Atomic Structure of Ultrathin Gold Nanowires

Size: px
Start display at page:

Download "Atomic Structure of Ultrathin Gold Nanowires"

Transcription

1 Supporting Information For Atomic Structure of Ultrathin Gold Nanowires Yi Yu, 1,2 Fan Cui, 1,2 Jianwei Sun, 1,2 and Peidong Yang* 1,2,3,4 1 Department of Chemistry, University of California, Berkeley, California 94720, United States 2 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States 3 Kavli Energy NanoScience Institute, Berkeley, California 94720, United States 4 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States Corresponding Author*: p_yang@berkeley.edu.

2 Ultrathin Au NW Synthesis In a typical reaction, 22 mg of HAuCl 4 3H 2 O was mixed with 0.6 grams of oleylamine. Then, the mixture was diluted with 13 grams of hexanes. The solution was vigorous stirred at room temperature until it formed a homogeneous solution. 0.8 grams of triisopropylsilane was next added into the solution and mild stirring was applied to better mix these chemicals. The final solution was kept still at ambient temperature for 12 hours. The product was harvested by centrifugation at 6000 rmp for 30 mins. Then, the nanowires were washed repeatedly with toluene/ethanol (1:1 volume ratio) using centrifugation-redispersion cycles to remove excess oleylamine and silanes. Finally, the product was dispersed in toluene for further characterization. AC-HRTEM & Image Simulation The aberration-corrected HRTEM (AC-HRTEM) images of ultrathin Au NWs were collected using the negative spherical aberration (C S ) imaging (NCSI) technique on TEAM 0.5, which is an aberration-corrected microscope equipped with a high-brightness Schottky-type field emission gun and a Wien-filter monochromator. The accelerating voltage was 80 kv. The lens aberrations were measured and compensated prior to the image acquisition by evaluating the Zemlin tableau of an amorphous carbon area close to the area of interest in the specimen. In order to rule out the possible effect of microscope instability, we measured the residual aberrations before and after our imaging experiment and checked it every 2 hour in between. No obvious changes of these parameters could be found, confirming the reliability of our experimental data. According to the measurements, the residual lens aberrations were listed below: C S ~ -9 µm, two-fold astigmatism A1 < 2 nm, three-fold astigmatism A2 < 40 nm, axis coma B2 < 30 nm. Image simulation was performed to compare with the AC-HRTEM experiments using the multislice method as implemented in the MacTempas software. The structure model of ultrathin Au NW was built up based on ideal bulk FCC Au structure, with the same diameter as that in the experimental image. Simulated image shown in Figure 1e was obtained for a defocus C1= +4.5 nm, two-fold astigmatism A1 = 1 nm, three-fold astigmatism A2 = 30 nm, coma B2 = 10 nm, and vibration of 30 pm.

3 Electron-specimen Interaction In TEM, the electron irradiation effects are mainly considered as knock-on damage, radiolysis damage, and e-beam heating S1-S3. Knock-on damage, corresponding to the atom displacements, is attributed to the inelastic scattering of electrons at nuclei, dominates at high accelerating voltage. On the other hand, radiolysis damage, corresponding to the ionization, is attributed to the inelastic electron scattering of an electron beam at electrons in the specimen, dominates at low accelerating voltage. The e- beam heating dominates in materials with poor thermal conductivity. As metals are good conductor of heat, the heating effect could be ignored. To date, it is commonly believed that knock-on damage is the major (almost the only) source of radiation damage in metals. For Au bulk material, the threshold voltage for knock-on damage is 1320 kv S1, and the threshold for Au clusters and particles are 200 and 400 kv, respectively (Ref. 9 in the main text). In this manuscript, the accelerating voltage was chosen as 80 kv (below the threshold values) to reduce the knock-on damage. In this case, it seems that the damage could be govern by radiolysis damage. Radiolysis damage has been well recognized in insulators, in which the localized electrons are sensitive to electronic damage. However, for metals, the presence of conduction electrons normally quenches electronic excitations within an extremely short time so that the electronic damage should not occur. To the authors best knowledge, the complicated electron irradiation damage mechanism in metals as well as many other materials has not been clearly revealed yet, and it is still an on-going research topic in the electron microscopy community. Here, in our case of 80 kv, we propose the damage mechanism should still be the knock-on damage, and radiolysis damage (if there really is). Although 80 kv is below the above threshold values, as the materials scale down to nano-size and even atomic scale, such as ultrathin NWs, the binding strength of atoms might be weaker than the bulk counterpart; therefore the true threshold value might become even lower. Atom displacements and sputtering of surface atoms may occur under the circumstance. The observation of shearing of lattice planes and atom displacements in this manuscript is attributed to the above hypothesis. Apart from lowering accelerating voltage, we have also decreased the electron dose rate during the observation. In the acquisition of Fig.1c, the dose rate was controlled at 1900 eå -2 s -1. With the exposure time of 1 s, the total dose in Fig.1c is 1900 eå -2. In contrast,

