Introduction. Our History

Size: px
Start display at page:

Download "Introduction. Our History"

Transcription

1 Management System ISO 91:28 ISO 141:24 ISO/TS 16949:29

2 Introduction Our Company ACME Electronics Corporation, a subsidiary of public listed company, USI Corporation, Taiwan is one of the world s leading manufacturers of soft ferrite products for the electronics industry. Incorporated in 1991 and listed in the Taiwan OTC Securities Market in February, 25, ACME has her headquarters in Nei-Hu District, Taipei, Taiwan and 4 manufacturing facilities in Kuan-Yin Industrial District, Taoyuan County, Taiwan; Ipoh, Perak, Malaysia; Kunshan City, Jiangsu Province and Zengcheng City, Guangdong Province in China. Our Products At ACME, we manufacture a very wide range of Manganese-Zinc and Nickel-Zinc soft ferrite products in different shapes and sizes. These products are used for the manufacture of chokes, inductors, filters, transformers, antennas and other components and devices that are applied in the communication, lighting, alternative energy, automotive, consumer and industrial electronics. ACME s products are used by leading manufacturers of these components and devices worldwide. Our History 1991 ACME Electronics Corporation, Taiwan was incorporated 1994 Built the first manufacturing facility in Kuan-Yin District, Taoyuan County, Taiwan 2 Incorporated ACME Electronics (Kunshan) Co. Ltd., China and built a modern manufacturing facility to service the market in Northern and Eastern China. This factory had been expanded and equipped with the latest machinery and equipment. It now has a capacity of 6,8 metric tonnes a year. 25 Incorporated ACME Electronics (Guangzhou) Co. Ltd., China. Located in Zengcheng City, this new and well equipped facility has a capacity of 6,3 metric tonnes a year and services the market in Southern China. Headquarter of USI Group, Taipei 29 Acquired ACME Ferrite Products Sdn. Bhd., Malaysia. Located in Ipoh, Perak, ACME Malaysia is a leading Nickel- Zinc soft ferrite manufacturer that specialises in ferrite products for the automotive industry. This facility has a capacity of 1,2 metric tonnes a year. Kuan-Yin Factory, Taiwan

3 Ferrite AGGRESSIVELY COMMITTED TO MANUFACTURING EXCELLENCE Contents Symbols and Definitions... 2 Material Characteristics... 7 Mn-Zn Ferrite Low Loss Materials:P4, P41, P42, P Wide Temperature Low Loss Materials:P45, P46, P Low Loss and High Bs Material:P49, P Low Loss Materials:P5, P51, P High Frequency Low Loss Material:P High Permeability Materials(1):A5, A62, A63, A7, A High Permeability Materials(2):A1, A12, A121, A13, A Telecom High Permeability Materials:N7, N1, A43, A THD High Permeability Material:A Telecom High Bs Material:N Sensor and Telecom Filter Materials:N4, N EMI-Suppression Materials:N5, N Ni-Zn Ferrite EMI-Suppression Materials:K7, K81, K1, K12, K15, K Automotive EMI-Suppression Material:D1C,D25,D27,D28,D3,D35,D High Bs Materials:B25, B3, B4, B45, B6, B Automotive High Bs Material:H3, H31, H4, H Rod Core Materials:H2, H3, H3A, H3B, H4, H5, H5M, H5R Wide Temperature Antenna Materials:F1, F Low µ Materials:L1, L2, L3, L4, L5, L Mg-Zn Ferrite EMI-Suppression Material:M Product Specifications Mn-Zn Ferrite EFD Cores EPC Cores... 1 CI Cores (Power Inductor) DR Cores R Cores ZT Cores I Cores SC/UT Cores ER Cores ERX Cores EPO Cores EP Cores CUT Cores POT Cores RM/LM Cores PEI Cores (Planner Core) PQ Cores EE/EEL Cores EF Cores ET Cores UU Cores RF Cores UI/UT Cores URT Cores RID Cores T Cores RH Cores Ni-Zn Ferrite R Cores SC Cores DR Cores SRI/RI Cores SDR/CM Cores RID Cores R Cores (Multi Aperture) AR Cores FC Cores I Cores (Plates) I Cores ET Cores T Cores (EMI Suppression) T Cores RH Cores

4 2 Symbols and Definitions INTRODUCTION TO FERRITES Ferrite is categorized as electroceramics with ferrimagnets properties. Ferrite exhibits ferrimagnetism due to the super exchange interaction between electrons of metal and oxygen ions. The opposite spins in ferrite results in lowering of magnetization compared to ferromagnetic metals where the spins are parallel. Due to the intrinsic atomic level interaction between oxygen and metal ions, ferrite has higher resistivity compared to ferromagnetic metals. This enables the ferrite to find application at higher frequencies and makes it technologically very valuable. The chemical formula of ferrite is generally expressed as MeFe2O4. Where Me represents a divalent metal ion. (e.g. Fe 2+, Ni 2+, Mn 2+, Mg 2+, Co 2+, Zn 2+, Cu 2+ etc). The crystal lattice of ferrite is spinel. Most important commercial derivatives of these ferrites are Zn 2+ substituted Ni and Mn ferrite represented as NiZnFe2O4 and MnZnFe2O4 respectively. Major difference among these two ferrites is in their resistivity. Ferrite Crystal: The magnetic property of ferrite is the manifestation of nature of ions and their relative lattice position. Ferrite exists in spinel lattice structure. Metal ions are located at octahedral and tetrahedral positions. Fe 2+, Ni 2+, Mn 2+ etc ions prefer to occupy the octahedral sites and Fe 3+ and Zn 2+ prefer tetrahedral sites. NiZn ferrite and MnZn ferrites has inverse spinel structure where the part of the B atoms occupies in the tetrahedral site and A atom occupy the Octahedral site. Depends on composition and process conditions such as sintering temperature and atmosphere, the lattice site occupancy changes, leading to the change in magnetic and electrical properties. This show that in ferrite manufacturing both composition and process conditions are very critical to get the required quality. Ferrimagnetism: Ferrites exhibits ferrimagnetism. This means there is net magnetic moment in molecular level as a result of electronic interaction between Metal and oxygen ions called super exchange. In a bulk ferrite, there are domains called Wiess Domains in which all these molecular magnets are aligned in one direction. Domain wall separates different domains aligned in random directions and in presence of an external magnetic field these moments can be forced to align in one direction. Some energy has to be spent for this process and the magnetization always lags behind the magnetizing field and results in a magnetization loop. It is called as B-H Loop. Flux Density Saturation mt Magnetizing Force A/m Magnetizing Force A/m Saturation Flux Density mt Oxygen B-atoms octahedral sites A-atoms tetrahedral sites

