Analytical support to experiment QUENCH-17 and first post-test calculations with ATHLET-CD

Size: px
Start display at page:

Download "Analytical support to experiment QUENCH-17 and first post-test calculations with ATHLET-CD"

Transcription

1 Analytical support to experiment QUENCH-17 and first post-test calculations with ATHLET-CD C. Bals, T. Hollands, H. Austregesilo Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Germany

2 Content Short description of experiment QUENCH-17 Pre-test calculations Objectives and analytical model used for ATHLET-CD Parameter variations, results and conclusions First post-test calculations Analytical model used for ATHLET-CD Results Conclusions 2

3 Short description of experiment QUENCH-17 (1) Performed by KIT at the QUENCH facility on January 2013 Test Purpose: Examine the formation of a debris bed inside a completely oxidized bundle region without melt formation and investigate the coolability during reflood Test Bundle: - 9 unheated inner rods with Zry-4 cladding, - 12 heated outer rods with Hf cladding, - 4 Hf corner rods (with thermocouples), - Hf shroud tube Test bundle /J. Stuckert: Status of the preparation of the QUENCH-Debris experiment, 18 th IQWS, Nov. 2012, KIT/ Debris bed formation: - inner rods filled with pre-fragmented zirconia pellets, - conditions of pre-oxidation to produce complete oxidation of Zry-4 claddings within Δh ~ 0.5 m, - collapse of oxidized region before / at start of water cooling 3

4 Short description of experiment QUENCH-17 (2) Test conduct /J. Stuckert: Conduct and first results of the QUENCH-17 experiment, KIT, Febr. 2013/ Oxidation: Stepwise increase of electrical power to 10 kw heats the bundle to a max. temperature of ~ 1700 K; after s stepwise increase to 12 kw to reach a max. temperature of 1800 K; after 64000s power increase to 14 kw (argon and steam flow both 2 g/s) end of oxidation phase at s (devices show complete oxidation at 650 mm elevation) Debris bed formation: Collapse of surviving Zry-4 claddings by application of an axial mechanical force material relocation and formation of heterogeneous debris bed at the two middle grid spacers was confirmed by response of fluid thermocouples Debris bed cooling: Initiation of reflood at s with 10 g/s water flow, power reduction to 4 kw (steam flow stopped, argon injection from the top) 4

5 Short description of experiment QUENCH-17 (3) Debris collected between two upper grid spacers (KIT) consisting of pre-segmented pellets and larger cladding tube fragments Debris bed cooling: - short temperature increase of ~ 150 K during delay period between stopping the steam flow and starting the water injection; - temporary temperature reduction at start of refilling due to rapid steam generation; - second temperature increase of ~ 120 K during refilling of the lower volume; - after s reduction of debris temp. together with first rod quenching at bottom of bundle; - steady progress of quench front up to the debris region; then constant behaviour of evaporation rate indicates slower quenching inside the debris bed; - stagnation of water level at s at bundle elevation of ~ 850 mm due to shroud rupture; - after ~ s increase of hydrogen release (rod inner side oxidation, shroud outer oxidation); 5

6 Pre-test calculations: Objectives Determine boundary conditions for the test; 6 SARNET partners involved (IRSN, IBRAE, NRI, PSI, RUB, GRS) Definition of conditions (mainly power, bundle temperatures, flow rates of steam and argon) for a controlled pre-oxidation of the Zry claddings, where no formation of melt occurs to allow debris bed formation consisting of solid fragments; therefore, temperature escalation has to be avoided; total oxidation of Zry claddings should be reached over a height of h 0.5 m; within a time as short as possible (to avoid shift operation of experimenters) 6

7 Pre-test calculations: Analytical model used for ATHLET-CD (1) Input data: derived from standard dataset used for previous QUENCH tests (QUENCH-16) Nodalization: - Central BUNDLE (90%) with 3 rod types: ROD1 ( 1 unheated inner rod) ROD2 ( 8 unheated rods, inner ring) ROD3 (12 heated rods, Hf cladding), - outer bundle region BYPASS (10%), - cross connection BUNDLE-BYPASS, - Inlet INPIPE, outlet OFFPIPE - 5 grids (at unchanged positions), - Structure Shroud (Hf) with Insulation and Cooling Jacket inner wall, - Cooling Jacket (JACKETTUBE) with structure OUTERWALL - Fills (STFILL, ARFILL, JACINAR) - No corner rods simulated - Shroud outer wall not considered regarding oxidation 7

8 Pre-test calculations: Analytical model used for ATHLET-CD (2) Code version: modified ATHLET-CD version with material properties for Hf / HfO 2 and Hf oxidation kinetics (as given by KIT) on the basis of version 2.2c (Hf / HfO 2 data are adopted for ROD3 and SHROUD) Hf oxidation kinetics: K=K 0 e E/(RT) with K 0 =0.76 kg/m 2 s 1/2, E= J/mol results in lower rates compared to Zry; exothermal heat Δh Hf = 630 kj/mol = J/kg Hf ( vs. Zr: Δh Zr = J/kg Zr ) Initial and boundary conditions: (from QUENCH-16 as recommended by KIT) Pressure p= 2.1 bar, Initial gas temperature (steam, argon): T 0, gas = 600 K 8

9 Pre-test calculations: Simulation of the pre-oxidation period Investigation of the following parameters: Inlet flow rate of steam and argon: g/s; Power ramp dep. on inlet flow rate to get a max. temperature of ~ 1750 K; External electrical resistance: mω/rod; Options for steam oxidation model: IOXMOD=15 (Cathcart-Prater/Courtright), =19 (Leistikov-Prater/Courtright); oxide layer thickness for transition from parabolic to linear rate: µm - no transition; Variation of shroud insulation thickness to get flat temperature profile; Position of grid 3 (shift from 550 mm to 450 mm elevation) 9

10 Pre-test calculations of pre-oxidation period: Parameter variation optimal profile of power ramp for short oxidation of cladding between 650 and 1150 mm elevation without escalation of temperatures: - steep first increase to get quick oxidation of hottest position (950 mm), - second more flat increase where max. value of power is reached after complete oxidation of hottest position, - third period of constant power to keep temperatures at ~ 1750 K; Selected power ramp for different inlet flow rates as boundary condition for pre-test calculations 10

11 Pre-test calculations of pre-oxidation period: Results (1) 650mm 1150 mm Results of reference calculation: Flow rate 8 g/s, max. power 29 kw Complete oxidation of Zry claddings between 650 and 1150 mm elevation was reached after s 11

12 Pre-test calculations of pre-oxidation period: Results (2) Results for low flow rate: Flow rate 3 g/s, max. power 14 kw, oxidation kinetics: no transition from parabolic to linear rate Complete oxidation of Zry claddings between 650 and 1150 mm elevation was reached after t = s (vs. experiment with flow rate 2 g/s: t = s) higher flow rates resulted in a shorter test time for the aimed amount of oxidation 12