4 the electron dose rate commonly used in HRTEM is in the range of eå -2 s -1, and sometimes the needed dose rate is even larger to achieve better signal-to-noise ratio. Therefore, we believe we were in a relative safe condition to observe the as-synthesized structure. The structure evolution under this dose rate was relatively slow. In order to accelerate the breakdown process, later we deliberately increased the dose rate and kept the NW illuminated for a long time. The following after-breakdown-images (Fig.2c and Fig.2e) were taken with a dose rate of 10 4 eå -2 s -1, approaching to the normal dose level of HRTEM. First-principle Calculation In first-principle calculations, the electronic wave functions were expanded via a planewave basis set with a cutoff energy of 1360 ev. The equilibrium lattice constants were obtained by a full optimization of the unit cell and the supercells were built up based on the interpolation method (Ref. 29 in the main text). The structural relaxations were carried out until the residual forces were less than ev/å. REFERENCES (S1) Egerton, R. F.; Li, P.; Malac, M. Micron 2004, 35, (S2) Egerton, R. F. Ultramicroscopy 2014, 145, (S3) Banhart, F. Electron and Ion Irradiation. In In-situ Electron Microscopy: Applications in Physics, Chemistry and Materials Science; Dehm, G., Howe, J. M., Zweck, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2012; pp

5 Supporting Figures Figure S1. Low magnification TEM images of ultrathin Au NWs deposited on lacey carbon grid covered with an ultrathin carbon supporting film (< 3 nm). In order to enhance the weak contrast of the ultrathin NWs, false color was applied.

6 Figure S2. In-situ observation of the breakdown of an ultrathin Au NW. The necks and breakdown positions are indicated by blue arrows. The selected-area images and corresponding fast Fourier transforms (FFT) in the lower part (yellow box) and upper part (red box) of the NW are compared. At beginning (Figure S2a), although the axial direction of the whole NW is <111>, the lower part was in [011] zone axis (Figure S2c) while the upper part was out of zone axis (Figure S2b). After structure evolution for a while, the NW tended to break from the middle in Figure S2d. The upper part gradually rotated into [112] zone axis (Figure S2e), and the lower part was kept in [011] zone axis (Figure S2f). Such crystal orientation could be maintained after NW breakdown (Figure S2g, h, i). This is an example clearly showing the twist mode of ultrathin Au NW breakdown.

7 Figure S3. Morphology of the ultrathin Au NW after breaking up into a chain of Au segments/spheres. The TEM grid was kept at room temperature for 20 days after sample preparation. The imaged area shown here was not exposed to the electron beam before. It suggests that ultrathin Au NWs may automatically break up into thermodynamically stable segments/spheres (with minimum surface area) without e-beam effect. Electron beam induced radiation damage or heating plays a role in accelerating the breakdown process (Figure 2). Figure S4. Image simulations of a single stretched oleylamine attached on ultrathin Au NW surface with (right) and without (left) underneath graphene supporting membrane. The ligand is still distinguishable in the case with graphene membrane but the contrast difference becomes small. This gives us a sense of the difficulty of extracting individual ligand information from the real system, which contains complex external factors such as membrane background noise and absorbed contaminations.

8 Figure S5. Another example of in-situ observation of evolution of surface ligands. After 200 s electron beam exposure, the morphology of surface chain-like feature evolved following with the NW breakdown and diameter expansion. Ligands, as well as possible surface carbon contaminations might even compressed and lay along the surface of the NWs.

Supporting Information

Supporting Information Supporting Information Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs; Towards Design Rules for Oriented Attachment Justin C. Ondry,, Matthew R. Hauwiller,,

More information

Formation of HCP Rhodium as a Size Effect

Formation of HCP Rhodium as a Size Effect Supporting Information Formation of HCP Rhodium as a Size Effect Jinglu Huang, Zhi Li, Haohong Duan, Zhiying Cheng, Yadong Li, Jing Zhu, Rong Yu* J. Huang, Z. Cheng, Prof. J. Zhu, Prof. R. Yu National

More information

Supporting Information

Supporting Information Copyright WILEY VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2012. Supporting Information for Small, DOI: 10.1002/smll. 201102654 Large-Area Vapor-Phase Growth and Characterization of MoS 2 Atomic

More information

Thermochromic halide perovskite solar cells

Thermochromic halide perovskite solar cells SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41563-017-0006-0 In the format provided by the authors and unedited. Thermochromic halide perovskite solar cells Jia Lin 1,2,3, Minliang Lai

