Vacuum deposition of TiN

Size: px
Start display at page:

Download "Vacuum deposition of TiN"

Transcription

1 J.Lorkiewicz DESY Vacuum deposition of TiN (TiN coating of high power coupler elements as an anti-multipactor remedy at DESY) The scope of the project: - reducing secondary electron emission and multipactor effects in TESLA couplers by TiN layers generation on the vacuumfacing surfaces. TESLA Test Facility (TTF) couplers: Coupler Frequency Pulse Repetition Beam Cold coax length rate power diam. TTF 2 TTF GHz 1.3 ms 5 Hz 250 kw 40 mm TTF GHz 1.3 ms 5 Hz 845 KW 80 mm Ca. 90 components were treated for anti-multipactor protection : 70 K (cold) cylindrical windows for TTF2 and TTF 3 couplers, 300 K (warm) cylindrical windows for TTF2, planar wave guide windows for TTF2, whole surface TiN coating of a single TTF 2 coupler, (planar coaxial windows for LAL ORSAY), (ceramic discs for planar windows (for DESY and SINS)

2 1. Coating method: - Ti deposition on a substrate from vapor phase in a (reactive) atmosphere of low-pressure ammonia. Metal vapor is released by sublimation from electrically heated titanium filament. 1.1 Apparatus: - a standard vacuum vessel (20 cm diam., 80 cm long) equipped with a turbo-pump unit, two gas feeding lines for pure nitrogen ( %) and ammonia (99.98%) with typical vacuum-handling equipment. - a sublimation setup with insulated filaments of (99.8% purity) 1 mm diam. titanium wire shaped as loops or vertical lines, a system of supports and shields for substrates. - diagnostic: - pyrometer, - mass spectrometer, - quartz crystal film thickness monitor, - thermoelements and thermometers. 1.2 Coating procedure: Substrate preparation: - preliminary cleaning (sandblasting ), - (ultrasonic bath in a degreasing agent-soap)+ ultrasonic bath in utlra-pure water, - drying with pure nitrogen blow, - sublimation setup assembly.

3 Coating procedure (see time-schedule plots): - venting with nitrogen and pumping to reach a base vacuum of low 10-6 mbar (mass-spectrometric measurement of residual gas composition shows 90% of H 2, 8 % of H 2 O and 1% of O 2 in terms of partial pressure), - filament preheating with dc current at o C (impurities desorption + preheating the substrate), - intermediate venting with NH 3 and further pumping, - raising the NH 3 pressure to mbar under continuous pumping, ammonia pressure is matched to the average filament substrate distance L using the formula: L(m)=2.33x T(K)/(2.54. p(torr). (4.42x10-8 ) 2 ) - After min. Ti sublimation (coating) is started by raising the current to A (wire temperature 1790 K), the coating is completed in 30-90s (possible surface resistivity monitoring on separate ceramic samples, its value should reach kohm/square at the end of deposition), - after coating - the vacuum pumping is interrupted and ammonia pressure is raised (step-by-step) to mbar and left for more than 10 h (so-called afterprocessing in ammonia). - exposition to air - surface resistivity grows up to GOhm values within hours/days.

4 Typical coating procedure - time schedule for TTF3 windows pressure (mbar) 10 3 Total pressure vs time 10 1 NH 3 admission 10-1 Afterprocessing in NH 3 for > 10 h time (min) current (A) substrate preheating Filament current vs time Coating for s Filament preheating Time (min) temperature ( o C) 160 Substrate temperature vs time Time (min) Time (min.)

5 2. Measurement and control of layer thickness, layer uniformity. - The on-line indications of the quartz thickness monitor are effected by heat and radiation during deposition (due to space restrictions). Therefore, it was not used to determine the absolute value of layer thickness. -The final layer thickness is controlled and established by deposition time at a given filament temperature T fil. Metal vapor pressure p and sublimation rate w (the mass of metal sublimated from 1 m 2 of a filament surface in 1 s) are related to filament temperature via the formulas Log p(torr) = ( T fil (K) 19.72) w(kg m -2 s -1 ) = 0.585p(M Ti /T fil ) 1/2 Deposition rate distribution is derived from the geometry of source - substrate system. It is computed from basic emission laws. (inverse square law for a point source was verified for a filament which is positively biased ( +10V) respectively substrate holders. The calculated deposition rate distribution is directly checked during an extra preliminary test with an array of strategically exposed glass samples (instead of the real substrate) coated up to a layer thickness of some hundreds of nm (after a deposition time extended to 30 min.). The apparent mass increase of a sample, of the order of 1 mg, is weighed and the deposition rate distribution on the substrate surface is derived. The relative change in time of the deposition rate is checked using a quartz crystal thickness monitor.