13 Pre-test calculations of pre-oxidation period: Results (3) Hydrogen generation: Flow rate 3 g/s, max. power 14 kw ~ 80 g hydrogen were produced within the time period needed for the total oxidation of Zry-claddings between 650 and 1150 mm elevation similar to the test result up to s; the measured increase of hydrogen generation rate in the later time period of the test (after power increase to 14.3 kw) was not simulated by ATHLET-CD (constant power); Comparison of measured hydrogen generation with pre-test calculation (flow rate 3 g/s) 13

14 Pre-test calculations of pre-oxidation period: Conclusions Max. temperature T max > 1800 K results in an escalation due to quick oxidation where melting could not be avoided; Max. temperature T max < 1700 K showed very slow oxidation at levels below 750 mm and above 950 mm bundle height; therefore, max. temperature should be kept between 1750 and 1800 K Higher flow rates resulted in a shorter test time for the aimed amount of oxidation In simulations of pre-oxidation period with low flow rates (3 g/s), similar as used in the test (2 g/s), the predicted time for complete oxidation of Zry-4 claddings between 650 and 1150 mm bundle elevation was s (18 h), compared to s (20 h) as indicated in the test; The amount of hydrogen generation up to the time when the simulation (flow rate 3 g/s) reached the aimed amount of oxidation (t = s) was predicted similar to the experiment; the later increase of hydrogen production in the test was not calculated by the code (no consideration of inner oxidation, shroud leak); 14

15 First post-test calculation: Analytical model used for ATHLET-CD (1) Nodalization: Application of the MEWA model for simulation of debris bed cooling, bundle was modelled in more detail in radial direction: - BUNDLE1 with ROD1 (inner unheated rod) - BUNDLE2 with ROD2 (inner unheated ring) - BUNDLE3 with ROD3 (outer heated ring), - outer bundle region BYPASS, - cross connections CROSSFL1/2/3, - 4 grids in each bundle region, - active fill BOTH2OINJ (water cooling), additional fill TOPARSHR (simulation of argon flow through shroud crack) - others as previous 15

16 Post-test calculation: Analytical model used for ATHLET-CD (2) Code version: modified ATHLET-CD version with material properties for Hf / HfO2 and Hf oxidation kinetics on the basis of version 2.2c (as used for pre-test calculations); Initial and boundary conditions: (as received by KIT) Inlet flow rate for steam and argon: 2 g/s Debris bed simulation with MEWA (IKE): - calculates quenching of particle beds; - MEWA was started with a time dependent criterion; activated at t = s (experiment indicates debris relocation at top of grid spacer 2) resp. t = s (quench initiation); - size of debris bed was defined by input data: horizontally over region of ROD1 and ROD2, vertically from m to 0.77m corresponding to first estimations considering test results (3 thermo-fluid volumes); - after activation of MEWA differential equations of ECORE model are switched off in the integration module FEBE; - boundary conditions for the remaining ATHLET-CD equations are defined by special coupling routines of MEWA; - particle diameter 3.5 mm (height of pellet segments) resp. 5 mm (consideration of larger parts of cladding in collected debris); 16

17 Post-test calculation: First main results (1) Hydrogen generation: Simulation with boundary conditions from the test results in good agreement of hydrogen generation during heat up and pre-oxidation period until ~ s; the increase of hydrogen generation rate after the power increase and before start of cool down ( s) was still underestimated; Comparison of hydrogen generation of post-test calculation 17

18 Post-test calculation: First main results (2) 650mm 1150 mm Oxide layer thickness: ROD2 (Zry) ROD3 (Hf) Complete oxidation of Zry claddings at 650 mm elevation was reached after t = s (vs. experiment at t=72000 s); Complete oxidation of Zry claddings at 1150 mm (Δh 0.5m) after s agreement with time when quenching starts in the test Max. oxide layer thickness for Hf claddings low compared to that of Zry Oxide layer thickness: outer inner layer ROD2 noticeable internal oxide layer thicknesses at upper bundle elevations as shown from first evaluations of the test are not calculated by the code as activation temperature (T=1600 K) was not reached above 1150 mm; highest values of internal oxide layer in the simulation are ~ 100 µm at the 850/950 mm level; 18

19 Post-test calculation: First main results (3) Oxide layer thickness of grids: GRID3 and GRID4 are totally oxidized after ~ s; agreement with first results from the experiment, where grid spacer 4 was completely oxidized after the test; 19

20 Post-test calculation: First main results (4) Rod temperatures (lower upper bundle region): Good agreement of temperatures at lower elevations ( mm), where the debris bed is built after the pre-oxidation period; Temperatures above 1000 mm are overestimated in the simulation (but underestimated inner oxide layer! Criterion for activation of inner oxidation has to be extended); Max. temperatures (850/950 mm) are underestimated by ~ 100 K during the pre-oxidation period in comparison to corrected test data (but good agreement of hydrogen generation!); 20

21 Post-test calculation: First main results (5) Graphic demonstration of temperatures in ECORE region (left) and MEWA (right) at t = s (initiation of reflood) 21

22 Post-test calculation: First main results (6) Rod temperatures during quenching: without (left) with (right) MEWA simulation Cooling within debris region ( mm) is calculated very similar in both simulations in satisfactory agreement with measured data; Cool down of positions above the simulated debris bed ( mm) occurs too early for both simulations, but total quenching occurs at the right time at ~ s if the debris bed model MEWA is used; 22

23 Post-test calculation: First main results (7) Rod temperatures during quenching: additional MEWA test calculations with parameter variations Increased particle diameter (left) The increase of particle diameter from 3.5 to 5.0 mm (collected debris contains larger parts of broken cladding) accelerates the cool down at 850 / 950 mm positions due to increased permeability; temperatures within the debris bed remain nearly unchanged; Simulation of the shroud leak (right) The consideration of the shroud leak (h = 850 mm, opening time s), where 90 % of the injected water was lost through the leak, results in significantly delayed quenching for elevations 850 / 950 mm; 23

24 Post-test calculation: First main results (8) Comparison of calculated grid temperatures with test data: Pre-oxidation period (left) Good agreement of calculated temp. for GRID2 (350 mm) with measured test data at the same level; wide band of test data measured at the top of grid spacer 2 (400 mm), where higher measured temp. coincide with calculated rod temperatures at levels 350 / 450 mm; Quenching (right) Cool down of GRID2 generally agrees well with test data beside a slightly too fast rewetting; the simulation calculates the rewetting of grids slightly faster compared to rods at the same level, whereas this is not the case for the test. 24

