topics to discuss 1. Importance of iron and steels 2. The smelting of iron in Blast Furnace 3. The

More information

Powder metallurgy (PM) technology integrated with

Powder metallurgy (PM) technology integrated with Technical paper: Powder metallurgy methods for producing large components The manufacture of large, complex components will be extremely costly for the power industry over the next few decades as many

More information

STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION

STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION KULA Anna 1, BLAZ Ludwik 1 1 AGH University of Science and Technology,

More information

Fig. 1. Pulsed Ion beam energy instantly melts a thin surface layer, which then cools at a rate of a billion degrees/sec.

Fig. 1. Pulsed Ion beam energy instantly melts a thin surface layer, which then cools at a rate of a billion degrees/sec. Introduction Manufacturers and end-users of critical metal parts and components are under increasing pressure to improve operating performance and reduce cost. Ranging from tools and dies used in the forging

More information

Producing Metal Parts

Producing Metal Parts Producing Metal Parts CNC vs. Additive Manufacturing www.3dhubs.com METAL KIT 2 Introduction This Kit discusses how to select the right manufacturing process for metal parts by comparing CNC and Additive

More information

AMETAL AMETAL AMETAL APPLICATIONS GENERAL

AMETAL AMETAL AMETAL APPLICATIONS GENERAL AMETAL - TA S DEZINCIFICATION RESISTANT COPPER ALLOY AMETAL is a patented special copper alloy, combining excellent corrosion resistance with high mechanical strength. 1 AMETAL TA s dezincification-resistant

More information

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718) ATI 718 Nickel-Base Superalloy (UNS Designation N07718) INTRODUCTION ATI 718 alloy (N07718) is an austenitic nickel-base superalloy which is used in applications requiring high strength to approximately

More information

MATERIALS TECHNOLOGY LABORATORY DESIGN PARAMETERS FOR LEAD-FREE COPPER-BASE ENGINEERING ALLOYS IN PERMANENT MOLDS

MATERIALS TECHNOLOGY LABORATORY DESIGN PARAMETERS FOR LEAD-FREE COPPER-BASE ENGINEERING ALLOYS IN PERMANENT MOLDS MATERIALS TECHNOLOGY LABORATORY DESIGN PARAMETERS FOR LEAD-FREE COPPER-BASE ENGINEERING ALLOYS IN PERMANENT MOLDS F.A. Fasoyinu, D. Cousineau, R. Bouchard, M. Elboujdaini and M. Sahoo EXECUTIVE SUMMARY

More information

Processing of Metal Powders

Processing of Metal Powders Chapter 17 Processing of Metal Powders QUALITATIVE PROBLEMS 17.15 Why is there density variation in the compacting of powders? How is it reduced? The main reason for density variation in compacting of

More information