6 - The layer thickness uniformity depends on the sublimation setup geometry, substrate shape complexity, possible shadows and space restrictions and stability of filament position. - The thickness of the surface layers deposited from 6+1 vertical filaments on cylindrical surfaces od TTF3 windows varied within +/-8% of the average value. They looked optically uniform. 16 cm Ti filaments (1 mm diam.) RF windows Sublimation setup for Ti-coating of TTF3 coupler windows. Typical processing parameters for cold windows (outer diam. 45 mm, inner diam 35 mm, ceramic ring length 33 mm): filament (dc) current 16A, deposition rate on the outer surface 6.2 nm/min, layer thickness uniformity on the outer surface % ± 8 deposition rate on the inner surface 13 nm/min, ammonia pressure ca 10-3 mbar

7 - A single-operation coating of TTF2 planar wave guide windows was done using a Ti-wire loop installed inside the pillbox container of the window located 25 mm off the ceramic disc surface. The layer thickness achieved on the disc varied by a factor of 4 depending on the position on the disc. The thickness distribution was matched to the RF electrical field distribution: thick layer ( 15 nm) close to the filament position was reached in the region largely overlapping the areas of high rf electrical field component perpendicular to the disc where strong multipactor effects are likely at TE 01 propagation mode, thin layer (of 3 4 nm) was deposited in the center of the disc where maximum of the tangent component of rf electrical field is reached. Thus the achieved thickness distribution reduces ohmic losses within the layer. medium thickness layer (of ca 7 nm) is deposited at the rim of the disc (rf electrical field close to 0) where multipactor is likely to be initiated by lowenergy electrons. 3 nm ca 15 nm Filament inside the pillbox pillbox ca 6-7 nm ceramic disc inside the pillbox isolated support structure Sublimation setup for TTF2 wave guide window

8 The rf behavior of the wave guide window was largely improved after coating (3 x shorter conditioning time, proper power transmission and insensitivity of a previous exposure to air). Coverage of metallic rf power components should be complete. Tle layer thickness can be as high as several tenths of nm. 3. TiN layer testing: DESY test resonator for multipacting current measurements of metal surfaces in RF fields. Test resonator for complex dielectricity constant measurement of aluminum oxide windows and loss tangent determination (inv. Moscow Engineering Physics Institute). Secondary electron yield (SEY) measurement (Soltan Inst. Nucl. Studies (SINS), Dpt. 4, Swierk, Poland). TiN layer chemistry studies: - SIMS tests (Fraunhofer Inst., Braunschweig) - XPS measurements (Institute of Physical Chemistry, Warsaw, Poland) 3.1 TiN layer chemistry - SIMS depth profiles of TiN layers on copper and alumina (elemental analysis):

9 - A ca 1nm-thick carbon layer is present on the surface. Ti:O ratio of about 1:0.85 is reached below. There is evidence of oxygen incorporation and chemisorption from the substrate into the layer on the layer-al 2 O 3 Interface, resulting in good layer adhesion to ceramic surface and higher oxygen contents (in the layer) compared with metallic substrate. TiN surface layers on ceramic are not removed by ultrasonic bath or etching in citric acid. TiN adhesion to a metallic substrate is much weaker (the layer can be scratched). - XPS depth profile of TiN layer on a ceramic sample (the plot below): - high TiO 2 contents in top layer (left side of the plot), - TiN, TiO x N y (oxinitrides) and TiO 2 mixture beneath. contents (at %) 16 TiO 2 12 TiO x N y TiN Sputtering time (ion current 5 microa) [min.] XPS analysis of a TiN layer on ceramic, titanium forms (by J. Sobczak et al, Institute of Physical Chemistry, Warsaw)

10 3.2 Multipactor suppression, ohmic losses, secondary emission: - The choice of the layer thickness of 6 9 nm for evaporation coating was done taking into account the measured values of multipacting time, secondary electron yield and loss tangent. multipactor time (s) A. Brinkmann, DESY electrode of: Al Cu loss tangent (10-4 ) Z. Yu, DESY temperature: 300 K 70 K J. Kula, S. Pszona, SINS, Swierk secondary electron yield (SEY) Promary electrons energy: at maximum SEY 1 kev 5 kev layer thickness (nm)

11 - One can expect higher ohmic losses for sputtering TiN coated ceramic substrate due to a higher contents of conducting TiN. In this case the layer thickness is often restricted to 1 nm. 4. Impact of the whole surface coating of a TTF2 coupler Apart from the rf windows the following TTF2 coupler components were TiN coated: - the terminal wave-guide section with doorknob junction, - the inner and outer warm coax conductors, - the complete cold coax. The preconditioning time on a test stand of TTF2 coupler dropped drastically from over 130 to 24 hours for normal conditioning parameters (peak power of 1 MW, pulse length 1.3 ms and repetition rate equal 2 Hz) as a result of coating. Preconditioning time at rf pulse length of 20 µs alone was reduced from 36 to 4.5 hours. In this case TiN coating proved to be more effective in multipactor elimination than inner conductor bias in coax line or rf glow discharge cleaning in argon performed earlier. After rising the maximum input power to 1.8 MW electron activity started in a strictly localized region of the coupler antenna with layer thickness below 5 nm, at a pulse length of 800 µs which could not be removed by further conditioning. To avoid such effects, increase of layer thickness on metallic components in cold coax is recommended (up to nm) and improvement of its uniformity. The latter can be reached by a better stabilization of filaments positions during surface processing (against thermal stresses ).