25 Post-test calculation: Conclusions First post-test calculations with an extended nodalization for the application of the debris bed model MEWA shows generally good agreement of temperatures and oxidation behaviour which can be derived from the measured hydrogen mass. The measured increase of oxidation rate in the last phase of pre-oxidation, which is probably mostly attributed to considerable inner oxidation at upper positions is not calculated by the code in the right extend; this leads to an underestimation of hydrogen generation of ~ 20 % at the end of the test The application of the MEWA model for the cool down phase shows that the cooling of the debris bed could be simulated with satisfactory results for the temperature decrease (particle diameter 3.5 mm). The parameter variation with higher particle diameter of 5 mm for the debris, as it seems reasonable considering the configuration of the collected debris after the test, shows a too early quenching. The consideration of the shroud leak did not show the expected concordance with test data regarding the temperature decrease at upper levels. In spite of remaining instability problems for the application of MEWA in the late phase of refilling this first post-test calculation of test QUENCH-17 contributed to the verification of MEWA within ATHLET-CD.. 25

26 Acknowledgement The development and validation of ATHLET-CD are sponsored by the German Federal Ministry of Economics and Technology BMWi. Thanks for your attention. 26

6th European Review Meeting on Severe Accident Research (ERMSAR-2013) Avignon (France), Palais des Papes, 2-4 October, 2013

6th European Review Meeting on Severe Accident Research (ERMSAR-2013) Avignon (France), Palais des Papes, 2-4 October, 2013 Analytical support to experiment QUENCH-17 and first post-test calculations with ATHLET-CD C Bals, H Austregesilo, T Hollands Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Garching (GE) ABSTRACT

More information

J. Stuckert, M. Große, M. Steinbrück

J. Stuckert, M. Große, M. Steinbrück Bundle reflood tests QUENCH-14 and QUENCH-15 with advanced cladding materials: comparable overview J. Stuckert, M. Große, M. Steinbrück Institute for Materials Research KIT University of of the State of

More information

Understanding the effects of reflooding in a reactor core beyond LOCA conditions

Understanding the effects of reflooding in a reactor core beyond LOCA conditions Understanding the effects of reflooding in a reactor core beyond LOCA conditions F. Fichot 1, O. Coindreau 1, G. Repetto 1, M. Steinbrück 2, W. Hering 2, M. Buck 3, M. Bürger 3 1 - IRSN, Cadarache (FR)

More information

QUENCH-Debris Bundle Tests on Debris Formation and Coolability SARNET-2 WP5.1 proposal

QUENCH-Debris Bundle Tests on Debris Formation and Coolability SARNET-2 WP5.1 proposal QUENCH-Debris Bundle Tests on Debris Formation and Coolability SARNET-2 WP5.1 proposal presented by J. Stuckert Institute of Apllied Materials KIT University of the State of Baden-Württemberg and National

More information

Post-test results of the QUENCH-16 bundle test on air ingress: complex cladding oxidation during reflood and combined hydrogen

Post-test results of the QUENCH-16 bundle test on air ingress: complex cladding oxidation during reflood and combined hydrogen Post-test results of the QUENCH-16 bundle test on air ingress: complex cladding oxidation during reflood and combined hydrogen J. Stuckert, M. Steinbrück QWS18, Karlsruhe 2012 Institute for Applied Materials;

More information

The PARAMETER test series

The PARAMETER test series The PARAMETER test series V. Nalivaev 1, A. Kiselev 2, J.-S. Lamy 3, S. Marguet 3, V. Semishkin 4, J. Stuckert, Ch. Bals 6, K. Trambauer 6, T. Yudina 2, Yu. Zvonarev 7 1 Scientific Manufacturer Centre,

More information

SIMULATION OF LIVE-L4 WITH ATHLET-CD

SIMULATION OF LIVE-L4 WITH ATHLET-CD SIMULATION OF LIVE-L4 WITH ATHLET-CD T. Hollands, C. Bals Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Forschungszentrum, Boltzmannstraße 14, 85748 Garching, Germany thorsten.hollands@grs.de;

More information

QUENCH-14, QUENCH-16 and QUENCH-ALISA analysis

QUENCH-14, QUENCH-16 and QUENCH-ALISA analysis QUENCH-14, QUENCH-16 and QUENCH-ALISA analysis with RELAP5/SCDAPSIM MOD3.5(KIT) and MOD3.5+(KIT) Presenting authors: Olga Dutkiewicz, Krzysztof Marcinkiewicz Co-authors: Hiroshi Madokoro, dr Heinrich Muscher,

More information

DRAFT: SEVERE FUEL DAMAGE EXPERIMENTS WITH ADVANCED CLADDING MATERIALS TO BE PERFORMED IN THE QUENCH FACILITY (QUENCH-ACM)

DRAFT: SEVERE FUEL DAMAGE EXPERIMENTS WITH ADVANCED CLADDING MATERIALS TO BE PERFORMED IN THE QUENCH FACILITY (QUENCH-ACM) Proceedings of the 16th International Conference on Nuclear Engineering ICONE16 May 11-15, 2008, Orlando, Florida, USA ICONE16-48074 DRAFT: SEVERE FUEL DAMAGE EXPERIMENTS WITH ADVANCED CLADDING MATERIALS

More information

CONDUCT AND ANALYTICAL SUPPORT TO AIR INGRESS EXPERIMENT QUENCH-16

CONDUCT AND ANALYTICAL SUPPORT TO AIR INGRESS EXPERIMENT QUENCH-16 CONDUCT AND ANALYTICAL SUPPORT TO AIR INGRESS EXPERIMENT QUENCH-16 J. BIRCHLEY 1, L. FERNANDEZ MOGUEL 1, C. BALS 2, E. BEUZET 3, Z. HOZER 4, J. STUCKERT 5 1) PSI, Villigen (CH) 2) GRS, Garching (DE) 3)

More information

NURETH Progress on Severe Accident Code Benchmarking in the Current OECD TMI-2 Exercise

NURETH Progress on Severe Accident Code Benchmarking in the Current OECD TMI-2 Exercise NURETH-15 544 Progress on Severe Accident Code Benchmarking in the Current OECD TMI-2 Exercise G. Bandini (ENEA), S. Weber, H. Austregesilo (GRS), P. Drai (IRSN), M. Buck (IKE), M. Barnak, P. Matejovic

More information

QUENCH-12 VERSUS QUENCH-06 COMPARATIVE CALCULATION ANALYSIS USING SOCRAT 1.1 CODE

QUENCH-12 VERSUS QUENCH-06 COMPARATIVE CALCULATION ANALYSIS USING SOCRAT 1.1 CODE QUENCH- VERSUS QUENCH-6 COMPARATIVE CALCULATION ANALYSIS USING SOCRAT. CODE A.Vasiliev Nuclear Safety Institute of Russian Academy of Sciences (IBRAE) B.Tulskaya, 9 Moscow, Russia Content. Introduction.