More information

The Evolution of Size, Shape, and Surface Morphology. of Gold Nanorods

The Evolution of Size, Shape, and Surface Morphology. of Gold Nanorods Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Supporting Information The Evolution of Size, Shape, and Surface Morphology of Gold

More information

Supporting Information. Multistep Lithiation of Tin Sulfide: An Investigation Using in Situ Electron

Supporting Information. Multistep Lithiation of Tin Sulfide: An Investigation Using in Situ Electron Supporting Information Multistep Lithiation of Tin Sulfide: An Investigation Using in Situ Electron Microscopy Sooyeon Hwang, Zhenpeng Yao, Lei Zhang, Maosen Fu,, Kai He, Liqiang Mai, Chris Wolverton,

More information

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY Ayush Garg Department of Chemical and Materials Engineering, University of Auckland, Auckland,

More information

Supplementary Information. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus

Supplementary Information. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus Supplementary Information Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus Jia Lin Zhang, 1,2# Songtao Zhao, 3# Cheng Han, 1,2,4# Zhunzhun Wang, 3,5 Shu Zhong,

More information

Formation of High-quality Aluminum Oxide under Ion Beam Irradiation

Formation of High-quality Aluminum Oxide under Ion Beam Irradiation 15th International School-Conference New materials Materials of innovative energy: development, characterization methods and application Volume 2018 Conference Paper Formation of High-quality Aluminum

More information

Electron Microscopy. Dynamical scattering

Electron Microscopy. Dynamical scattering Electron Microscopy 4. TEM Basics: interactions, basic modes, sample preparation, Diffraction: elastic scattering theory, reciprocal space, diffraction pattern, Laue zones Diffraction phenomena Image formation:

More information

Supplementary Figure S1 Crystal structure of the conducting filaments in sputtered SiO 2

Supplementary Figure S1 Crystal structure of the conducting filaments in sputtered SiO 2 Supplementary Figure S1 Crystal structure of the conducting filaments in sputtered SiO 2 based devices. (a) TEM image of the conducting filament in a SiO 2 based memory device used for SAED analysis. (b)

More information

Juan Andrés, Edson R. Leite, Antonio J. Ramirez. - Surface energy first principle calculations methodology

Juan Andrés, Edson R. Leite, Antonio J. Ramirez. - Surface energy first principle calculations methodology Prediction of dopant atoms distribution on nanocrystals using thermodynamic arguments Daniel G. Stroppa *, Luciano A. Montoro, Antonio Campello, Lourdes Gracia, Armando Beltrán, Juan Andrés, Edson R. Leite,

More information

Lesson 1 X-rays & Diffraction

Lesson 1 X-rays & Diffraction Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation, Bettlach, Switzerland February 11 14, 2013, Riga, Latvia Electromagnetic Spectrum X rays: Wavelength λ: 0.01 10 nm Energy: 100 ev 100 kev Interatomic

More information

Controlled Fabrication and Optical Properties of Uniform CeO 2 Hollow Spheres

Controlled Fabrication and Optical Properties of Uniform CeO 2 Hollow Spheres Controlled Fabrication and Optical Properties of Uniform CeO 2 Hollow Spheres Gen Chen, a Wei Ma, a Xiaohe Liu, a, * Shuquan Liang, b Guanzhou Qiu, a and Renzhi Ma c, * a Department of Inorganic Materials,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/6/e1603213/dc1 Supplementary Materials for Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network Meng Hu, Julong He, Zhisheng

More information

Biomimetic synthesis of gold nanocrystals using a reducing amphiphile. Ferdinand Gonzaga, Sherdeep Singh and Michael A. Brook. Department of Chemistry

Biomimetic synthesis of gold nanocrystals using a reducing amphiphile. Ferdinand Gonzaga, Sherdeep Singh and Michael A. Brook. Department of Chemistry Biomimetic synthesis of gold nanocrystals using a reducing amphiphile. Ferdinand Gonzaga, Sherdeep Singh and Michael A. Brook Department of Chemistry 1280 Main St. W. Hamilton ON L8S 4M1 Canada Outline

More information

CHEM-E5225 :Electron Microscopy Imaging II

CHEM-E5225 :Electron Microscopy Imaging II CHEM-E5225 :Electron Microscopy Imaging II D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer Science & Business Media, 2009. Z. Luo, A Practical Guide

More information

Supplementary Information. Solution-phase Synthesis of Cesium Lead Halide Perovskite Nanowires

Supplementary Information. Solution-phase Synthesis of Cesium Lead Halide Perovskite Nanowires Supplementary Information Solution-phase Synthesis of Cesium Lead Halide Perovskite Nanowires Dandan Zhang,,, Samuel W. Eaton,, Yi Yu, Letian Dou,, Peidong Yang*,,,, Department of Chemistry, Department

More information

Well-defined Colloidal 2-D Layered Transition Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols

Well-defined Colloidal 2-D Layered Transition Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols Intensity (a.u.) Supporting Information Well-defined Colloidal 2-D Layered Transition Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols Sohee Jeong, Dongwon Yoo, Jung-tak Jang, Minkyoung

More information

Microstructural Characterization of Materials

Microstructural Characterization of Materials Microstructural Characterization of Materials 2nd Edition DAVID BRANDON AND WAYNE D. KAPLAN Technion, Israel Institute of Technology, Israel John Wiley & Sons, Ltd Contents Preface to the Second Edition

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information

EMSE Weak-Beam Dark-Field Technique

EMSE Weak-Beam Dark-Field Technique Weak-Beam Dark-Field Technique 1 Weak-Beam Dark-Field Imaging Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 near the dislocation core, some planes curved

More information

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics,

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics, Electronic Supplementary Information Highly efficient core shell CuInS 2 /Mn doped CdS quantum dots sensitized solar cells Jianheng Luo, a Huiyun Wei, a Qingli Huang, a Xing Hu, a Haofei Zhao, b Richeng

More information

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity Supporting Information Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S Exhibiting Low Resistivity and High Infrared Responsivity Wen-Ya Wu, Sabyasachi Chakrabortty, Asim Guchhait, Gloria Yan

More information

Supplementary Material

Supplementary Material Supplementary Material Self-patterning Gd nano-fibers in Mg-Gd alloys Yangxin Li 1,2, Jian Wang 3, Kaiguo Chen 4, Meiyue Shao 2, Yao Shen 1 *, Li Jin 2 *, Guozhen Zhu 1 * 1 State Key Laboratory of Metal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide Supplementary Figure S1: Commonly-observed shapes in MoS 2 CVD. Optical micrographs of various CVD MoS2 crystal shapes

More information

Selective growth of Au nanograins on specific positions (tips, edges. heterostructures.

Selective growth of Au nanograins on specific positions (tips, edges. heterostructures. Selective growth of Au nanograins on specific positions (tips, edges and facets) of Cu 2 O octahedrons to form Cu 2 O-Au hierarchical heterostructures. Han Zhu b, MingLiang Du* a,b, DongLiang Yu b, Yin

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201300794 Highly Stretchable Patterned Gold Electrodes Made of Au Nanosheets

More information

Purification of High Aspect Ratio Gold Nanorods: Complete Removal of Platelets Bishnu P. Khanal and Eugene R. Zubarev*

Purification of High Aspect Ratio Gold Nanorods: Complete Removal of Platelets Bishnu P. Khanal and Eugene R. Zubarev* Purification of High Aspect Ratio Gold Nanorods: Complete Removal of Platelets Bishnu P. Khanal and Eugene R. Zubarev* Department of Chemistry, Rice University, Houston, Texas 77005 Supporting Information

More information

Supporting Information: Electrical and Magnetic

Supporting Information: Electrical and Magnetic Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information: Electrical and Magnetic Properties of FeS 2 and CuFeS 2 Nanoplates

More information

Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI ). Probing Battery Chemistry with Liquid Cell Electron

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Ultrathin Membranes of Single-Layered MoS 2 Nanosheets for

More information

Supporting Information for Sub-1 nm Nanowire Based Superlattice Showing High Strength and Low Modulus Huiling Liu,, Qihua Gong, Yonghai Yue,*,

Supporting Information for Sub-1 nm Nanowire Based Superlattice Showing High Strength and Low Modulus Huiling Liu,, Qihua Gong, Yonghai Yue,*, Supporting Information for Sub-1 nm Nanowire Based Superlattice Showing High Strength and Low Modulus Huiling Liu,, Qihua Gong, Yonghai Yue,*, Lin Guo*, and Xun Wang*, *To whom correspondence should be

More information

MODEL NanoMill TEM Specimen Preparation System. Ultra-low-energy, inert-gas ion source. Concentrated ion beam with scanning capabilities

MODEL NanoMill TEM Specimen Preparation System. Ultra-low-energy, inert-gas ion source. Concentrated ion beam with scanning capabilities MODEL 1040 NanoMill TEM Specimen Preparation System The NanoMill system uses an ultra-low energy, concentrated ion beam to produce the highest quality specimens for transmission electron microscopy. Ultra-low-energy,

More information

Seed-Mediated Growth of Ultra-Thin Triangular Magnetite Nanoplates

Seed-Mediated Growth of Ultra-Thin Triangular Magnetite Nanoplates Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information Seed-Mediated Growth of Ultra-Thin Triangular Magnetite Nanoplates Zheheng

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Single Crystal Nanoflowers with Different Chemical Composition and Physical Properties Grown by Limited Ligand Protection Arun Narayanaswamy,

More information

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China Supporting Information A New Type of BiPO 4 Oxy-acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University,

More information

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth?