12 5. Sputtering TiN deposition vs evaporation Sputtering Deposition of TiN molecules from discharge plasma The sputtering rate is not easy to determine Source-substrate distance may become critical for energy distribution and stability of discharge Substrate rotation often needed to reach uniform deposition rate The risk of ohmic losses due to high TiN contents Evaporation Deposition of thermal energy ( 0.1 ev) Ti atoms + chemical conversion, non-discharge process Advantages The process is slow, easy to control and to interrupt Deposition rate is easily calculable Can be used in restricted volume No rotational elements Low ohmic losses due to partial oxidation Simplicity and low cost Drawbacks Discharge run in inert gases (N 2 +Ar) Long and incomplete Ti TiN conversion, (the risk of high residual conductivity due to the presence of pure Ti) Usage of reactive atmosphere (NH 3 ) and its impact on vacuum system. No possibility of using cold traps

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

AC Reactive Sputtering with Inverted Cylindrical Magnetrons

AC Reactive Sputtering with Inverted Cylindrical Magnetrons AC Reactive Sputtering with Inverted Cylindrical Magnetrons D.A. Glocker, Isoflux Incorporated, Rush, NY; and V.W. Lindberg and A.R. Woodard, Rochester Institute of Technology, Rochester, NY Key Words:

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Plasma Quest Limited

Plasma Quest Limited Plasma Quest Limited A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr. Peter Hockley and Prof. Mike Thwaites,

More information

BEHAVIOUR OF GAS CONDITIONS DURING VACUUM ARC DISCHARGES USED FOR DEPOSITION OF THIN FILMS

BEHAVIOUR OF GAS CONDITIONS DURING VACUUM ARC DISCHARGES USED FOR DEPOSITION OF THIN FILMS SRF BEHAVIOUR OF GAS CONDITIONS DURING VACUUM ARC DISCHARGES USED FOR DEPOSITION OF THIN FILMS P. Strzyzewski*, L. Catani, A. Cianchi, J. Langner*, J.Lorkiewicz, R. Mirowski*, R. Russo, M. Sadowski*, S.

More information

Transactions on Engineering Sciences vol 2, 1993 WIT Press, ISSN

Transactions on Engineering Sciences vol 2, 1993 WIT Press,  ISSN A study of thin-film continuous coating process by vapour deposition P. Gimondo," F. Arezzo,* B. Grifoni,* G. Jasch& "Centra Sviluppo Materiali SpA, Via di Castel & Von Ardenne Anlagentchnik GmbH, Plattleite

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Can deposit any material on any substrate (in principal) Start with pumping down to high vacuum ~10-7 torr Removes residual gases eg oxygen from

More information

Physical Vapor Deposition (PVD) Zheng Yang

Physical Vapor Deposition (PVD) Zheng Yang Physical Vapor Deposition (PVD) Zheng Yang ERF 3017, email: yangzhen@uic.edu Page 1 Major Fabrication Steps in MOS Process Flow UV light Mask oxygen Silicon dioxide photoresist exposed photoresist oxide

More information

Previous Lecture. Vacuum & Plasma systems for. Dry etching

Previous Lecture. Vacuum & Plasma systems for. Dry etching Previous Lecture Vacuum & Plasma systems for Dry etching Lecture 9: Evaporation & sputtering Objectives From this evaporation lecture you will learn: Evaporator system layout & parts Vapor pressure Crucible

More information

Mass Production of Clear Barriers. Requirements on Vacuum Web Coaters for Quality Assurance. Rainer Ludwig, Applied Films, Alzenau, Germany.

Mass Production of Clear Barriers. Requirements on Vacuum Web Coaters for Quality Assurance. Rainer Ludwig, Applied Films, Alzenau, Germany. Mass Production of Clear Barriers Requirements on Vacuum Web Coaters for Quality Assurance Rainer Ludwig, Applied Films, Alzenau, Germany Abstract An increasing number of packages using Transparent Barrier

More information

Power Vision Ltd. PV Research. Power Vision Ltd. Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK Tel:

Power Vision Ltd. PV Research. Power Vision Ltd. Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK   Tel: Power Vision Ltd PV Research Power Vision Ltd Unit R2, Herald Park, Crewe, Cheshire, CW1 6EA, UK www.pvoptical.com Tel: +44 1270 253000 Flexible Whether it be fast AR coating onto temperature sensitive

More information

RRR OF COPPER COATING AND LOW TEMPERATURE ELECTRICAL RESISTIVITY OF MATERIAL FOR TTF COUPLERS

RRR OF COPPER COATING AND LOW TEMPERATURE ELECTRICAL RESISTIVITY OF MATERIAL FOR TTF COUPLERS SRF RRR OF COPPER COATING AND LOW TEMPERATURE ELECTRICAL RESISTIVITY OF MATERIAL FOR TTF COUPLERS M. Fouaidy, N. Hammoudi, IPN Orsay, France S. Prat, LAL, France Abstract In the frame of the R&D program

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Maximizing the Potential of Rotatable Magnetron Sputter Sources for Web Coating Applications

Maximizing the Potential of Rotatable Magnetron Sputter Sources for Web Coating Applications Maximizing the Potential of Rotatable Magnetron Sputter Sources for Web Coating Applications V.Bellido-Gonzalez, Dermot Monaghan, Robert Brown, Alex Azzopardi, Gencoa, Liverpool UK Structure of presentation

More information

HiPIMS Deposition of Metal and Oxide Coatings

HiPIMS Deposition of Metal and Oxide Coatings HiPIMS Deposition of Metal and Oxide Coatings 1 GT West, 1 PJ Kelly, 1 P Barker, 2 JW Bradley and 2 A Mishra 1. Surface Engineering Group, Manchester Metropolitan University, UK 2. Electrical Engineering

More information

Status of Research on Deposition of Superconducting Films for RF Accelerating Cavities

Status of Research on Deposition of Superconducting Films for RF Accelerating Cavities Status of Research on Deposition of Superconducting Films for RF Accelerating Cavities J. Langner, L. Catani*, A. Cianchi*, K. Czaus, R. Mirowski, R. Russo*, M.J. Sadowski, S. Tazzari*, F. Tazzioli***,

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material on any substrate (in principal) Start with pumping down