More information

SIMULATION OF THE QUENCH-06 EXPERIMENT WITH MELCOR 1.8.5

SIMULATION OF THE QUENCH-06 EXPERIMENT WITH MELCOR 1.8.5 International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria BgNS TRANSACTIONS volume 20 number 2 (2015) pp. 143 149 Comparative Analysis of Nodalization Effects and Their Influence on the Results of ATHLET Calculations of VVER-1000 Coolant Transient Benchmark Phase

More information

Modeling of QUENCH bundle tests using ASTEC v2.0p2 -towards new benchmark activities at KIT-

Modeling of QUENCH bundle tests using ASTEC v2.0p2 -towards new benchmark activities at KIT- Modeling of QUENCH bundle tests using ASTEC v2.0p2 -towards new benchmark activities at KIT- H. Muscher 18th International QUENCH Workshop, Karlsruhe, 20.-22. Nov. 2012 Institute for Applied Materials

More information

MODELING OF QUENCH-16 EXPERIMENT WITH MAAP4 SEVERE ACCIDENT CODE

MODELING OF QUENCH-16 EXPERIMENT WITH MAAP4 SEVERE ACCIDENT CODE MODELING OF QUENCH-16 EXPERIMENT WITH MAAP4 SEVERE ACCIDENT CODE E. BEUZET EDF R&D 1 Avenue du Général de Gaulle, 92140 Clamart, France emilie.beuzet@edf.fr M. STEINBRÜCK, J. STUCKERT Karlsruhe Institute

More information

Pre-Test Calculational Support for the QUENCH-13 Experiment

Pre-Test Calculational Support for the QUENCH-13 Experiment Pre-Test Calculational Support for the QUENCH-13 Experiment T Haste 1, J Birchley 1, J-S Lamy 2, B Maliverney 2, H Austregesilo 3, C Bals 3, K Trambauer 3, M Steinbrück 4 and J Stuckert 4 1 Paul Scherrer

More information

Status of PSI air Oxidation Model

Status of PSI air Oxidation Model Wir schaffen Wissen heute für morgen Status of PSI air Oxidation Model L. Fernandez-Moguel; J. Birchley; S. Park EMUG Meeting, Bratislava, Slovakia, April 15-16 2014 Outline Background Current status of

More information

Behavior of high burnup fuel during LOCA - Key observations and test plan at JAEA -

Behavior of high burnup fuel during LOCA - Key observations and test plan at JAEA - Behavior of high burnup fuel during LOCA - Key observations and test plan at JAEA - Fumihisa Nagase Japan Atomic Energy Agency IAEA Technical Meeting on Fuel Behaviour and Modelling under Severe Transient

More information

Post-Test Analysis of the QUENCH-13 Experiment

Post-Test Analysis of the QUENCH-13 Experiment Post-Test Analysis of the QUENCH-13 Experiment Jon Birchley 1, Henrique Austregesilo 2, Christine Bals 2, Roland Dubourg 3, Tim Haste 1, Jean-Sylvestre Lamy 4, Terttaliisa Lind 1, Bernard Maliverney 4,

More information

Experimental Results of the QUENCH-16 Bundle Test on Air Ingress

Experimental Results of the QUENCH-16 Bundle Test on Air Ingress Experimental Results of the QUENCH-16 Bundle Test on Air Ingress J. Stuckert, M. Steinbrück Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Tel: +49

More information

Experiments of the LACOMECO Project at KIT

Experiments of the LACOMECO Project at KIT Experiments of the LACOMECO Project at KIT A. MIASSOEDOV 1, M. KUZNETSOV 1, M. STEINBRÜCK 1, S. KUDRIAKOV 2 Z. HÓZER 3, I. KLJENAK 4, R. MEIGNEN 5, J.M. SEILER 6, A. TEODORCZYK 7 1 KIT, Karlsruhe (DE)

More information

EXPERIMENTS ON AIR INGRESS DURING SEVERE ACCIDENTS

EXPERIMENTS ON AIR INGRESS DURING SEVERE ACCIDENTS 13 th International Conference on Nuclear Engineering Beijing, China, May 16-20, 2005 ICONE13-50080 EXPERIMENTS ON AIR INGRESS DURING SEVERE ACCIDENTS Martin Steinbrück *, Alexei Miassoedov **, Gerhard

More information

COOLING CHARACTERISTICS OF PWR-TYPE FUEL ELEMENT SIMULATORS TESTED IN THE QUENCH EXPERIMENTS

COOLING CHARACTERISTICS OF PWR-TYPE FUEL ELEMENT SIMULATORS TESTED IN THE QUENCH EXPERIMENTS The 10 th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10) Seoul, Korea, October 5-9, 2003 COOLING CHARACTERISTICS OF PWR-TYPE FUEL ELEMENT SIMULATORS TESTED IN THE QUENCH

More information

Steam Flow-rate Effect on the Transient Behaviour in Phebus Experiment FPT-1

Steam Flow-rate Effect on the Transient Behaviour in Phebus Experiment FPT-1 Steam Flow-rate Effect on the Transient Behaviour in Phebus Experiment FPT-1 Salwa Helmy 1, Basma. Foad 1 N. Eng. Safety, Dept. of NRRA, Cairo, Egypt 1 Nuclear and Radiological Regulatory Authority (NRRA)

More information

A New Method Taking into Account Physical Phenomena Related to Fuel Behaviour During LOCA

A New Method Taking into Account Physical Phenomena Related to Fuel Behaviour During LOCA S. BOUTIN S. GRAFF A. BUIRON A New Method Taking into Account Physical Phenomena Related to Fuel Behaviour During LOCA Seminar 1a - Nuclear Installation Safety - Assessment AGENDA 1. Context 2. Development

More information

Activities for Safety Assessment of Fast Spectrum Systems

Activities for Safety Assessment of Fast Spectrum Systems Activities for Safety Assessment of Fast Spectrum Systems A. Seubert Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh Forschungszentrum, D-85748 Garching, Germany 5th Joint IAEA-GIF Technical

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

Description of the TMI-2 Accident: OECD-Benchmark final results with ASTEC

Description of the TMI-2 Accident: OECD-Benchmark final results with ASTEC Description of the TMI-2 Accident: OECD-Benchmark final results with ASTEC H. Muscher Institute for Applied Materials KIT University of the State of Baden-Württemberg and National Large-scale Research

More information

ANALYSIS OF PROCESSES IN SPENT FUEL POOLS IN CASE OF LOSS OF HEAT REMOVAL DUE TO WATER LEAKAGE

ANALYSIS OF PROCESSES IN SPENT FUEL POOLS IN CASE OF LOSS OF HEAT REMOVAL DUE TO WATER LEAKAGE 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT11 8 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 11 13 July 11 Pointe Aux Piments,

More information

FIRST RESULTS OF THE SIMULATIONS OF FUKUSHIMA-DAIICHI UNIT 3 ACCIDENT FOR AN ASSESSMENT OF THE APPLICABILITY AND THE CAPABILITY OF THE CODE ATHLET-CD

FIRST RESULTS OF THE SIMULATIONS OF FUKUSHIMA-DAIICHI UNIT 3 ACCIDENT FOR AN ASSESSMENT OF THE APPLICABILITY AND THE CAPABILITY OF THE CODE ATHLET-CD FIRST RESULTS OF THE SIMULATIONS OF FUKUSHIMA-DAIICHI UNIT 3 ACCIDENT FOR AN ASSESSMENT OF THE APPLICABILITY AND THE CAPABILITY OF THE CODE ATHLET-CD Christoph Bratfisch, Mathias Hoffmann and Marco K.