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? Part II: Worked Examples H. K. D. H. Bhadeshia Question 14 Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? The surface of a metal can be nitrided to form

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201302405 Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles

More information

Supplementary Information for A Shortcut to Garnet-type Fast Li-Ion Conductors for All Solid State Batteries

Supplementary Information for A Shortcut to Garnet-type Fast Li-Ion Conductors for All Solid State Batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supplementary Information for A Shortcut to Garnet-type Fast Li-Ion Conductors

More information

In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal

In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal Supplementary Information for In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal Sang Ho Oh*, Marc Legros, Daniel Kiener and Gerhard Dehm *To whom correspondence

More information

Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression

Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression Supporting Information Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression This PDF file contains: Figures S1 to S4 Supplementary Text : 1. Materials and initial characterization

More information

MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron

MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron MODEL 1051 TEM Mill A state-of-the-art ion milling and polishing system offering reliable, high performance specimen preparation. It is compact, precise, and consistently produces high-quality transmission

More information

Helmholtz Centre Berlin for Materials and Energy, D Berlin, Germany c

Helmholtz Centre Berlin for Materials and Energy, D Berlin, Germany c Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) for New insights into colloidal gold flakes: structural

More information

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes Supplementary Information Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes Nian Liu 1, Kaifu Huo 2,3, Matthew T. McDowell 2, Jie Zhao 2 & Yi Cui 2,4

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201805105 Super Charge Separation and High Voltage Phase in Na

More information

Supporting Information. Carbon Welding by Ultrafast Joule Heating

Supporting Information. Carbon Welding by Ultrafast Joule Heating Supporting Information Carbon Welding by Ultrafast Joule Heating Yonggang Yao, 1,(a) Kun Fu, 1,(a) Shuze Zhu, 2 Jiaqi Dai, 1 Yanbin Wang, 1 Glenn Pastel, 1 Yanan Chen, 1 Tian Li, 1 Chengwei Wang, 1 Teng

More information

Growth of monocrystalline In 2 O 3 nanowires by seed orientation dependent vapour-solid-solid mechanism

Growth of monocrystalline In 2 O 3 nanowires by seed orientation dependent vapour-solid-solid mechanism Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) Growth of monocrystalline In

More information

Facile Synthesis of Silver Nano/Micro- Ribbons or Saws assisted by Polyoxomolybdate as Mediator Agent and Vanadium (IV) as reducing agent.

Facile Synthesis of Silver Nano/Micro- Ribbons or Saws assisted by Polyoxomolybdate as Mediator Agent and Vanadium (IV) as reducing agent. Facile Synthesis of Silver Nano/Micro- Ribbons or Saws assisted by Polyoxomolybdate as Mediator Agent and Vanadium (IV) as reducing agent. Catherine Marchal-Roch,* Cédric R. Mayer, Aude Michel, Eddy Dumas,

More information

Polymer Microscopy. Second edition LINDA C. SAWYER. and. DAVID T. GRUBB Cornell University Ithaca, NY USA. Hoechst Celanese Corporation Summit, NJ USA

Polymer Microscopy. Second edition LINDA C. SAWYER. and. DAVID T. GRUBB Cornell University Ithaca, NY USA. Hoechst Celanese Corporation Summit, NJ USA Polymer Microscopy Second edition LINDA C. SAWYER Hoechst Celanese Corporation Summit, NJ USA and DAVID T. GRUBB Cornell University Ithaca, NY USA CHAPMAN & HALL London Glasgow Weinheim New York Tokyo

More information

Heteroepitaxy of Monolayer MoS 2 and WS 2

Heteroepitaxy of Monolayer MoS 2 and WS 2 Supporting Information Seed Crystal Homogeneity Controls Lateral and Vertical Heteroepitaxy of Monolayer MoS 2 and WS 2 Youngdong Yoo, Zachary P. Degregorio, James E. Johns* Department of Chemistry, University

More information

Supporting Information

Supporting Information Supporting Information Photoinitiated Growth of Sub-7 nm Silver Nanowires within a Chemically Active Organic Nanotubular Template D. M. Eisele 1, H. v. Berlepsch 2, C. Böttcher 2, K. J. Stevenson 3, D.