More information

II. NEG THIN FILM DEPOSITION

II. NEG THIN FILM DEPOSITION Deposition of Non-Evaporable Getter Thin Films and Vacuum Pumping Performances Ankit Sur Engineering Department, Wayne State University, Detroit, MI 48202 The ERL (Energy Recovery Linac) proposed at Cornell

More information

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure KOBAYASHI Akira*, TAKAO Yoshiyuki**, KOMURASAKI Kimiya*** Abstract The microwave discharge plasma

More information

EUROPEAN LABORATORY FOR PARTICLE PHYSICS CERN - LHC DIVISION. LHC-VAC/Io.B Vacuum Technical Note August 1997

EUROPEAN LABORATORY FOR PARTICLE PHYSICS CERN - LHC DIVISION. LHC-VAC/Io.B Vacuum Technical Note August 1997 EUROPEAN LABORATORY FOR PARTICLE PHYSICS CERN - LHC DIVISION LHC-VAC/Io.B Vacuum Technical Note 97-... August 997 Measurements of the Secondary Electron Emission of Some Insulators J. BARNARD, I. BOJKO,

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

III Fabrication of the samples

III Fabrication of the samples III Fabrication of the samples The fabrication of the samples for SPR measurement consists of three steps. It begins with glass substrates cleaning using ultrasonication, followed by the deposition of

More information

Progress in Use of Ultra-High Vacuum Cathodic Arcs for Deposition of Thin Film Superconducting Layers

Progress in Use of Ultra-High Vacuum Cathodic Arcs for Deposition of Thin Film Superconducting Layers SRF Progress in Use of Ultra-High Vacuum Cathodic Arcs for Deposition of Thin Film Superconducting Layers J. Langner 1, M.J. Sadowski 1, P. Strzyzewski 1, R. Mirowski 1, J. Witkowski 1, S. Tazzari 2, L.

More information

Intlvac Nanochrome I Sputter System (intlvac_sputter)

Intlvac Nanochrome I Sputter System (intlvac_sputter) 1. Intlvac_Sputter Specifications The Intlvac Nanochrome I sputter system is configured for DC, AC (40 khz), and RF (13.56 MHz) magnetron sputtering. They system has in-situ quartz lamp heating up to 200C,

More information

Ellipsometry as a tool for identifying process issues in roll-to-roll sputter deposited metal-oxide coatings

Ellipsometry as a tool for identifying process issues in roll-to-roll sputter deposited metal-oxide coatings Ellipsometry as a tool for identifying process issues in roll-to-roll sputter deposited metal-oxide coatings Sharon Louch Centre for Process Innovation, Wilton Centre, edcar. UK. TS10 3H Abstract Ellipsometry

More information

EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD. Hybrid system KOLZER DGK 36

EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD. Hybrid system KOLZER DGK 36 email : carlo.gennari@fastwebnet.it web site : http://carlogennariforni.beepworld.it/kolzer.htm EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD Hybrid system KOLZER DGK

More information

ECE 541/ME 541 Microelectronic Fabrication Techniques

ECE 541/ME 541 Microelectronic Fabrication Techniques ECE 541/ME 541 Microelectronic Fabrication Techniques MW 4:00-5:15 pm Introduction to Vacuum Technology Zheng Yang ERF 3017, email: yangzhen@uic.edu ECE541/ME541 Microelectronic Fabrication Techniques

More information

Overview of Advanced Surface Science activities at CERN. S.Calatroni, M.Taborelli TE-VSC-SCC

Overview of Advanced Surface Science activities at CERN. S.Calatroni, M.Taborelli TE-VSC-SCC Overview of Advanced Surface Science activities at CERN S.Calatroni, M.Taborelli TE-VSC-SCC Basic components of particle accelerators Technology Department 10 October 2014 S. Calatroni & M. Taborelli 2

More information

Effect of pulsed magnetron sputtering process for the deposition of thin layers of nickel and nickel oxide

Effect of pulsed magnetron sputtering process for the deposition of thin layers of nickel and nickel oxide Materials Science-Poland, 36(1), 2018, pp. 69-74 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.1515/msp-2017-0092 Effect of pulsed magnetron sputtering process for the deposition of thin layers of nickel

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

Plasma Activated EB-PVD of Titanium and its Compounds by Means of Large Area SAD

Plasma Activated EB-PVD of Titanium and its Compounds by Means of Large Area SAD AIMCAL 2005 Myrtle Beach, SC, USA, October 19th, 2005 Plasma Activated EB-PVD of Titanium and its Compounds by Means of Large Area SAD E. Reinhold, C. Steuer VON ARDENNE Anlagentechnik GmbH, Dresden, Germany

More information

Formation of High-quality Aluminum Oxide under Ion Beam Irradiation

Formation of High-quality Aluminum Oxide under Ion Beam Irradiation 15th International School-Conference New materials Materials of innovative energy: development, characterization methods and application Volume 2018 Conference Paper Formation of High-quality Aluminum

More information

Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets

Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets Managing Anode Effects and Substrate Heating from Rotatable Sputter Targets Frank Papa*, Dermot Monaghan**, Victor Bellido- González**, and Alex Azzopardi** *Gencoa Technical & Business Support in US,

More information

Microwave Plasma Processing

Microwave Plasma Processing Microwave Plasma Processing MUEGGE GMBH Hochstraße 4-6 64385 Reichelsheim Fon +49 (0) 6164-93 07 11 Fax +49 (0) 6164-93 07 93 info@muegge.de www.muegge.de Microwave Plasma Processing Microwave Plasma Technology:

More information

Denton 635 Sputter SOP

Denton 635 Sputter SOP Denton 635 SOP Page 1 of 8 Denton 635 Sputter SOP 1. Scope 1.1 This document provides operating procedures for the Denton 635 automated sputter system.. 2. Table of Contents 1. Scope... 1 2. Table of Contents...