More information

Investigation of Surface Vortex Formation at Pump Intakes in PWR

Investigation of Surface Vortex Formation at Pump Intakes in PWR Investigation of Surface Vortex Formation at Pump Intakes in PWR P. Pandazis 1, A. Schaffrath 1, F. Blömeling 2 1 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh, Munich 2 TÜV NORD SysTec GmbH

More information

ANALYSES OF AN UNMITIGATED STATION BLACKOUT TRANSIENT WITH ASTEC, MAAP AND MELCOR CODE

ANALYSES OF AN UNMITIGATED STATION BLACKOUT TRANSIENT WITH ASTEC, MAAP AND MELCOR CODE ANALYSES OF AN UNMITIGATED STATION BLACKOUT TRANSIENT WITH ASTEC, MAAP AND MELCOR CODE Technical Meeting on the Status and Evaluation of Severe Accident Simulation Codes for Water F. Mascari 1, J. C. De

More information

Simulation of Fatigue relevant thermal Loads of Components in Piping Networks

Simulation of Fatigue relevant thermal Loads of Components in Piping Networks Simulation of Fatigue relevant thermal Loads of Components in Piping Networks Dr. Jan Leilich Dr. Gerhard Schlicht NSSS Primary Circuit and Ageing Management Dresden, Oct. 15 th, 2014 Thermal Loads in

More information

The TMI 2 severe accident: OECD benchmark activities at KIT using ASTEC

The TMI 2 severe accident: OECD benchmark activities at KIT using ASTEC The TMI 2 severe accident: OECD benchmark activities at KIT using ASTEC H. Muscher Institute for Applied Materials KIT University of the State of Baden-Württemberg and National Large-scale Research Center

More information

Workgroup Thermohydraulics. The thermohydraulic laboratory

Workgroup Thermohydraulics. The thermohydraulic laboratory Faculty of Mechanical Science and Engineering Institute of Power Engineering Professorship of Nuclear Energy and Hydrogen Technology Workgroup Thermohydraulics The thermohydraulic laboratory Dr.-Ing. Christoph

More information

Deviations from the parabolic kinetics during oxidation

Deviations from the parabolic kinetics during oxidation Deviations from the parabolic kinetics during oxidation of zirconium alloys Martin Steinbrück, Mirco Große Karlsruhe Institute of Technology,, Germany 17th International ti lsymposium on Zirconium i in

More information

CONTRIBUTION OF RESEARCH REACTORS TO THE PROGRAMMES FOR RESEARCH AND TECHNOLOGICAL DEVELOPMENT ON SAFETY

CONTRIBUTION OF RESEARCH REACTORS TO THE PROGRAMMES FOR RESEARCH AND TECHNOLOGICAL DEVELOPMENT ON SAFETY CONTRIBUTION OF RESEARCH REACTORS TO THE PROGRAMMES FOR RESEARCH AND TECHNOLOGICAL DEVELOPMENT ON SAFETY J. Couturier, F. Pichereau, C. Getrey, J. Papin, B. Clément INSTITUT DE RADIOPROTECTION ET DE SURETE

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

High Temperature Zr Cladding Oxidation, Hydriding and Embrittlement

High Temperature Zr Cladding Oxidation, Hydriding and Embrittlement Nuclear Safety Institute Russian Academy of Science High Temperature Zr Cladding Oxidation, Hydriding and Embrittlement Presented by Mikhail S. VESHCHUNOV Nuclear Safety Institute (IBRAE) Russian Academy

More information

ATHLET-CD/COCOSYS ANALYSES OF SEVERE ACCIDENTS IN FUKUSHIMA (UNITS 2 AND 3) WITHIN THE OECD/NEA BSAF PROJECT, PHASE 1

ATHLET-CD/COCOSYS ANALYSES OF SEVERE ACCIDENTS IN FUKUSHIMA (UNITS 2 AND 3) WITHIN THE OECD/NEA BSAF PROJECT, PHASE 1 ATHLET-CD/COCOSYS ANALYSES OF SEVERE ACCIDENTS IN FUKUSHIMA (UNITS 2 AND 3) WITHIN THE OECD/NEA BSAF PROJECT, PHASE 1 M. Sonnenkalb, S. Band Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh,

More information

Design of High Power Density Annular Fuel Rod Core for Advanced Heavy Water. Reactor

Design of High Power Density Annular Fuel Rod Core for Advanced Heavy Water. Reactor Design of High Power Density Annular Fuel Rod Core for Advanced Heavy Water Reactor For the deployment of annular fuel rod cluster in AHWR, whole core calculations with annular fuel rod are necessary.

More information

Thermal-hydraulic model of the reactor facility with lead coolant in the ATHLET code

Thermal-hydraulic model of the reactor facility with lead coolant in the ATHLET code Journal of Physics: Conference Series PAPER OPEN ACCESS Thermal-hydraulic model of the reactor facility with lead coolant in the ATHLET code To cite this article: V A Chudinova and S P Nikonov 2018 J.

More information

SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR

SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR JONG-HWA PARK *, DONG-HA KIM and HEE-DONG KIM Korea Atomic Energy Research Institute, 150 Deokjin-dong,

More information

ASTEC Model Development for the Severe Accident Progression in a Generic AP1000-Like

ASTEC Model Development for the Severe Accident Progression in a Generic AP1000-Like ASTEC Model Development for the Severe Accident Progression in a Generic AP1000-Like Lucas Albright a,b, Dr. Polina Wilhelm b, Dr. Tatjana Jevremovic a,c a Nuclear Engineering Program b Helmholtz-ZentrumDresden-Rossendorf

More information

CFD SIMULATION AND EXPERIMENTAL VALIDATION OF FLUID FLOW IN LIQUID DISTRIBUTORS

CFD SIMULATION AND EXPERIMENTAL VALIDATION OF FLUID FLOW IN LIQUID DISTRIBUTORS CFD SIMULATION AND EXPERIMENTAL VALIDATION OF FLUID FLOW IN LIQUID DISTRIBUTORS Marc Heggemann 1, Sebastian Hirschberg 1, Lothar Spiegel 2, Christian Bachmann 2 1 Sulzer Innotec, Sulzer Markets & Technology

More information

Thermal and Stability Analyses on Supercritical Water-cooled Fast Reactor during Power-Raising Phase of Plant Startup

Thermal and Stability Analyses on Supercritical Water-cooled Fast Reactor during Power-Raising Phase of Plant Startup Thermal and Stability Analyses on Supercritical Water-cooled Fast Reactor during Power-Raising Phase of Plant Startup Jiejin Cai, Yuki Ishiwatari, Satoshi Ikejiri and Yoshiaki Oka The University of Tokyo