More information

Synthesis of gold nanorods: The synthesis and surface functionalization of gold nanorods were

Synthesis of gold nanorods: The synthesis and surface functionalization of gold nanorods were SUPPLEMENTARY INFORMATION: Experiments Synthesis of gold nanorods: The synthesis and surface functionalization of gold nanorods were carried out as described in the literature 36. For the synthesis of

More information

3D Nano-analysis Technology for Preparing and Observing Highly Integrated and Scaled-down Devices in QTAT

3D Nano-analysis Technology for Preparing and Observing Highly Integrated and Scaled-down Devices in QTAT Hitachi Review Vol. 54 (2005), No. 1 27 3D Nano-analysis Technology for Preparing and Observing Highly Integrated and Scaled-down Devices in QTAT Toshie Yaguchi Takeo Kamino Tsuyoshi Ohnishi Takahito Hashimoto

More information

Specimen configuration

Specimen configuration APPLICATIONNOTE Model 1040 NanoMill TEM specimen preparation system Specimen configuration Preparing focused ion beam (FIB) milled specimens for submission to Fischione Instruments. The Model 1040 NanoMill

More information

Supplementary Information

Supplementary Information Supplementary Information Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array Yuchao Li, Hongbao Xin, Xiaoshuai Liu, Yao Zhang, Hongxiang Lei*, and Baojun Li* State

More information

Supplementary Figure 1. Schematic for the growth of high-quality uniform

Supplementary Figure 1. Schematic for the growth of high-quality uniform Supplementary Figure 1. Schematic for the growth of high-quality uniform monolayer WS 2 by ambient-pressure CVD. Supplementary Figure 2. Schematic structures of the initial state (IS) and the final state

More information

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Simple method for formation of nanometer scale holes in membranes T. Schenkel 1, E. A. Stach, V. Radmilovic, S.-J. Park, and A. Persaud E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 When

More information

In Situ Observation of Divergent Phase Transformations in Individual Sulfide Nanocrystals

In Situ Observation of Divergent Phase Transformations in Individual Sulfide Nanocrystals Supporting Information for: In Situ Observation of Divergent Phase Transformations in Individual Sulfide Nanocrystals Matthew T. McDowell 1, Zhenda Lu 1, Kristie J. Koski 2, Jung Ho Yu 1, Guangyuan Zheng

More information

SI GUIDE. File Name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References.

SI GUIDE. File Name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References. SI GUIDE File Name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References. File Name: Supplementary Movie 1 Description: (the movie from which Figs.

More information

Good Practice Guide for nanoindentation of nanoparticles embedded in a layer using an SEM in situ technique

Good Practice Guide for nanoindentation of nanoparticles embedded in a layer using an SEM in situ technique Sample preparation The particles to be tested were two sizes of silica spherical particles, nominally sized 300 nm and 100 nm in diameter, gold spherical particles, nominally sized 60 nm in diameter, and

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

In-situ synthesis of one-dimensional MWCNT/SiC porous. nanocomposites with excellent microwave absorption properties

In-situ synthesis of one-dimensional MWCNT/SiC porous. nanocomposites with excellent microwave absorption properties Supplementary Information: In-situ synthesis of one-dimensional MWCNT/SiC porous nanocomposites with excellent microwave absorption properties Hui-Ling Zhu, Yu-Jun Bai *, Rui Liu, Ning Lun, Yong-Xin Qi,

More information

Transmission Kikuchi Diffraction in the Scanning Electron Microscope

Transmission Kikuchi Diffraction in the Scanning Electron Microscope Transmission Kikuchi Diffraction in the Scanning Electron Microscope Robert Keller, Roy Geiss, Katherine Rice National Institute of Standards and Technology Nanoscale Reliability Group Boulder, Colorado

More information

CHAPTER 7 MICRO STRUCTURAL PROPERTIES OF CONCRETE WITH MANUFACTURED SAND

CHAPTER 7 MICRO STRUCTURAL PROPERTIES OF CONCRETE WITH MANUFACTURED SAND 99 CHAPTER 7 MICRO STRUCTURAL PROPERTIES OF CONCRETE WITH MANUFACTURED SAND 7.1 GENERAL Characterizing the mineralogy of the samples can be done in several ways. The SEM identifies the morphology of the

More information

Supporting Information. Low temperature synthesis of silicon carbide nanomaterials using

Supporting Information. Low temperature synthesis of silicon carbide nanomaterials using Supporting Information Low temperature synthesis of silicon carbide nanomaterials using solid-state method Mita Dasog, Larissa F. Smith, Tapas K. Purkait and Jonathan G. C. Veinot * Department of Chemistry,

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201201027 Effect of Processing Additives on the Solidification

More information

Supplementary information. Extreme biomimetic approach: Hydrothermal synthesis of β-chitin/zno nanostructured composites

Supplementary information. Extreme biomimetic approach: Hydrothermal synthesis of β-chitin/zno nanostructured composites Journal Name Dynamic Article Links Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx Supplementary information ARTICLE TYPE Extreme biomimetic approach: Hydrothermal synthesis of β-chitin/zno nanostructured

More information

Fabrication and Characterization of a Polypyrrole Coated Copper Nanowire Gas Sensor

Fabrication and Characterization of a Polypyrrole Coated Copper Nanowire Gas Sensor Fabrication and Characterization of a Polypyrrole Coated Copper Nanowire Gas Sensor A.B.Kashyout*, H. Shokry Hassan*, A. A. A. Nasser**, I. Morsy**, and H. Abuklill** *Advanced Technology and New Materials

More information

In operandi observation of dynamic annealing: a case. Supplementary Material

In operandi observation of dynamic annealing: a case. Supplementary Material In operandi observation of dynamic annealing: a case study of boron in germanium nanowire devices Supplementary Material Maria M. Koleśnik-Gray, 1,3,4 Christian Sorger, 1 Subhajit Biswas, 2,3 Justin D.