5 3 Symbols and Definitions MAGNETIC PROPERTIES Some of the important features of NiZn ferrite are described here in order to give a glimpse of the magnetic properties to our valued customer. 1. B-H HYSTERISI LOOP A non-magnetized Ferrite when subjected to an AC magnetic field creates a loop of above pattern. At very low field, the BH relation is reversible and on higher fields the relation becomes non-linear and non-reversible. Saturation magnetization (Bs) represents the saturation limit of flux density and Remanence (Br) is the residual flux even after the withdrawal of the inducing field. Coercivity (Hc) is the magnetic field required in the opposite direction to demagnetize the ferrite. The internal resistance imposed by anisotropy and other pinning center causes the delay in magnetization. The energy consumed to overcome this resistance is indicated by the area of the BH loop and is called hysterisis loss. Ferrite cores are manufactured as per customer requirements and a wide range of products are available with different sizes and shapes. Correct materials are to be selected to make finished ferrite to suit all the customer requirements. The material properties are defined on a standard toroid. These material properties are used as a guideline to manufacture the right component. 2. PERMEABILITY Most significant property of ferrite, which determines its performance, is the permeability and its response to external factors like Temperature, Frequency and Bias field. Permeability is the ratio of magnetic flux density (B) to the magnetic field causing the flux generation (H). In simple terms the B is related to H by B = µo H where µo is the permeability of vacuum, 4π x 1-7 H/m. Initial permeability of ferrite material is defined by µ = 1 ΔB µo ΔH limit H Initial permeability is measured on toroidal cores at the very low applied field. The flux density generated may be less than.1mt. Initial permeability is calculated from the measured value of inductance (L) and calculated value of core factor C1 using the formula µ = L in n H L. C µo. N 2 µo = 4π x 1-7 H/m N = Number of turns C1 = le le = the magnetic patch length Ae = the sectional core Area Ae 3. MAGNETIC FLUX DENSITY ( B ) Ferrite when subjected to a magnetizing field induce magnetic flux (Φ, Webster) and the flux per unit area is the flux density (B, Tesla). As Tesla is a larger unit, a smaller unit mt (=1-3 T) is used for all practical applications. Flux density is the product of permeability and applied field. B = µo μ H µo is the permeability of vacuum µ is the permeability of the ferrite material 4. EFFECTIVE PERMEABILITY Purposefully, air gap is introduced is the ferrite core for technical benefits. The shearing of B-H loop helps to increase the saturation limit to the core. The permeability of gapped core (µe) reduces as a function of the air gap. µ µe = µ G 1+ le 5. AMPLITUDE PERMEABILITY It is the ratio of the flux density and the applied field at higher field in the absence of DC bias field. 1 B µa = µo H 6. INCREMENTAL PERMEABILITY There are many application conditions where DC bias is applied. The incremental permeability (µδ) is that observed when and ac field is superimposed with a DC field. µδ = 1 ΔB µo ΔH under Hdc

6 4 Symbols and Definitions 7. DISACCOMMODATION FACTOR (d) This represents the time stability of permeability. The decrease in Permeability is almost proportional to the log (Time). strong magnetic field or mechanical stress can reduce Q value of ferrite. d = (µ1 - µ2) / µi log1 t2 / t1 And disaccommodation factor is defined as D. F = (µ1 - µ2) / µ i2 log1 t2 / t1 8. INDUCTANCE & INDUCTANCE FACTOR Inductance is the property of an inductor to induce emf when there is a change in current. It is also the flux linkage to unit current. The unit of inductance in Henry. L = N Φ/I Henry Where N = Number of turns I = Current in Amp. Φ = Flux in Webster Inductance is the property of a conductor or a circuit, which resist the change in current. Hence, it causes current changes to drag behind voltage changes. An inductor stores the energy in the form magnetic field. Inductance is proportional to square of number of turns and the proportionally constant is called inductance factor ( AL ) ie, L = AL N 2 OR AL = L/N 2 9. Loss angle: Magnetic loss is expressed as loss tangent (tan δ) and the contribution comes from inductive (reactive, ωls) and resistive, Rs. tan δ is the loss angle i.e., the angle between the Flux (B) and Applied field (H). tan δ = ωls / Rs There is a direct relation between loss angle and imaginary (µ") and real(µ') part of complex permeability as tan δ = µs" /µs' Loss factor is defined as the ratio of loss angle to initial permeability. This is inverse of Q- factor. 1. Q- factor: Quality factor is inverse of loss factor, tan δ/µi. NiZn ferrite is capable of giving higher Q factor at higher resistivity compared to MnZn ferrite. Q is sensitive to not only the chemical composition but the post sintered handling also. Proximity to 11. Complex permeability: In a series inductive circuit, the reactive and resistive components are related to complex permeability by: µ" = Rs / ωlo and µ' = Ls / Lo Where µ" is the imaginary component of the series complex permeability and μ is the real component of the series complex permeability. The graph below shows the behaviour of initial permeability(real and imaginery) at different frequencies. 12. Impedance: Impedance is the combined effect of capacitance, inductance, and resistance on a signal. According to Ohm s law, voltage is the product of current and resistance at a given frequency. Impedance is a measure of resistance to electrical current flow when a voltage is moved across it. Impedance is measured in ohms and is the ratio of voltage to the flow of current. For a series circuit, the Reactance is X = j ωls and Resistance is Rs then the impedance, Z = j ωls + Rs The impedance also be expressed in terms of complex permeability as Z = j ωls ( µs' - jµs" ) In low frequencies, the inductance is prominent and at higher frequencies, the Resistance. To have a high Q component, the resistance part must be low and inductive part must be high. At higher frequencies, these inductors act not as inductors but as resistors dissipating the noises in to heat and perform as a noise suppressor.