More information

Hyung Seok Kang Korea Atomic Energy Research Institute, Korea. Abstract

Hyung Seok Kang Korea Atomic Energy Research Institute, Korea. Abstract CFD ANALYSIS FOR THE EXPERIMENTAL INVESTIGATION OF A SINGLE CHANNEL POST-BLOWDOWN Hyung Seok Kang Korea Atomic Energy Research Institute, Korea Abstract A CFD (Computational Fluid Dynamics) benchmark calculation

More information

Development of Model of Zr-based Claddings Oxidation in Air and Application to Air Ingress Experiments

Development of Model of Zr-based Claddings Oxidation in Air and Application to Air Ingress Experiments Development of Model of Zr-based Claddings Oxidation in Air and Application to Air Ingress Experiments 1 IBRAE, Moscow (RU) VASILIEV A.D. 1 ABSTRACT The oxidation of zirconium-based claddings in the air

More information

Preliminary Results of Three Dimensional Core Design in JAPAN

Preliminary Results of Three Dimensional Core Design in JAPAN Preliminary Results of Three Dimensional Core Design in JAPAN Information Exchange Meeting on SCWR Development April 29, 2003 Toshiba Corporation The University of Tokyo Scope of SCWR Core Design (in Short

More information

MYRRHA FUEL TRANSIENT TESTS PROJECT AT THE TRIGA-ACPR REACTOR

MYRRHA FUEL TRANSIENT TESTS PROJECT AT THE TRIGA-ACPR REACTOR MYRRHA FUEL TRANSIENT TESTS PROJECT AT THE TRIGA-ACPR REACTOR CSABA ROTH, BRIAN BOER*, MIREA MLADIN, ADRIAN DATCU, GEORGIANA BUDRIMAN, CALIN TRUTA Institute for Nuclear Research Pitesti, Romania * SCK

More information

OECD Transient Benchmarks: Preliminary Tinte Results TINTE Preliminary Results

OECD Transient Benchmarks: Preliminary Tinte Results TINTE Preliminary Results OECD Transient Benchmarks: Preliminary Tinte Results Presentation Overview The use of Tinte at PBMR Tinte code capabilities and overview Preliminary Tinte benchmark results (cases1-6) The use of Tinte

More information

CHARACTERIZATION OF OXYGEN DISTRIBUTION IN LOCA SITUATIONS

CHARACTERIZATION OF OXYGEN DISTRIBUTION IN LOCA SITUATIONS CHARACTERIZATION OF OXYGEN DISTRIBUTION IN LOCA SITUATIONS Duriez C. 1, Guilbert S. 1, Stern A. 2, Grandjean C. 1, Bělovský L. 3, Desquines J. 1 1 IRSN ² IRSN post-doctorate, now at CEA 3 ALIAS Cz Scope

More information

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water GENES4/ANP23, Sep. 15-19, Kyoto, JAPAN Paper 116 LOCA analysis of high temperature reactor cooled and moderated by supercritical light water Yuki Ishiwatari 1*, Yoshiaki Oka 1 and Seiichi Koshizuka 1 1

More information

The international program Phebus FP (fission

The international program Phebus FP (fission 1The safety of nuclear reactors 1 6 Results of initial Phebus FP tests FPT-0 and FPT-1 S. BOURDON (IRSN) D. JACQUEMAIN (IRSN) R. ZEYEN (JRC/PETTEN) The international program Phebus FP (fission products)

More information

The Mutual Influence of Materials and Thermal-hydraulics on Design of SCWR Review of Results of the Project HPLWR Phase 2

The Mutual Influence of Materials and Thermal-hydraulics on Design of SCWR Review of Results of the Project HPLWR Phase 2 Institute of Nuclear Technology and Energy Systems The Mutual Influence of Materials and Thermal-hydraulics on Design of SCWR Review of Results of the Project HPLWR Phase 2 J. Starflinger, T. Schulenberg

More information

E. Keim (AREVA NP GmbH) - J.-P. Van Dorsselaere (IRSN) NUGENIA R&D ON SAFETY ISSUES PERSPECTIVES IN THE DOMAINS OF AGEING AND OF SEVERE ACCIDENTS

E. Keim (AREVA NP GmbH) - J.-P. Van Dorsselaere (IRSN) NUGENIA R&D ON SAFETY ISSUES PERSPECTIVES IN THE DOMAINS OF AGEING AND OF SEVERE ACCIDENTS E. Keim (AREVA NP GmbH) - J.-P. Van Dorsselaere (IRSN) NUGENIA R&D ON SAFETY ISSUES PERSPECTIVES IN THE DOMAINS OF AGEING AND OF SEVERE ACCIDENTS Contents SNETP and NUGENIA Focus on NULIFE outcomes on

More information

English - Or. English NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

English - Or. English NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS Unclassified NEA/CSNI/R(2015)3 NEA/CSNI/R(2015)3 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 19-Jun-2015 English - Or.

More information

Improvement of Fuel-Coolant Interaction Models for Ex-Vessel Debris Coolability Evaluation

Improvement of Fuel-Coolant Interaction Models for Ex-Vessel Debris Coolability Evaluation IAEA Tec Mtg Technical Meeting on Phenomenology and Technologies Relevant to In-Vessel Melt Retention and Ex-Vessel Corium Cooling @SNERDI(SHANGHAI) Improvement of Fuel-Coolant Interaction Models for Ex-Vessel

More information

ZRO 2 AND UO 2 DISSOLUTION BY MOLTEN ZIRCALLOY

ZRO 2 AND UO 2 DISSOLUTION BY MOLTEN ZIRCALLOY International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, 2002 www.drustvo-js.si/gora2002 ZRO 2 AND UO 2 DISSOLUTION BY MOLTEN ZIRCALLOY J. Stuckert, A. Miassoedov,

More information

Irradiation Testing of Structural Materials in Fast Breeder Test Reactor

Irradiation Testing of Structural Materials in Fast Breeder Test Reactor Irradiation Testing of Structural Materials in Fast Breeder Test Reactor IAEA Technical Meet (TM 34779) Nov 17-21, 2008 IAEA, Vienna S.Murugan, V. Karthik, K.A.Gopal, N.G. Muralidharan, S. Venugopal, K.V.

More information

severe accident progression in the BWR lower plenum and the modes of vessel failure

severe accident progression in the BWR lower plenum and the modes of vessel failure 1 For Presentation at the ERMSAR Conference held in Marseilles, France, March 24-26, 2015 severe accident progression in the BWR lower plenum and the modes of vessel failure B. R. Sehgal S. Bechta Nuclear

More information

ON-GOING STUDIES AT CEA ON CHROMIUM COATED ZIRCONIUM BASED NUCLEAR FUEL CLADDINGS FOR ENHANCED ACCIDENT TOLERANT LWRS FUEL

ON-GOING STUDIES AT CEA ON CHROMIUM COATED ZIRCONIUM BASED NUCLEAR FUEL CLADDINGS FOR ENHANCED ACCIDENT TOLERANT LWRS FUEL ON-GOING STUDIES AT CEA ON CHROMIUM COATED ZIRCONIUM BASED NUCLEAR FUEL CLADDINGS FOR ENHANCED ACCIDENT TOLERANT LWRS FUEL J.C. Brachet *, M. Le Saux, M. Le Flem, S. Urvoy, E. Rouesne, T. Guilbert, C.