More information

Supplementary Figure 1. Cutaway view of in-situ environmental gas cell. Gas flows

Supplementary Figure 1. Cutaway view of in-situ environmental gas cell. Gas flows Supplementary Figures. Supplementary Figure 1. Cutaway view of in-situ environmental gas cell. Gas flows into the side and up through channels onto the sample stage. A Mylar film allows x-rays to enter

More information

Diffraction Going further

Diffraction Going further Diffraction Going further Duncan Alexander! EPFL-CIME 1 Contents Higher order Laue zones (HOLZ)! Kikuchi diffraction! Convergent beam electron diffraction (CBED)! HOLZ lines in CBED! Thickness measurements!

More information

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties Graphene/Fe 3 O 4 @Fe/ZnO Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties Yu Lan Ren, Hong Yu Wu, Ming Ming Lu, Yu Jin Chen, *, Chun Ling Zhu, # Peng Gao *, # Mao

More information

Supplementary Information

Supplementary Information Supplementary Information Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation Sanxu Pu, Lu Li, Ji Ma, Fuliang

More information

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplimentary Information Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride

More information

Focused helium-ion beam irradiation effects on electrical transport

Focused helium-ion beam irradiation effects on electrical transport Supporting Information Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homojunctions Michael G. Stanford 1, Pushpa Raj

More information

Supporting information for. Amine-Assisted Synthesis of Concave Polyhedral Platinum Nanocrystals Having {411} High-Index Facets

Supporting information for. Amine-Assisted Synthesis of Concave Polyhedral Platinum Nanocrystals Having {411} High-Index Facets Supporting information for Amine-Assisted Synthesis of Concave Polyhedral Platinum Nanocrystals Having {411} High-Index Facets Xiaoqing Huang, Zipeng, Zhao, Jingmin Fan, Yueming Tan, Nanfeng Zheng* State

More information

The principles and practice of electron microscopy

The principles and practice of electron microscopy The principles and practice of electron microscopy Second Edition Ian M. Watt CAMBRIDGE UNIVERSITY PRESS Contents Preface tofirstedition page ix Preface to second edition xi 1 Microscopy with light and

More information

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Journal of Crystal Growth 289 (26) 48 413 www.elsevier.com/locate/jcrysgro Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Wu Weidong a,b,, He Yingjie

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.27 Revealing the reaction mechanisms of Li-O 2 batteries using environmental transmission electron microscopy Langli Luo, Bin

More information

Observation in the GB (Gentle Beam) Capabilities

Observation in the GB (Gentle Beam) Capabilities A field-emission cathode in the electron gun of a scanning electron microscope provides narrower probing beams at low as well as high electron energy, resulting in both improved spatial resolution and

More information

SUPPLEMENTARY INFORMATIONS

SUPPLEMENTARY INFORMATIONS SUPPLEMENTARY INFORMATIONS Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories Jui-Yuan Chen, Cheng-Lun Hsin,,, Chun-Wei Huang, Chung-Hua Chiu, Yu-Ting Huang, Su-Jien Lin, Wen-Wei

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/8/eaat4712/dc1 Supplementary Materials for In situ manipulation and switching of dislocations in bilayer graphene Peter Schweizer, Christian Dolle, Erdmann Spiecker*

More information

Chapter 2 Developments in Field Emission Gun Technologies and Advanced Detection Systems

Chapter 2 Developments in Field Emission Gun Technologies and Advanced Detection Systems Chapter 2 Developments in Field Emission Gun Technologies and Advanced Detection Systems 2.1 Cold-Field Emission Technology To improve image or analysis quality a large signal-to-noise ratio (SNR) is necessary

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Self Organized Silver Nanoparticles for Three Dimensional Plasmonic Crystals

Self Organized Silver Nanoparticles for Three Dimensional Plasmonic Crystals Self Organized Silver Nanoparticles for Three Dimensional Plasmonic Crystals Methods Nanocrystal Synthesis: Octahedra shaped nanocrystals were prepared using a polyol reduction of silver ions. Silver nitrate

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1200448/dc1 Supporting Online Material for Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals This PDF file