More information

Today s Class. Materials for MEMS

Today s Class. Materials for MEMS Lecture 2: VLSI-based Fabrication for MEMS: Fundamentals Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap: Last Class What is

More information

Pulsed Laser Deposition of Epitaxial Titanium Nitride on Magnesium Oxide substrate

Pulsed Laser Deposition of Epitaxial Titanium Nitride on Magnesium Oxide substrate Pulsed Laser Deposition of Epitaxial Titanium Nitride on Magnesium Oxide substrate By, Preetam ANBUKARASU UTRIP 2012 (1 st Crew) Under the Guidance of, Prof. Tetsuya HASEGAWA, Solid State Chemistry Lab,

More information

Gencoa Product Portfolio

Gencoa Product Portfolio Gencoa offer the following range of products & process technology for the thin film industry developed over the last 20 years Planar Magnetrons Plasma Pre- Treaters Reactive Gas Controllers Gencoa Product

More information

VERSATILE DEVICE FOR IN-SITU MULTIPLE COATINGS OF LONG, SMALL DIAMETER TUBES Ady Hershcovitch 1, Michael Blaskiewicz 1, J. Michael Brennan 1, Art

VERSATILE DEVICE FOR IN-SITU MULTIPLE COATINGS OF LONG, SMALL DIAMETER TUBES Ady Hershcovitch 1, Michael Blaskiewicz 1, J. Michael Brennan 1, Art VERSATILE DEVICE FOR IN-SITU MULTIPLE COATINGS OF LONG, SMALL DIAMETER TUBES Ady Hershcovitch 1, Michael Blaskiewicz 1, J. Michael Brennan 1, Art Custer 2, Mark Erickson 2, Wolfram Fischer 1, Chong-Jer

More information

Latest Development in Vacuum Metallisation

Latest Development in Vacuum Metallisation Latest Development in Vacuum Metallisation Professor Nadir Ahmed Vacuum Metallising Consultant General Vacuum Equipment Ltd. Pennine Business Park, Pilsworth Road, Heywood OL10 2TL England Tel: +44(0)1706

More information

Production of High Power and Large-Area Negative Ion Beams for ITER

Production of High Power and Large-Area Negative Ion Beams for ITER 1 Production of High Power and Large-Area Negative Ion Beams for ITER M. Hanada, T. Inoue, M. Kashiwagi, M. Taniguchi, H. Tobari, K. Watanabe, N. Umeda, M. Dairaku, Y. Ikeda, K. Sakamoto Japan Atomic Energy

More information

Durable Neutral Color Anti-Reflective Coating for Mobile Displays

Durable Neutral Color Anti-Reflective Coating for Mobile Displays Durable Neutral Color Anti-Reflective Coating for Mobile Displays By John Madocks and Phong Ngo, General Plasma, Inc. Figure 1: Samsung S4 with top half of cover glass coated with AR+DLC Abstract An in-line

More information

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing 3. Conventional licon Processing Micromachining, Microfabrication. EE 5344 Introduction to MEMS CHAPTER 3 Conventional Processing Why silicon? Abundant, cheap, easy to process. licon planar Integrated

More information

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB Fabrication Process Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation 1 Fabrication- CMOS Process Starting Material Preparation 1. Produce Metallurgical Grade Silicon

More information

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems Technology p. 9 The Parallels to Microelectronics p. 15 The

More information

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson Alternative Methods of Yttria Deposition For Semiconductor Applications Rajan Bamola Paul Robinson Origin of Productivity Losses in Etch Process Aggressive corrosive/erosive plasma used for etch Corrosion/erosion

More information

MICROCHIP MANUFACTURING by S. Wolf

MICROCHIP MANUFACTURING by S. Wolf MICROCHIP MANUFACTURING by S. Wolf Chapter 22 DRY-ETCHING for ULSI APPLICATIONS 2004 by LATTICE PRESS CHAPTER 22 - CONTENTS Types of Dry-Etching Processes The Physics & Chemistry of Plasma-Etching Etching

More information

Nucleation and growth of nanostructures and films. Seongshik (Sean) Oh

Nucleation and growth of nanostructures and films. Seongshik (Sean) Oh Nucleation and growth of nanostructures and films Seongshik (Sean) Oh Outline Introduction and Overview 1. Thermodynamics and Kinetics of thin film growth 2. Defects in films 3. Amorphous, Polycrystalline

More information

Photovoltaics & Solar Thermals. Thin-film equipment. Customized. FHR Anlagenbau GmbH I

Photovoltaics & Solar Thermals. Thin-film equipment. Customized. FHR Anlagenbau GmbH I Photovoltaics & Solar Thermals Thin-film equipment. Customized. FHR Anlagenbau GmbH I www.fhr.de FHR Anlagenbau GmbH is an innovative enterprise in the branch of vacuum processing and thin-film technologies.