7 5 Symbols and Definitions Hence, in the selection of ferrite for EMI suppressor, the impedance in the selected noise band is important. Thus the impedance can be translated in to magnetic characteristics separating out the real and imaginary part. Another expression for impedance is Z = (R 2 + X 2 ) = ωlo (µ' 2 + jµ" 2 ) Where Lo = µo N 2 Ae/le One advantage of this equation is that the impedance is proportional to the square of the number of winding (N) for a same product. 13. Resistivity: Resistivity of Ferrites depends on its chemistry. NiZn ferrite has a resistivity of more than 1 MΩ-m and that of MnZn ferrite is in the range of 1 to 1Ω-m. Due to the higher resistivity of NiZn ferrite, eddy current losses are at minimum and makes it useful at higher frequency applications. The DC resistivities reported are measured at room temperature (25ºC). The resistivity reduces at higher frequencies as the grain boundaries get shortcircuited due to electron hoping. 14. CORE CONSTANTS For a non-uniform core, a hypothetical toroid equivalent can be calculated using: C1 = Σ l/a (mm -1 ) C2 = Σ l/a 2 (mm -3 ) And effective parameters are calculated from C1 & C2 Effective Area, Ae = C1 / C2 mm 2 Ae of ferrite is inversely proportional to saturation current and directly proportional to attenuation. Effective path length, Le = C1 2 / C2 mm Effective volume, Ve = C1 3 / C2 2 mm 3 C1 is also used to calculate inductance of a core configuration through L = 4πN2 1-9 H C1 For a toroid, C1 = (2π / h) loge (r2/r1) Where r1 = internal radius of toroid r2 h = external radius of toroid = height of toroid 15. DC bias conditions: Performance of ferrite as EMI filter under DC bias conditions is considered as one of the significant parameters of ferrite quality. Very large lossy impedance is achieved in ferrite when it is operated under bias condition creating less than the saturating magnetic field. Once saturated, the permeability becomes one (equal to that of vacuum) and this condition is not good for any ferrite applications. The bias field reduces the impedance of ferrite and best impedance is achieved in zero DC bias conditions. Technically the bias conditions are important because there are many EMI suppression applications under DC field. Hence, ferrite with higher saturation magnetization (Bs) is required to suit extreme bias conditions. ACME manufactures high Bs MnZn/NiZn ferrite material for this purpose. Increase in mass of ferrite component can also compensate this requirement. 16. Temperature dependence Permeability increases with temperature to a maximum and drops suddenly after a certain temperature. This temperature is defined as Curie Temperature (Tc). Ferrite becomes paramagnetic after this temperature due to the complete disordering of magnetic moments caused by thermal energy. Tc is normally controlled by the chemistry of ferrite. Thus each grade has its own Tc value and higher the initial permeability, lower the Tc value. Saturation flux density also decreases with temperature. This is again due to the thermal disordering of magnetic moments in ferrite. At Tc, the flux density reaches zero. The change in permeability with temperature is quantitatively expressed as Temperature coefficient of permeability (TC). Temperature factor of permeability is given by: αf = Δµi / µi 2 ΔT 17. SELF RESONANT FREQUENCY It is the frequency at which the distributed capacitance resonates with inductance. The inductor will act purely as a resistor at this condition and provide maximum impedance.

8 6 Symbols and Definitions Ferrite Manufacturing Process: Ferrite is manufactured by normal ceramic route. This involves Raw material mix in required molar ratios, calcination to get uniform physical properties, milling, compacting to the required shape, sintering and finishing. Most important factors affecting the final properties of ferrite are its chemistry and process conditions and both of these jointly control the microstructure formation, which has a major role on the magnetic and mechanical properties of ferrite. Manufacturing flow sheet RM quality Raw Material Select Raw Materials in required purity and physical properties Weighing In proportion to the mole ratio to get the required chemistry Mixing To achieve the uniformity to effective chemical reaction Calcination quality Calcination Adjust the furnace condition to get the required ferrite formation Crushing Crush the calcined material to suit further milling Particle size analysis Additives / Milling Additives for modifying magnetic properties and milling to get fine particle to control shrinkage and microstructure Binder Addition Binder in the required amount to get sufficient mechanical strength to the green body Granulometry Granulation For achieving free flowing powder, which can flow in to die part easily. Pressing To get the required size and shape. Size is adjusted according to the shrinkage of powder Sintering To achieve the required magnetic, electrical and mechanical properties for the ferrite component. Dimensions, Ferrite properties check Surface Grinding and Polishing To control the dimensions to the close tolerance Marking / Packaging

9 7 Material Characteristics (Mn-Zn Ferrite) Material Characteristics (1) Symbol Unit Measuring Conditions Low Loss Materials Freq. Flux den. Temp. P4 P41 P42 P48 Initial Permeability µ 1kHz.25mT 25 C 25 ± 25% 24 ± 25% 18 ± 25% 25 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 45 > 45 > 5 > 5 1 C > 45 > 45 > 5 > 5 Power Loss Pv KW/m 3 25kHz 2mT 25 C C kHz 2mT 25 C C kHz 1mT 25 C C kHz 5mT 25 C C Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C Remanence Brms mt 1kHz H = 12A/m 25 C C Coercivity Hc A/m 1kHz H = 12A/m 25 C C Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1.2 < 1 < 1 < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 < 2 < 2 < 2 Curie Temperature Tc C Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