More information

The Nuclear Simulation Chain of GRS

The Nuclear Simulation Chain of GRS Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh The Nuclear Simulation Chain of GRS Andreas Schaffrath (andreas.schaffrath@grs.de) Sebastian Buchholz (sebastian.buchholz@grs.de) Anne Krüssenberg

More information

Examination into the reactor pressure increase after forced depressurization at Unit-2, using a thermal-hydraulic code

Examination into the reactor pressure increase after forced depressurization at Unit-2, using a thermal-hydraulic code Attachment 2-9 Examination into the reactor pressure increase after forced depressurization at Unit-2, using a thermal-hydraulic code * This document is generated based on the evaluation upon contract

More information

IAEA Technical Meeting on Priorities in Modelling and Simulation for Fast Neutron Systems

IAEA Technical Meeting on Priorities in Modelling and Simulation for Fast Neutron Systems IAEA Technical Meeting on Priorities in Modelling and Simulation for Fast Neutron Systems Modelling and simulation of severe accidents in GEN IV reactors, research tools used in the Institute for Energy

More information

LBLOCA Analyses with APROS to Improve Safety and Performance of Loviisa NPP

LBLOCA Analyses with APROS to Improve Safety and Performance of Loviisa NPP OECD/CSNI Workshop on Advanced Thermal-Hydraulic and Neutronic Codes: Current and Future Applications Barcelona, Spain, 10-13 April 2000 LBLOCA Analyses with APROS to Improve Safety and Performance of

More information

Stability analysis of natural circulation systems

Stability analysis of natural circulation systems Proceedings of the 6 WSEAS/IASME International Conference on Heat and Mass Transfer, Miami, Florida, USA, January 8-, 6 (pp6-68) Stability analysis of natural circulation systems HEIMO WALTER and WLAIMIR

More information

QUALIFICATION OF THE SYSTEM CODE AC² (SUBMODULE ATHLET) FOR THE SAFETY ASSESSMENT OF PASSIVE RESIDUAL HEAT REMOVAL SYSTEMS

QUALIFICATION OF THE SYSTEM CODE AC² (SUBMODULE ATHLET) FOR THE SAFETY ASSESSMENT OF PASSIVE RESIDUAL HEAT REMOVAL SYSTEMS QUALIFICATION OF THE SYSTEM CODE AC² (SUBMODULE ATHLET) FOR THE SAFETY ASSESSMENT OF PASSIVE RESIDUAL HEAT REMOVAL SYSTEMS D. VON DER CRON, S. BUCHHOLZ, A. SCHAFFRATH Gesellschaft für Anlagen- und Reaktorsicherheit

More information

PHEBUS REACTOR: THE DRIVING OF A SEVERE ACCIDENT

PHEBUS REACTOR: THE DRIVING OF A SEVERE ACCIDENT PHEBUS REACTOR: THE DRIVING OF A SEVERE ACCIDENT M.-C. ANSELMET, J. BONNIN, F. SERRE, G. AUGIER, S. BAYLE, J.-C. CABRILLAT, G. REPETTO Institut de Protection et de Sûreté Nucléaire, Département de Recherche

More information

The Nuclear Simulation Chain of GRS

The Nuclear Simulation Chain of GRS Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) ggmbh The Nuclear Simulation Chain of GRS Andreas Schaffrath (andreas.schaffrath@grs.de) Sebastian Buchholz (sebastian.buchholz@grs.de) Anne Krüssenberg

More information

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS M. Clemente a, S. Langenbuch a, P. Kusnetzov b, I. Stenbock b a) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)mbH, Garching, E-mail:

More information

Experimental investigations of the quenching phenomena for hemispherical downward facing convex surfaces with narrow gaps

Experimental investigations of the quenching phenomena for hemispherical downward facing convex surfaces with narrow gaps International Communications in Heat and Mass Transfer 34 (2007) 28 36 www.elsevier.com/locate/ichmt Experimental investigations of the quenching phenomena for hemispherical downward facing convex surfaces

More information

A study of the revaporisation behaviour of deposits from the metallic vertical line of Phébus FPT3

A study of the revaporisation behaviour of deposits from the metallic vertical line of Phébus FPT3 A study of the revaporisation behaviour of deposits from the metallic vertical line of Phébus FPT3 P. D. W. BOTTOMLEY 1, E. FONTANA 1, D. PAPAIOANNOU 1, G. MONTAGNIER 1, E. TEIXEIRA 1, C. DIEBOLD 1, S.

More information

Single rod quench tests with Zr-1Nb cladding. Comparison with Zircaloy-4 cladding tests and modelling

Single rod quench tests with Zr-1Nb cladding. Comparison with Zircaloy-4 cladding tests and modelling Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 6604 Single rod quench tests with Zr-1Nb cladding. Comparison with Zircaloy-4 cladding tests and modelling J. Stuckert, M.

More information

Controlled management of a severe accident

Controlled management of a severe accident July 2015 Considerations concerning the strategy of corium retention in the reactor vessel Foreword Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents.

More information

The Fukushima Daiichi Incident Dr. Matthias Braun - 16 November p.1

The Fukushima Daiichi Incident Dr. Matthias Braun - 16 November p.1 Dr. Matthias Braun - 16 November 2012 - p.1 The Fukushima Daiichi Incident 1. Plant Design 2. Accident Progression 3. Radiological releases 4. Spent fuel pools 5. Sources of Information Matthias Braun

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BY AENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 Special 10(6): pages 72-78 Open Access Journal Cfd Analysis Of

More information

Demonstration Test Program for Long term Dry Storage of PWR Spent Fuel

Demonstration Test Program for Long term Dry Storage of PWR Spent Fuel Demonstration Test Program for Long term Dry Storage of PWR Spent Fuel 16 November 2010 K.Shigemune, The Kansai Electric Power Co., Inc. The Japan Atomic Power Company Kyushu Electric Power Co., Inc. Mitsubishi

More information

SUMMARY AND CONCLUSION

SUMMARY AND CONCLUSION 5 SUMMARY AND CONCLUSION Energy in the form of heat is required for diverse applications in various sectors including domestic, agricultural, commercial and industrial sectors. As there is a gap between

More information

Mathematical and CFD modeling for a rectangular finned tube adsorption bed for automotive cooling system

Mathematical and CFD modeling for a rectangular finned tube adsorption bed for automotive cooling system SusTEM Special Sessions on Thermal Energy Management Mathematical and CFD modeling for a rectangular finned tube adsorption bed for automotive cooling system B. Shi, R.K. AL-Dadah, S. Mahmoud, A. Elsayed

More information

MCCI on LCS concrete with and without rebars

MCCI on LCS concrete with and without rebars MCCI on LCS concrete with and without rebars J. J. FOIT KIT, Germany KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association www.kit.edu MOCKA