More information

Supplementary Information

Supplementary Information Supplementary Information Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing Samuel Yick, Zhao Jun Han and Kostya (Ken)

More information

Optimization of the Sputtering Process for Depositing Composite Thin Films

Optimization of the Sputtering Process for Depositing Composite Thin Films Journal of the Korean Physical Society, Vol. 40, No. 3, March 2002, pp. 511 515 Optimization of the Sputtering Process for Depositing Composite Thin Films M. Farooq Pakistan Council of Renewable Energy

More information

Linear Broad Beam Ion Sources ACC-30x150 IS, ACC-40x300 IS and ACC-40 x 600 IS

Linear Broad Beam Ion Sources ACC-30x150 IS, ACC-40x300 IS and ACC-40 x 600 IS Dr. Hermann Schlemm Ion Beam- and Surface Technology Saalbahnhofstraße 6 D - 07743 JENA, Germany Tel.: ++ 49 3641 22 73 29 Fax: ++ 49 3641 22 87 60 email: hermann.schlemm@jenion.de http://www.jenion.de

More information

New Dual Magnetron Plasma Source Designed For Large Area Substrate Pretreatment and Oxide Film Deposition P. Morse, R. Lovro, M. Rost, and J.

New Dual Magnetron Plasma Source Designed For Large Area Substrate Pretreatment and Oxide Film Deposition P. Morse, R. Lovro, M. Rost, and J. New Dual Magnetron Plasma Source Designed For Large Area Substrate Pretreatment and Oxide Film Deposition P. Morse, R. Lovro, M. Rost, and J. German, Road Map Source Design Theory of Operation Experimental

More information

Platypus Gold Coated Substrates. Bringing Science to the Surface

Platypus Gold Coated Substrates. Bringing Science to the Surface Platypus Gold Coated Substrates Bringing Science to the Surface Overview Gold Coated Substrates - Gold Coating Introduction - Glossary of Terms - Gold Coating Methods - Critical Features Platypus Gold

More information

Chapter 7 Polysilicon and Dielectric Film Deposition

Chapter 7 Polysilicon and Dielectric Film Deposition Chapter 7 Polysilicon and Dielectric Film Deposition Professor Paul K. Chu Thin Films in Microelectronics Polycrystalline silicon or polysilicon Doped or undoped silicon dioxide Stoichiometric or plasma-deposited

More information

Industrialization process

Industrialization process Industrialization process Power couplers for XFEL project as an example ------------ Serge Prat TESLA meeting - 30 March 2005 1/41 Industrialization: Why? Start: Prototypes Quality: - uneven ( 30 Couplers)

More information

Ion-plasma technologies and equipment

Ion-plasma technologies and equipment Ion-plasma technologies and equipment VACUUM ION-PLASMA INSTALLATIONS OF «OPAL» SERIES «Opal» series ion-plasma installations are designed for deposition of low-emission, reflective and toned coatings

More information

Effective Closed-Loop Control for Reactive Sputtering Using Two Reactive Gases

Effective Closed-Loop Control for Reactive Sputtering Using Two Reactive Gases Effective Closed-Loop Control for Reactive Sputtering Using Two Reactive Gases D.C. Carter, W.D. Sproul, and D.J. Christie, Advanced Energy Industries, Inc., Fort Collins, CO Key Words: Reactive sputtering

More information

HiPIMS deposition of dense Palladium-Silver films for hydrogen separation

HiPIMS deposition of dense Palladium-Silver films for hydrogen separation HiPIMS deposition of dense Palladium-Silver films for hydrogen separation S. Fasolin, S. Barison, S. Boldrini, F. Montagner, M. Romano, A. Ferrario, M. Fabrizio, L. Armelao CNR-ICMATE, Corso Stati uniti

More information

Introduction Sample deposition system Cavity deposition system prototype Surface characterization Beyond niobium

Introduction Sample deposition system Cavity deposition system prototype Surface characterization Beyond niobium Genfa Wu Introduction Sample deposition system Cavity deposition system prototype Surface characterization Beyond niobium 1 United We Stand Succeed JLAB ECR thin film collaboration: JLAB: L. Phillips,

More information

A New Liquid Precursor for Pure Ruthenium Depositions. J. Gatineau, C. Dussarrat

A New Liquid Precursor for Pure Ruthenium Depositions. J. Gatineau, C. Dussarrat 1.1149/1.2727414, The Electrochemical Society A New Liquid Precursor for Pure Ruthenium Depositions J. Gatineau, C. Dussarrat Air Liquide Laboratories, Wadai 28, Tsukuba city, Ibaraki Prefecture, 3-4247,

More information

Make sure the exam paper has 9 pages total (including cover page)

Make sure the exam paper has 9 pages total (including cover page) UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2010 EE143 Midterm Exam #2 Family Name First name SID Signature Solution Make sure the exam

More information

Gas and surface applications of atmospheric pressure plasmas

Gas and surface applications of atmospheric pressure plasmas Gas and surface applications of atmospheric pressure plasmas Eugen Stamate Technical University of Denmark Roskilde 4000, Denmark OUTLINE Introduction of DTU Energy Conversion and Storage Activities in

More information

2008 JINST 3 S The interface to the LHC machine. Chapter Beampipe Layout

2008 JINST 3 S The interface to the LHC machine. Chapter Beampipe Layout Chapter 3 The interface to the LHC machine 3.1 Beampipe The beampipe design is particularly delicate since the LHCb experiment is focussed on the high rapidity region, where the particle density is high.