10 8 Material Characteristics (Mn-Zn Ferrite) Material Characteristics (2) Material Characteristics (3) Symbol Unit Measuring Conditions Wide Temperature Low Loss Materials Freq. Flux den. Temp. P45 P46 P47 Initial Permeability µ 1kHz.25mT 25 C 31 ± 25% 33 ± 25% 3 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 5 > 45 > 5 1 C > 5 > 45 > 5 Power Loss Pv KW/m 3 25kHz 2mT 25 C 6 1 C 6 1kHz 2mT 25 C C kHz 1mT 25 C C kHz 5mT 25 C C Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C Remanence Brms mt 1kHz H = 12A/m 25 C C Coercivity Hc A/m 1kHz H = 12A/m 25 C C Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.6 < 1.2 <.6 Disaccommodation Factor DF 1-6 1kHz <.1 mt 25 C < 1 < 2 < 1 Curie Temperature Tc C Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Symbol Unit Measuring Conditions Low Loss and High Bs Materials Freq. Flux den. Temp. P49 P491 Initial Permeability µ 1kHz.25mT 25 C 17 ± 25% 15 ± 25% Power Loss Pv KW/m 3 25kHz 2mT 25 C 16 1 C 24 1kHz 2mT 25 C C kHz 5mT 25 C C Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C 46 5 Remanence Brms mt 1kHz H = 12A/m 25 C C 5 23 Coercivity Hc A/m 1kHz H = 12A/m 25 C C 7 19 Curie Temperature Tc C 1kHz <.25mT 28 3 Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

11 9 Material Characteristics (Mn-Zn Ferrite) Material Characteristics (4) Symbol Unit Measuring Conditions Low Loss Materials Freq. Flux den. Temp. P5 P51 P52 Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% 15 ± 25% 2 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 4 > 25 > 4 1 C > 4 > 25 > 4 Power Loss Pv KW/m 3 3kHz 1mT 25 C C kHz 5mT 25 C C kHz 5mT 25 C C kHz 5mT 25 C C 6 1 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C Remanence Brms mt 1kHz H = 12A/m 25 C C Coercivity Hc A/m 1kHz H = 12A/m 25 C C Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 < 1 < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 < 2 < 2 Curie Temperature Tc C Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Material Characteristics (5) Symbol Unit Measuring Conditions High Frequency Low Loss Material Freq. Flux den. Temp. P61 Initial Permeability µ 1kHz.25mT 25 C 9 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C 17 1 C 18 Power Loss Pv KW/m 3 1MHz 5mT 25 C 25 1 C 15 3MHz 1mT 25 C 5 1 C 5 3MHz 3mT 25 C 6 1 C 5 5MHz 9mT 25 C 15 1 C 17 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C 43 Remanence Brms mt 1kHz H = 12A/m 25 C 2 1 C 12 Coercivity Hc A/m 1kHz H = 12A/m 25 C 5 1 C 4 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 28 Resistivity ρ Ωm 1. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

12 1 Material Characteristics (Mn-Zn Ferrite) Material Characteristics (6) Symbol Unit Measuring Conditions High Permeability Materials Freq. Flux den. Temp. A5 A62 A63 A7 A71 Initial Permeability µi 1kHz.25mT 25 C 5 ± 25% 6 ± 25% 6 ± 25% 7 ± 25% 7 ± 25% Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C < 4 < 1 < 1 < 8 < 8 1kHz 25 C < 15 < 3 < 3 < 3 < 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C Remanence Brms mt 1kHz H = 12A/m 25 C C Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C ~ 2 1 ~ 3-1 ~ 1-1 ~ 1-1 ~ 1 Permeability 2 ~ 7 C ~ 2-1 ~ 1-1 ~ 1-1 ~ 1-1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.8 <.5 <.71 < 1.2 < 1.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 3 < 2 < 2 < 2 < 2 Curie Temperature Tc C Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Material Characteristics (7) Symbol Unit Measuring Conditions High Permeability Materials Freq. Flux den. Temp. A1 A12 A121 A13 A151 Initial Permeability µi 1kHz.25mT 25 C 1 ± 3% 1 ± 3% 12 ± 3% 12 ± 3% 15 ± 3% Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C < 1 < 1 < 1 < 8 < 1 1kHz 25 C < 6 < 6 < 6 < 4 < 11 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C Remanence Brms mt 1kHz H = 12A/m 25 C C Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C ~ ~ 1 ~ ~ 3-1 ~ 1 Permeability 2 ~ 7 C -.5 ~ 1-1 ~ ~ 1-1 ~ 1-1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 < 1 <.5 <.5 <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 < 2 < 2 < 2 < 2 Curie Temperature Tc C Resistivity ρ Ωm Density d g/cm Remark: A12: Best impedance, and permeability v. s. frequency performance for 1,μ materials. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

13 11 Material Characteristics (Mn-Zn Ferrite) Material Characteristics (8) Symbol Unit Measuring Conditions Telecom High Permeability Materials Freq. Flux den. Temp. N7 N1 A43 A61 Initial Permeability µi 1kHz.25mT 25 C 7 ± 25% 1 ± 3% 45 ± 25% 6 ± 25% -2 C > 9 Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C < 5 < 1 < 1 < 1 1kHz 25 C < 3 < 9 < 1 < 15 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C Remanence Brms mt 1kHz H = 12A/m 25 C C Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1-1 ~ 1 ~ 2 1 ~ 2 Permeability 2 ~ 7 C -1 ~ 1-1 ~ 1-1 ~ 1-1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.2 <.5 <.5 <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 < 2 < 2 < 2 Curie Temperature Tc C Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

14 12 Material Characteristics (Mn-Zn Ferrite) Material Characteristics (9) Symbol Unit Measuring Conditions THD High Permeability Material Freq. Flux den. Temp. A11 Initial Permeability µi 1kHz.25mT 25 C 1 ± 3% Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 9 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 4 1 C 22 Remanence Brms mt 1kHz H = 12A/m 25 C C 125 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 13 Resistivity ρ Ωm.15 Density d g/cm Remark: Best THD performance for 1,μ materials. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Material Characteristics (1) Symbol Unit Measuring Conditions Telecom High Bs Material Freq. Flux den. Temp. N42 Initial Permeability µi 1kHz.25mT 25 C 38 ± 25% Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C < 1.5 1kHz 25 C < 2.5 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 53 1 C 425 Remanence Brms mt 1kHz H = 12A/m 25 C 1 1 C 125 Coercivity Hc A/m 1kHz H = 12A/m 25 C 9 1 C 13 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C 7 ~ 9 Permeability 25 ~ 55 C < -4 ~ -2 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.3 Curie Temperature Tc C 1kHz <.25 mt 25 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