More information

This journal is The Royal Society of Chemistry S 1

This journal is The Royal Society of Chemistry S 1 2013 S 1 Thermochemical analysis on the growth of NiAl 2 O 4 rods Sang Sub Kim, a Yong Jung Kwon, b Gunju Sun, a Hyoun Woo Kim,* b and Ping Wu* c a Department of Materials Science and Engineering, Inha

More information

Supplementary Figure 1. Energy-dispersive X-ray spectroscopy (EDS) of a wide-field of a) 2 nm, b) 4 nm and c) 6 nm Cu 2 Se nanocrystals (NCs),

Supplementary Figure 1. Energy-dispersive X-ray spectroscopy (EDS) of a wide-field of a) 2 nm, b) 4 nm and c) 6 nm Cu 2 Se nanocrystals (NCs), Supplementary Figure 1. Energy-dispersive X-ray spectroscopy (EDS) of a wide-field of a) 2 nm, b) 4 nm and c) 6 nm Cu 2 Se nanocrystals (NCs), respectively. To the right of each spectrum us shown a lowmagnification

More information

Supporting Information. Rock-salt Growth Induced (003) Cracking in Layered Positive Electrode for Li-ion Batteries

Supporting Information. Rock-salt Growth Induced (003) Cracking in Layered Positive Electrode for Li-ion Batteries Supporting Information Rock-salt Growth Induced (003) Cracking in Layered Positive Electrode for Li-ion Batteries Hanlei Zhang 1, 2, Fredric Omenya 2, Pengfei Yan 3, Langli Luo 3, M. Stanley Whittingham

More information

Supporting Information to Carbon Nanodots Towards a Comprehensive Understanding of their Photoluminescence

Supporting Information to Carbon Nanodots Towards a Comprehensive Understanding of their Photoluminescence Supporting Information to Carbon Nanodots Towards a Comprehensive Understanding of their Photoluminescence Volker Strauss, a, Johannes T. Margraf, a,b, Christian Dolle, c Benjamin Butz, c Thomas J. Nacken,

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/336/6084/1007/dc1 Supplementary Materials for Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper Hsiang-Yao Hsiao, Chien-Min Liu, Han-wen Lin,

More information

Supporting Information. Silicon Nanocrystal Superlattice Nucleation and Growth

Supporting Information. Silicon Nanocrystal Superlattice Nucleation and Growth Supporting Information Silicon Nanocrystal Superlattice Nucleation and Growth Adrien Guillaussier, Yixuan Yu, Vikas Reddy Voggu, Willi Aigner, Camila Saez Cabezas, Daniel W. Houck, Tushti Shah, Detlef-M.

More information

MODEL TEM Mill. Two independently adjustable TrueFocus ion sources

MODEL TEM Mill. Two independently adjustable TrueFocus ion sources MODEL 1050 TEM Mill A state-of-the-art ion milling and polishing system. It is compact, precise, and consistently produces high-quality transmission electron microscopy (TEM) specimens with large electron

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences Page 1 UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in MENA3100 Characterization of materials Day of exam: 12th. June 2015 Exam hours: 14:30 This examination paper consists of 5

More information

JSM-7800F Field Emission Scanning Electron Microscope

JSM-7800F Field Emission Scanning Electron Microscope JSM-7800F catalogue JSM-7800F Field Emission Scanning Electron Microscope We provide high performance The Ultimate Research Tool for Multi-Disciplinary Research Institutions Extreme resolution The super

More information

Fabrication of 1D Nickel Sulfide Nanocrystals with High

Fabrication of 1D Nickel Sulfide Nanocrystals with High Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Fabrication of 1D Nickel Sulfide Nanocrystals with High Capacitances and Remarkable Durability

More information

X-ray Studies of Magnetic Nanoparticle Assemblies

X-ray Studies of Magnetic Nanoparticle Assemblies SLAC-PUB-9994 June 2003 X-ray Studies of Magnetic Nanoparticle Assemblies S. Anders, a), M. F. Toney, T. Thomson, J.-U. Thiele, and B. D. Terris IBM Almaden Research Center, 650 Harry Road, San Jose, CA

More information

METHOD FOR IMPROVING FIB PREPARED TEM SAMPLES BY VERY LOW ENERGY Ar + ION MILL POLISHING

METHOD FOR IMPROVING FIB PREPARED TEM SAMPLES BY VERY LOW ENERGY Ar + ION MILL POLISHING METHOD FOR IMPROVING FIB PREPARED TEM SAMPLES BY VERY LOW ENERGY Ar + ION MILL POLISHING Yaron Kauffmann, Tzipi Cohen-Hyams, Michael Kalina, Hila Sadan-Meltzman and Wayne D. Kaplan Dept. of Materials Engineering

More information

Chapter 3: Powders Production and Characterization

Chapter 3: Powders Production and Characterization Chapter 3: Powders Production and Characterization Course Objective... To introduce selective powder production processes and characterization methods. This course will help you : To understand properties

More information