More information

Vacuum Equipment for TCO and AR Coatings Deposition by Reactive Magnetron Sputtering

Vacuum Equipment for TCO and AR Coatings Deposition by Reactive Magnetron Sputtering Vacuum Equipment for TCO and AR Coatings Deposition by Reactive Magnetron Sputtering E. Yadin; V. Kozlov; E. Machevskis, Sidrabe, Inc., 17 Krustpils str.,riga, LV1073, Latvia. Tel: +371 7249806, Fax: +371

More information

Roman Chistyakov and Bassam Abraham Zond Inc/Zpulser LLC, Mansfield, MA

Roman Chistyakov and Bassam Abraham Zond Inc/Zpulser LLC, Mansfield, MA HIPIMS Arc-Free Reactive Sputtering of Non-conductive Films Using the ENDURA 200 mm Cluster Tool: Direct Comparison Between Pulsed DC Pinnacle Plus and HIPIMS Cyprium Roman Chistyakov and Bassam Abraham

More information

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Dr Tony Williams Gencoa Ltd, UK Victor Bellido-Gonzalez, Dr Dermot Monaghan, Dr Joseph Brindley, Robert Brown SVC 2016,

More information

A Design for an efficient cylindrical magnetron cathode with rotating magnets and optical emission incorporated

A Design for an efficient cylindrical magnetron cathode with rotating magnets and optical emission incorporated Patent on, A Design for an efficient cylindrical magnetron cathode with rotating magnets and optical emission incorporated Inventors A. Subrahmanyam, Krishna Valleti IIT Madras, Chennai, INDIA. Shrikanth

More information

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS

PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS PEAK EFFICIENCIES WITH FALLING MANUFACTURING COSTS Simple and cost-effective introduction of PERC technology into the mass production of solar cells Kerstin Strauch, Florian Schwarz, Sebastian Gatz 1 Introduction

More information

Improving coupling coefficient distribution on BAW filters manufactured on 200mm wafers

Improving coupling coefficient distribution on BAW filters manufactured on 200mm wafers Improving coupling coefficient distribution on BAW filters manufactured on 200mm wafers Sergey Mishin Advanced Modular Systems, Inc Goleta, CA/USA smishin@amssb.com Yury Oshmyansky Advanced Modular Systems,

More information

Development of Low-resistivity TiN Films using Cat Radical Sources

Development of Low-resistivity TiN Films using Cat Radical Sources Development of Low-resistivity TiN Films using Cat Radical Sources Masamichi Harada*, Yohei Ogawa*, Satoshi Toyoda* and Harunori Ushikawa** In Cu wiring processes in the 32-nm node generation or later,

More information

Technology Drivers for Plasma Prior to Wire Bonding

Technology Drivers for Plasma Prior to Wire Bonding Technology Drivers for Plasma Prior to Wire Bonding James D. Getty Nordson MARCH Concord, CA, USA info@nordsonmarch.com Technology Drivers for Plasma Prior to Wire Bonding Page 1 ABSTRACT Advanced packaging

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Thin Film Gas Sensor. Nanoelectronics and MEMS Laboratory National Electronics and Computer Technology

Thin Film Gas Sensor. Nanoelectronics and MEMS Laboratory National Electronics and Computer Technology Ion-assisted E-beam E Evaporated Thin Film Gas Sensor A. Wisitsoraat,, A. A Tuantranont,, V. V Patthanasettakul, T. Lomas,, and P. Chindaudom Nanoelectronics and MEMS Laboratory National Electronics and

More information

METHODS OF COATING FABRICATION

METHODS OF COATING FABRICATION METHODS OF COATING FABRICATION Zbigniew Grzesik http://home.agh.edu.pl/~grzesik Department of Physical Chemistry and Modelling DEFINITION The coating is the thin outer layer of the object, which physiochemical

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

THE INFLUENCE OF NITROGEN CONTENT ON THE MECHANICAL PROPERTIES OF TiN x THIN FILMS PREPARED BY REACTIVE MAGNETRON SPUTTERING

THE INFLUENCE OF NITROGEN CONTENT ON THE MECHANICAL PROPERTIES OF TiN x THIN FILMS PREPARED BY REACTIVE MAGNETRON SPUTTERING Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences Vol. 5 (54) No. 2-2012 THE INFLUENCE OF NITROGEN CONTENT ON THE MECHANICAL PROPERTIES OF TiN x THIN FILMS PREPARED BY REACTIVE

More information

AC : MICROWAVE PLASMA CLEANER DESIGN FOR SEMI- CONDUCTOR FABRICATION AND MATERIALS PROCESSING LABO- RATORY USE

AC : MICROWAVE PLASMA CLEANER DESIGN FOR SEMI- CONDUCTOR FABRICATION AND MATERIALS PROCESSING LABO- RATORY USE AC 2011-2416: MICROWAVE PLASMA CLEANER DESIGN FOR SEMI- CONDUCTOR FABRICATION AND MATERIALS PROCESSING LABO- RATORY USE Mustafa G. Guvench, University of Southern Maine Mustafa G. Guvench received M.S.

More information

Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin. Dr. Frank Schmidt

Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin. Dr. Frank Schmidt Activities in Plasma Process Technology at SENTECH Instruments GmbH, Berlin Dr. Frank Schmidt The Company Company Private company, founded 1990 80 employees ISO 9001 Location Science & Technology Park,

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Chemical Vapour Deposition: CVD Reference: Jaeger Chapter 6 & Ruska: Chapter 8 CVD - Chemical Vapour Deposition React chemicals to create a thin film

Chemical Vapour Deposition: CVD Reference: Jaeger Chapter 6 & Ruska: Chapter 8 CVD - Chemical Vapour Deposition React chemicals to create a thin film Chemical Vapour Deposition: CVD Reference: Jaeger Chapter 6 & Ruska: Chapter 8 CVD - Chemical Vapour Deposition React chemicals to create a thin film layer at the surface Typically gas phase reactions

More information

Plasma-Enhanced Chemical Vapor Deposition

Plasma-Enhanced Chemical Vapor Deposition Plasma-Enhanced Chemical Vapor Deposition Steven Glenn July 8, 2009 Thin Films Lab 4 ABSTRACT The objective of this lab was to explore lab and the Applied Materials P5000 from a different point of view.