15 13 Material Characteristics (Mn-Zn Ferrite) Material Characteristics (11) Symbol Unit Measuring Conditions Sensor and Telecom Filter Materials Freq. Flux den. Temp. N4 N43 Initial Permeability µi 1kHz.25mT 25 C 25 ± 25% 75 ± 25% Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C < 7 < 6 1kHz 25 C < 3 < 15 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C 32 4 Remanence Brms mt 1kHz H = 12A/m 25 C C Coercivity Hc A/m 1kHz H = 12A/m 25 C C 9 21 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C < 1.3 < 2.2 Permeability 25 ~ 55 C < 1.3 < 1.8 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.6 < 2.5 (1kHz) Curie Temperature Tc C 1kHz <.25 mt Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Material Characteristics (12) Symbol Unit Measuring Conditions EMI-Suppression Materials Freq. Flux den. Temp. N5 N51 Initial Permeability µi 1kHz.25mT 25 C 2 ± 25% 45 ± 25% Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C < kHz 25 C < 23 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C Remanence Brms mt 1kHz H = 12A/m 25 C C Coercivity Hc A/m 1kHz H = 12A/m 25 C 7 1 C 32 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C < 1.1 < 15 Permeability 25 ~ 55 C < 5.8 < 15 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.36 Curie Temperature Tc C 1kHz <.25 mt Resistivity ρ Ωm 14 1 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

16 14 Material Characteristics (Ni-Zn Ferrite) Material Characteristics (13) Symbol Unit Measuring Conditions EMI-Suppression Materials Freq. Flux den. Temp. K7 K81 K1 K12 K15 K2 Initial Permeability µi 1kHz.25mT 25 C 7 ± 25% 8 ± 25% 1 ± 25% 12 ± 25% 15 ± 25% 2 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C H = 12A/m Remanence Brms mt 1kHz H = 4A/m 25 C H = 12A/m Coercivity Hc A/m 1kHz H = 4A/m 25 C H = 12A/m Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C Permeability Curie Temperature Tc C Resistivity ρ Ωm > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Material Characteristics (14) Symbol Unit Measuring Conditions Automotive EMI-Suppression Materials Freq. Flux den. Temp. D1C D25 D27 D28 D3 D35 D4 Initial Permeability µi 1kHz.25mT 25 C 35 ± 25% 5 ± 25% 7 ± 25% 8 ± 25% 1 ± 25% 11 ± 25% 2 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C H = 12A/m Remanence Brms mt 1kHz H = 4A/m 25 C H = 12A/m Coercivity Hc A/m 1kHz H = 4A/m 25 C H = 12A/m 22 8 Relative Loss Factor tanδ/µi 1-6.1MHz <.25mT 25 C MHz Temperature Factor of αf 1-6 / C 1kHz <.25mT 2 ~ 8 C Permeability -5 ~ 8 C 1.5 Curie Temperature Tc C Resistivity ρ Ωm > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

17 15 Material Characteristics (Ni-Zn Ferrite) Material Characteristics (15) Symbol Unit Measuring Conditions High Bs Materials Freq. Flux den. Temp. B25 B3 B4 B45 B6 B9 Initial Permeability µi 1kHz.25mT 25 C 25 ± 25% 3 ± 25% 4 ± 25% 45 ± 25% 6 ± 25% 9 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C Remanence Brms mt 1kHz H = 4A/m 25 C Coercivity Hc A/m 1kHz H = 4A/m 25 C Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C Permeability Curie Temperature Tc C Resistivity ρ Ωm > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Material Characteristics (16) Symbol Unit Measuring Conditions Automotive High Bs Materials Freq. Flux den. Temp. H3 H31 H4 H5 Initial Permeability µi 1kHz.25mT 25 C 3 ± 25% 3 ± 25% 4 ± 25% 5 ± 25% Saturation Flux Density Bms mt 1kHz H =4A/m 25 C Remanence Brms mt 1kHz H = 4A/m 25 C Coercivity Hc A/m 1kHz H = 4A/m 25 C Relative Loss Factor tanδ/µi 1-6.1MHz <.25mT 25 C 3.4MHz 25 1MHz 35 3 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C ~ 5 Permeability Curie Temperature Tc C Resistivity ρ Ωm > 1 6 > 1 6 > 1 6 > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. H3=A3 ; H31=A31 ; H4=A4 ; H5=A5

18 16 Material Characteristics (Ni-Zn Ferrite) Material Characteristics (17) Symbol Unit Measuring Conditions Rod Core Materials Freq. Flux den. Temp. H2 H3 H3A H3B H4 H5 H5M H5R Initial Permeability µi 1kHz.25mT 25 C 5 ± 25% 1 ± 25% 125 ± 25% 15 ± 25% 3 ± 25% 25 ± 25% 23 ± 25% 2 ± 25% Relative Loss Factor tanδ/µi 1-6 1kHz 25 C Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C C Remanence Brms mt 1kHz H = 4A/m 25 C C Coercivity Hc A/m 1kHz H = 4A/m 25 C C Temperature Factor of αf 1-6 / C 2 ~ 8 C Permeability Curie Temperature Tc C Resistivity ρ Ωm Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

19 17 Material Characteristics (Ni-Zn Ferrite) Material Characteristics (18) Symbol Unit Measuring Conditions Wide Temperature Antenna Materials Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Freq. Flux den. Temp. F1 F52 Initial Permeability µi 1kHz.25mT 25 C 1 ± 25% 5 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C Remanence Brms mt 1kHz H = 4A/m 25 C Coercivity Hc A/m 1kHz H = 4A/m 25 C 22 7 Relative Loss Factor tanδ/µi 1-6.1MHz <.25mT 25 C 2 1MHz 55 Temperature Factor of αf 1-6 / C 1kHz <.25mT 2 ~ 6 C 1~2 Permeability 2 ~ 8 C 35 Curie Temperature Tc C Resistivity ρ Ωm > 1 6 > 1 6 Density d g/cm Material Characteristics (19) Symbol Unit Measuring Conditions Low µ Materials Freq. Flux den. Temp. L1 L2 L3 L4 L5 L6 Initial Permeability µi 1kHz.25mT 25 C 15 ± 25% 6 ± 25% 2 ± 25% 5 ± 25% 1 ± 25% 14 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C * * Remanence Brms mt 1kHz H = 4A/m 25 C * * Coercivity Hc A/m 1kHz H = 4A/m 25 C * * Relative Loss Factor tanδ/µi 1-6 1MHz <.25mT 25 C 18** ** 77 Curie Temperature Tc C Resistivity ρ Ωm > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 > 1 6 Density d g/cm * Measuring Conditions H=8A/m ** Measuring Conditions Freq.=1KHz Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