More information

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor FR13 - TECHNICAL SESSION 3.5: Fast reactor safety: post-fukushima lessons and goals for next-generation reactors Paper n. IAEA-CN-199/260 Safety Analysis Results of Representative DEC Accidental Transients

More information

3.5.7 Flow Through Simple Dies

3.5.7 Flow Through Simple Dies 152 3 Fundamentals of Polymers isothermal spinning of a Newtonian fluid and predicted the critical draw ratio of 20.210. Below the critical draw ratio, any disturbance along the filament is dampened out

More information

The Fukushima Daiichi Incident Dr. Matthias Braun - 19 May p.1

The Fukushima Daiichi Incident Dr. Matthias Braun - 19 May p.1 Dr. Matthias Braun - 19 May 2011 - p.1 The Fukushima Daiichi Incident 1. Plant Design 2. Accident Progression 3. Radiological releases 4. Spent fuel pools 5. Sources of Information Matthias Braun PEPA4-G,

More information

Fast quench problems and how they damage coke drums

Fast quench problems and how they damage coke drums Coke Drum Reliability Workshop Fast quench problems and how they damage coke drums Rio De Janeiro, Brazil August 7, 2009 Presented by: Julian Bedoya Julian.bedoya@stress.com Prepared by: Richard Boswell

More information

Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas

Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas Presented at the COMSOL Conference 2008 Hannover Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas Hamidreza Bakhtiary Fatemeh Hayer Norwegian University of Science and Technology

More information

Fast quench problems and how they damage coke drums

Fast quench problems and how they damage coke drums Fast quench problems and how they damage coke drums Coke Drum Reliability Workshop Galveston, Texas March 24, 2009 Richard Boswell, P.E. Stress Engineering Services, Inc Principal richard.boswell@stress.com

More information

SIMULATION OF FUEL BEHAVIOURS UNDER LOCA AND RIA USING FRAPTRAN AND UNCERTAINTY ANALYSIS WITH DAKOTA

SIMULATION OF FUEL BEHAVIOURS UNDER LOCA AND RIA USING FRAPTRAN AND UNCERTAINTY ANALYSIS WITH DAKOTA SIMULATION OF FUEL BEHAVIOURS UNDER LOCA AND RIA USING FRAPTRAN AND UNCERTAINTY ANALYSIS WITH DAKOTA IAEA Technical Meeting on Modelling of Water-Cooled Fuel Including Design Basis and Severe Accidents,

More information

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5

Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 1/12 Simulation of thermal hydraulics accidental transients: evaluation of MAAP5.02 versus CATHAREv2.5 J. Bittan¹ 1) EDF R&D, Clamart (F) Summary MAAP is a deterministic code developed by EPRI that can

More information

Design bases and general design criteria for nuclear fuel. 1 General 3. 2 General design criteria 3

Design bases and general design criteria for nuclear fuel. 1 General 3. 2 General design criteria 3 GUIDE 1 Nov. 1999 YVL 6.2 Design bases and general design criteria for nuclear fuel 1 General 3 2 General design criteria 3 3 Design criteria for normal operational conditions 4 4 Design criteria for operational

More information

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions.

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Calculations Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Change as a Result of Temperature Sensible heat is the

More information

Session 4.1: Solid Storage Technology. Dr. N. Eigen (GKSS) 25 th 29 th September 2006 Ingolstadt. Session 1.2: Introductory Lectures. K.

Session 4.1: Solid Storage Technology. Dr. N. Eigen (GKSS) 25 th 29 th September 2006 Ingolstadt. Session 1.2: Introductory Lectures. K. Session 4.1: Solid Storage Technology Dr. N. Eigen (GKSS) 25 th 29 th September 2006 Ingolstadt Session 1.2: Introductory Lectures K. Hall 4.1 Solid Storage Technology CV Dr. N. Eigen Address: GKSS Research

More information

ANALYSIS OF AN EXTREME LOSS OF COOLANT IN THE IPR-R1 TRIGA REACTOR USING A RELAP5 MODEL

ANALYSIS OF AN EXTREME LOSS OF COOLANT IN THE IPR-R1 TRIGA REACTOR USING A RELAP5 MODEL ANALYSIS OF AN EXTREME LOSS OF COOLANT IN THE IPR-R TRIGA REACTOR USING A RELAP MODEL P. A. L. Reis a, A. L. Costa a, C. Pereira a, M. A. F. Veloso a, H. V. Soares a, and A. Z. Mesquita b a Departamento

More information

LFW-SG ACCIDENT SEQUENCE IN A PWR 900: CONSIDERATIONS CONCERNING RECENT MELCOR / CALCULATIONS

LFW-SG ACCIDENT SEQUENCE IN A PWR 900: CONSIDERATIONS CONCERNING RECENT MELCOR / CALCULATIONS LFW-SG ACCIDENT SEQUENCE IN A PWR 900: CONSIDERATIONS CONCERNING RECENT MELCOR 1.8.5 / 1.8.6 CALCULATIONS F. DE ROSA ENEA FIS NUC - Bologna 1 st EUROPEAN MELCOR USERS GROUP Villigen, Switzerland 15-16

More information

Single rod quench tests with Zr-1Nb cladding. Comparison with Zircaloy-4 cladding tests and modelling

Single rod quench tests with Zr-1Nb cladding. Comparison with Zircaloy-4 cladding tests and modelling Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 664 Single rod quench tests with Zr-1Nb cladding. Comparison with Zircaloy-4 cladding tests and modelling J. Stuckert, M.

More information

VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT ABSTRACT

VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT ABSTRACT VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT J. Bánáti 1 *, V. Riikonen 2 ; V. Kouhia 2, H. Purhonen 2 1 Chalmers University of Technology, SE-41296 Gothenburg, Sweden 2 Lappeenranta

More information

Advanced measuring systems for the efficient use of geothermal energy as baseload-supplier

Advanced measuring systems for the efficient use of geothermal energy as baseload-supplier Advanced measuring systems for the efficient use of geothermal energy as baseload-supplier Development of modular research-probes for geothermal boreholes Benedict Holbein, Dr. Joerg Isele Karlsruher Institute

More information

In Vessel Retention Strategy VVER 1000/320 VVER 2013 Conference

In Vessel Retention Strategy VVER 1000/320 VVER 2013 Conference ÚJV Řež, a. s. In Vessel Retention Strategy VVER 1000/320 VVER 2013 Conference J. Zdarek Presentation content Background of SA issues VVER 1000/320 Containment and RPV Cavity Configuration IVR Strategy

More information

High Temperature Secondary Hydriding Experiments with E110 and E110G Claddings

High Temperature Secondary Hydriding Experiments with E110 and E110G Claddings High Temperature Secondary Hydriding Experiments with E110 and E110G Claddings Zoltán Hózer, Imre Nagy, András Vimi, Mihály Kunstár, Péter Szabó, Tamás Novotny, Erzsébet Perez-Feró, Zoltán Kis, László

More information