More information

ARTICLE IN PRESS. Materials Science in Semiconductor Processing

ARTICLE IN PRESS. Materials Science in Semiconductor Processing Materials Science in Semiconductor Processing ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect Materials Science in Semiconductor Processing journal homepage: www.elsevier.com/locate/mssp High-dielectric

More information

All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to

All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to Supporting Information: Substrate preparation and SLG growth: All fabrication was performed on Si wafers with 285 nm of thermally grown oxide to aid in visual inspection of the graphene samples. Prior

More information

CHARGED PARTICLE PHYSICS BRANCH CODE 6750

CHARGED PARTICLE PHYSICS BRANCH CODE 6750 Page 1 of 6 CHARGED PARTICLE PHYSICS BRANCH CODE 6750 The Charged Particle Physics Branch performs basic and applied research on topics relevant to Navy and DoD missions with potential spin-offs to the

More information

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in Chapter 5 PROCESSING OF DEVICES A discussion of crystal growth, lithography, etching, doping, and device structures is presented in the following overview gures. SEMICONDUCTOR DEVICE PROCESSING: AN OVERVIEW

More information

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant

Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant Silicon Epitaxial CVD Want to create very sharp PN boundary grow one type layer on other in single crystal form High dopant layers on low dopant substrate Creates latch up protection for CMOS Buried Epi

More information

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED Y. H. Lin and C. Y. Liu Department of Chemical Engineering and Materials Engineering, National Central University, Jhongli,

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 3D Perspective 2 3 Fabrication

More information

NONTRADITIONAL MANUFACTURING PROCESSES

NONTRADITIONAL MANUFACTURING PROCESSES NONTRADITIONAL MANUFACTURING PROCESSES Lasers & Laser Beam Machining Basic NTM Process Groups: * Thermal NTM Processes - Laser Beam Machining (LBM) - Electron Beam Machining (EBM) - Plasma Arc Machining

More information

PRECISION OPTICAL FILTERS BY EOSS - ENHANCED OPTICAL SPUTTERING SYSTEM. Fraunhofer

PRECISION OPTICAL FILTERS BY EOSS - ENHANCED OPTICAL SPUTTERING SYSTEM. Fraunhofer PRECISION OPTICAL FILTERS BY EOSS - ENHANCED OPTICAL SPUTTERING SYSTEM EOSS ENHANCED OPTICAL SPUTTERING SYSTEM Fraunhofer IST, Braunschweig Contact: Dr. M. Vergöhl +49 531 2155 640 EOSS Coating System

More information

MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron

MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron MODEL 1051 TEM Mill A state-of-the-art ion milling and polishing system offering reliable, high performance specimen preparation. It is compact, precise, and consistently produces high-quality transmission

More information

Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation

Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation ECLOUD 10, Cornell University, Ithaca, New York USA Christina Yin Vallgren S. Calatroni, P. Chiggiato, P. Costa Pinto,

More information

P. N. LEBEDEV PHYSICAL INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES PREPRINT

P. N. LEBEDEV PHYSICAL INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES PREPRINT P. N. LEBEDEV PHYSICAL INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES PREPRINT 18 CHANNELING A.V. BAGULYA, O.D. DALKAROV, M.A. NEGODAEV, A.S. RUSETSKII, A.P. CHUBENKO, V.G. RALCHENKO, A.P. BOLSHAKOV EFFECT

More information

Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air

Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air Mikhail A. Shulepov 1, Mikhail V. Erofeev 1,2, Konstantin V. Oskomov 1, Victor F. Tarasenko 1,2* 1 Institute

More information

Utilizing Glow Discharge in Optical Emission Spectroscopy

Utilizing Glow Discharge in Optical Emission Spectroscopy Frequently Asked Questions Utilizing Glow Discharge in Optical Emission Spectroscopy Introduction For over 70 years, industries around the world have trusted LECO Corporation to deliver technologically

More information

Process, Structure and Properties of CrN Coatings deposited using Modulated Pulse Power (MPP) Sputtering

Process, Structure and Properties of CrN Coatings deposited using Modulated Pulse Power (MPP) Sputtering Process, Structure and Properties of CrN Coatings deposited using Modulated Pulse Power (MPP) Sputtering Jianliang Lin, John J. Moore, Zhili Wu, Brajendra Mishra Advanced Coatings and Surface Engineering

More information

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition Nuclear Instruments and Methods in Physics Research B 206 (2003) 357 361 www.elsevier.com/locate/nimb Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted

More information

VACUUM SYSTEM OF HIGH-ENERGY ACCELERATORS: ELECTRICAL BREAKDOWN IN VACUUM

VACUUM SYSTEM OF HIGH-ENERGY ACCELERATORS: ELECTRICAL BREAKDOWN IN VACUUM Revista Brasileira de Aplicações de Vácuo, v. 22, n. 2, 39-44, 2003. 2003 VACUUM SYSTEM OF HIGH-ENERGY ACCELERATORS: ELECTRICAL BREAKDOWN IN VACUUM Keywords: accelerator, electrical breakdown, outgassing

More information