20 18 Material Characteristics (Mg-Zn Ferrite) Material Characteristics (2) Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. M8 Initial Permeability µi 1kHz.25mT 25 C 8 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 315 Remanence Brms mt 1kHz H = 4A/m 25 C 215 Coercivity Hc A/m 1kHz H = 4A/m 25 C 17 Relative Loss Factor tanδ/µi 1-6 1kHz <.25mT 25 C 19 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 1 Permeability Curie Temperature Tc C 14 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

21 19 Material Characteristics-P4 Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P4 Initial Permeability µ 1kHz.25mT 25 C 25 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 45 1 C > 45 Power Loss Pv KW/m 3 25kHz 2mT 25 C 15 1 C 55 1kHz 2mT 25 C 7 1 C 45 3kHz 1mT 25 C 66 1 C 43 5kHz 5mT 25 C 38 1 C 33 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 48 1 C 38 Remanence Brms mt 1kHz H = 12A/m 25 C 15 1 C 85 Coercivity Hc A/m 1kHz H = 12A/m 25 C 14 1 C 9 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 22 Resistivity ρ Ωm 5.5 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size KHz 3KHz 2KHz 1KHz 5KHz 25KHz 1 Pcv =K1 * f kf * B kb at 1 C K1 =2.73*1-8 kf =1.75 kb = mT,1KHz 5 4 1mT,3KHz 3 2 2mT,25KHz C 4 1 C 3 25 C C C

22 2 Material Characteristics-P41 Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P41 Initial Permeability µ 1kHz.25mT 25 C 24 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 45 1 C > 45 Power Loss Pv KW/m 3 25kHz 2mT 25 C C 5 1kHz 2mT 25 C 65 1 C 35 3kHz 1mT 25 C 82 1 C 5 5kHz 5mT 25 C 4 1 C 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C 395 Remanence Brms mt 1kHz H = 12A/m 25 C C 6 Coercivity Hc A/m 1kHz H = 12A/m 25 C 13 1 C 6 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 23 Resistivity ρ Ωm 4. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Power Loss V.S. Temperature/Flux Density/Frequency KHz 1KHz 5KHz 25KHz 5KHz Pcv =K1 * f kf * B kb at 1 C 1 K1 =1.61*1-8 3KHz kf =2. kb = mT,3KHz 6 5 2mT,1KHz mT,25KHz C 5 1 C 4 25 C C C

23 21 Material Characteristics-P42 Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P42 Initial Permeability µ 1kHz.25mT 25 C 18 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 5 1 C > 5 Power Loss Pv KW/m 3 25kHz 2mT 25 C C 5 1kHz 2mT 25 C 75 1 C 35 3kHz 1mT 25 C 9 1 C 5 5kHz 5mT 25 C 45 1 C 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 52 1 C 42 Remanence Brms mt 1kHz H = 12A/m 25 C 25 1 C 6 Coercivity Hc A/m 1kHz H = 12A/m 25 C 13 1 C 8 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 24 Resistivity ρ Ωm 8. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Power Loss V.S. Temperature/Flux Density/Frequency KHz 2KHz 1KHz 7KHz Pcv =K1 5KHz * f kf * B kb at 1 C 1 K1 =2.75*1-8 3KHz kf =2.18 kb = mT,3KHz 2mT,1KHz 2mT,25KHz C 5 1 C 4 25 C C C

24 22 Material Characteristics-P48 Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P48 Initial Permeability µ 1kHz.25mT 25 C 25 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 5 1 C > 5 Power Loss Pv KW/m 3 25kHz 2mT 25 C 1 C 1kHz 2mT 25 C 55 1 C 25 3kHz 1mT 25 C 5 1 C 3 5kHz 5mT 25 C 25 1 C 2 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C 41 Remanence Brms mt 1kHz H = 12A/m 25 C 15 1 C 3 Coercivity Hc A/m 1kHz H = 12A/m 25 C 13 1 C 6 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 22 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Power Loss V.S. Temperature/Flux Density/Frequency KHz 3KHz 2KHz 1KHz 5KHz 25KHz Pcv =K1 * f kf * B kb at 1 C K1 =7.11*1-11 kf =2.13 kb = Power Loss V.S. Temperature C 5 1 C 4 25 C B (mt) Power Loss (KW/m 3 ) mT,3KHz 4 3 2mT,1KHz 2 1mT,2KHz Test Core: T25*15*1 Test Core: T25*15*1 Temperature (ºC) Saturation Flux Density V.S. Magnetic Field C C H (A/m)

25 23 Material Characteristics-P45 Wide Temperature Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P45 Initial Permeability µ 1kHz.25mT 25 C 31 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 5 Power Loss Pv KW/m 3 25kHz 2mT 25 C 1 C > 5 1 C 1kHz 2mT 25 C 36 1 C 26 3kHz 1mT 25 C 35 1 C 3 5kHz 5mT 25 C 2 1 C 2 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 53 1 C 45 Remanence Brms mt 1kHz H = 12A/m 25 C 15 1 C 65 Coercivity Hc A/m 1kHz H = 12A/m 25 C 14 1 C 9 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.6 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 1 Curie Temperature Tc C 215 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Test Core: T25*15*1 Complex Permeability V.S. Frequency Frequency (khz) Power Loss V.S. Temperature/Flux Density/Frequency KHz Pcv =K1 * f kf * B kb at 1 C 1 K1 =8.3*1 3KHz -9 kf =2.1 kb = Bm (mt) 2KHz 1KHz 5KHz 25KHz 1 Initial Permeability V.S. Temperature 6 Power Loss V.S. Temperature Test Core: T25*15*1 Test Core: T25*15*1 Temperature (ºC) Amplitude Permeability V.S. Flux Density (Bm) C C 12 C Bm (mt) B (mt) Power Loss (KW/m 3 ) 5 4 1mT,3KHz 3 2mT,1KHz 2 5mT,5KHz Test Core: T25*15*1 Test Core: T25*15*1 Temperature (ºC) Saturation Flux Density V.S. Magnetic Field C C H (A/m)

26 24 Material Characteristics-P46 Wide Temperature Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P46 Initial Permeability µ 1kHz.25mT 25 C 33 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 45 1 C > 45 Power Loss Pv KW/m 3 25kHz 2mT 25 C 6 1 C 6 1kHz 2mT 25 C 4 1 C 4 3kHz 1mT 25 C 4 1 C 4 5kHz 5mT 25 C 23 1 C 23 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 48 1 C 37 Remanence Brms mt 1kHz H = 12A/m 25 C 1 1 C 6 Coercivity Hc A/m 1kHz H = 12A/m 25 C 8 1 C 6 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 2 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz) Power Loss V.S. Temperature/Flux Density/Frequency KHz 3KHz 2KHz Bm (mt) 1KHz 5KHz 25KHz Pcv =K1 * f kf * B kb at 1 C K1 =2.87*1-8 kf =1.98 kb = Initial Permeability V.S. Temperature 6 Power Loss V.S. Temperature Test Core: T25*15*1 Test Core: T25*15*1 Temperature (ºC) Amplitude Permeability V.S. Flux Density (Bm) C 5 6 C 4 1 C Bm (mt) B (mt) Power Loss (KW/m 3 ) 5 1mT,3KHz 4 2mT,1KHz 3 2 5mT,5KHz 1 2mT,25KHz Test Core: T25*15*1 Test Core: T25*15*1 Temperature (ºC) Saturation Flux Density V.S. Magnetic Field C C H (A/m)

27 25 Material Characteristics-P47 Wide Temperature Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P47 Initial Permeability µ 1kHz.25mT 25 C 3 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 5 Power Loss Pv KW/m 3 25kHz 2mT 25 C 1 C > 5 1 C 1kHz 2mT 25 C 4 1 C 35 3kHz 1mT 25 C 35 1 C 35 5kHz 5mT 25 C 23 1 C 23 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 52 1 C 42 Remanence Brms mt 1kHz H = 12A/m 25 C 1 1 C 7 Coercivity Hc A/m 1kHz H = 12A/m 25 C 11 1 C 8 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.6 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 1 Curie Temperature Tc C 22 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Test Core: T25*15*1 Complex Permeability V.S. Frequency Frequency (khz) Power Loss V.S. Temperature/Flux Density/Frequency KHz 1 7KHz Pcv =K1 * f kf * B kb at 1 C 5KHz K1 =1.31*1-8 kf =2.2 kb =2.47 3KHz Bm (mt) 2KHz 1KHz 1 Initial Permeability V.S. Temperature 6 Power Loss V.S. Temperature Test Core: T25*15* Test Core: T25*15*1 Temperature (ºC) Amplitude Permeability V.S. Flux Density (Bm) Bm (mt) 1 C 25 C 6 C B (mt) Power Loss (KW/m 3 ) 5 4 2mT,1KHz 3 1mT,3KHz 2 1 5mT,5KHz Test Core: T25*15*1 Test Core: T25*15*1 Temperature (ºC) Saturation Flux Density V.S. Magnetic Field C C H (A/m)

28 26 Material Characteristics-P49 Symbol Unit Measuring Conditions Low Loss and High Bs Material Freq. Flux den. Temp. P49 Initial Permeability µ 1kHz.25mT 25 C 17 ± 25% Power Loss Pv KW/m 3 1kHz 2mT 25 C 8 1 C KHz 5KHz 25KHz 5kHz 5mT 25 C 45 1 C 22 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 54 1 C KHz 1 3KHz Pcv =K1 * f kf * B kb at 1 C K1 =2.78*1-8 2KHz kf =1.71 kb = Remanence Brms mt 1kHz H = 12A/m 25 C 3 1 C 5 Coercivity Hc A/m 1kHz H = 12A/m 25 C 13 1kHz 1 C 7 Curie Temperature Tc C 1kHz <.25mT 28 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Power Loss V.S. Temperature mT,3KHz 2mT,1KHz 5 4 1mT,2KHz 3 5mT,5KHz Temperature (ºC) C C

29 27 Material Characteristics-P491 Symbol Unit Measuring Conditions Low Loss and High Bs Material Freq. Flux den. Temp. P491 Initial Permeability µ 1kHz.25mT 25 C 15 ± 25% Power Loss Pv KW/m 3 25kHz 2mT 25 C 16 1 C KHz 5KHz 25KHz 1kHz 2mT 25 C C kHz 5mT 25 C C 554 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 6 1 5KHz 3KHz 2KHz Pcv =K1 * f kf * B kb at 1 C 1 K1 =7.85*1-6 kf =1.36 kb = C 5 Remanence Brms mt 1kHz H = 12A/m 25 C 15 1 C 23 Coercivity Hc A/m 1kHz H = 12A/m 25 C 22 1kHz 1 C 19 Curie Temperature Tc C 1kHz <.25mT 3 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Power Loss V.S. Temperature Temperature (ºC) 2mT,1KHz 5mT,5KHz 2mT,25KHz C 5 1 C Complex Permeability V.S. Frequency Frequency (khz)

30 28 Material Characteristics-P5 Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P5 Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 4 1 C > 4 Power Loss Pv KW/m 3 3kHz 1mT 25 C 6 1 C 45 5kHz 5mT 25 C 22 1 C 25 7kHz 5mT 25 C 6 1 C 55 1kHz 5mT 25 C 1 C Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 47 1 C 35 Remanence Brms mt 1kHz H = 12A/m 25 C 15 1 C 8 Coercivity Hc A/m 1kHz H = 12A/m 25 C 17 1 C 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 22 Resistivity ρ Ωm 6.4 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Test Core: T25*15*1 Complex Permeability V.S. Frequency Frequency (khz) Power Loss V.S. Temperature/Flux Density/Frequency KHz 7KHz 5KHz 4KHz 3KHz Bm (mt) 2KHz 1KHz Pcv =K1 * f kf * B kb at 1 C K1 =3.24*1-9 kf =2.16 kb = Test Core: T25*15* Test Core: T25*15*1 Initial Permeability V.S. Temperature Temperature (ºC) Amplitude Permeability V.S. Flux Density (Bm) 1 C 6 C 25 C Bm (mt) B (mt) Power Loss (KW/m 3 ) Test Core: T25*15*1 Test Core: T25*15*1 Power Loss V.S. Temperature mT,1KHz 4 1mT,3KHz mT,5KHz Temperature (ºC) Saturation Flux Density V.S. Magnetic Field C C H (A/m)

31 29 Material Characteristics-P51 Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P51 Initial Permeability µ 1kHz.25mT 25 C 15 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 25 1 C > 25 Power Loss Pv KW/m 3 3kHz 1mT 25 C 41 1 C 31 5kHz 5mT 25 C 2 1 C 1 7kHz 5mT 25 C 3 1 C 25 1kHz 5mT 25 C 6 1 C 6 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 49 1 C 4 Remanence Brms mt 1kHz H = 12A/m 25 C 25 1 C 13 Coercivity Hc A/m 1kHz H = 12A/m 25 C 35 1 C 27 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 25 Resistivity ρ Ωm 12. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. Power Loss (KW/m 3 ) Test Core: T25*15*1 Complex Permeability V.S. Frequency Frequency (khz) Power Loss V.S. Temperature/Flux Density/Frequency KHz Pcv =K1 * f kf * B kb at 1 C 1 7KHz K1 =3.71*1-8 5KHz kf =1.19 4KHz kb = Bm (mt) 3KHz 2KHz 1KHz Test Core: T25*15* Test Core: T25*15*1 Initial Permeability V.S. Temperature Temperature (ºC) Amplitude Permeability V.S. Flux Density (Bm) 25 C 6 C 1 C Bm (mt) B (mt) Power Loss (KW/m 3 ) Test Core: T25*15*1 Test Core: T25*15*1 Power Loss V.S. Temperature mT,1KHz mT,7KHz 5mT,5KHz 5mT,4KHz Temperature (ºC) Saturation Flux Density V.S. Magnetic Field C C H (A/m)

32 3 Material Characteristics-P52 Symbol Unit Measuring Conditions Low Loss Material Freq. Flux den. Temp. P52 Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C > 4 1 C > 4 Power Loss Pv KW/m 3 3kHz 1mT 25 C 51 1 C 45 5kHz 5mT 25 C 21 1 C 14 7kHz 5mT 25 C 41 1 C 4 1kHz 5mT 25 C 1 1 C 1 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 5 1 C 4 Remanence Brms mt 1kHz H = 12A/m 25 C 19 1 C 1 Coercivity Hc A/m 1kHz H = 12A/m 25 C 21 1 C 18 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 25 Resistivity ρ Ωm 6.5 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

33 31 Material Characteristics-P61 Symbol Unit Measuring Conditions Freq. Flux den. Temp. P61 Initial Permeability µ 1kHz.25mT 25 C 9 ± 25% Amplitude Permeability µa 25kHz 2mT 25 C 17 1 C 18 Power Loss Pv KW/m 3 1MHz 5mT 25 C 25 1 C 15 3MHz 1mT 25 C 5 1 C 5 3MHz 3mT 25 C 6 1 C 5 5MHz 9mT 25 C 15 1 C 17 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C 43 Remanence Brms mt 1kHz H = 12A/m 25 C 2 1 C 12 Coercivity Hc A/m 1kHz H = 12A/m 25 C 5 1 C 4 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 28 Resistivity ρ Ωm 1. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. High Frequency Low Loss Material Power Loss (KW/m 3 ) Test Core: T25*15*1 Complex Permeability V.S. Frequency Frequency (khz) Power Loss V.S. Temperature/Flux Density/Frequency MHz Pcv =K1 * f kf * B kb at 1 C K1 =3.86*1-1 kf =2.14 3MHz kb = Test Core: T13.4*6.7*5.6 Bm (mt) 2MHz 1MHz 7KHz 5KHz Test Core: T25*15*1 Test Core: T25*15*1 Initial Permeability V.S. Temperature Temperature (ºC) Amplitude Permeability V.S. Flux Density (Bm) C C Bm (mt) B (mt) Power Loss (KW/m 3 ) Test Core: T13.4*6.7*5.6 Test Core: T25*15*1 Power Loss V.S. Temperature MHz,3mT MHz,5mT MHz,9mT 1 5 3MHz,1mT Temperature (ºC) Saturation Flux Density V.S. Magnetic Field C C H (A/m)

34 32 Material Characteristics-A5 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A5 Initial Permeability µ 1kHz.25mT 25 C 5 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 4 1kHz 25 C < 15 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 44 1 C 3 Remanence Brms mt 1kHz H = 12A/m 25 C 8 1 C 9 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C ~ 2 Permeability 2 ~ 7 C ~ 2 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.8 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 3 Curie Temperature Tc C 14 Resistivity ρ Ωm.2 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T25*15*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz)

35 33 Material Characteristics-A62 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A62 Initial Permeability µ 1kHz.25mT 25 C 6 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 46 1 C 32 Remanence Brms mt 1kHz H = 12A/m 25 C 1 1 C 8 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C 1 ~ 3 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 16 Resistivity ρ Ωm.2 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T25*15*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz)

36 34 Material Characteristics-A63 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A63 Initial Permeability µ 1kHz.25mT 25 C 6 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 45 1 C 28 Remanence Brms mt 1kHz H = 12A/m 25 C 29 1 C 18 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.71 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 15 Resistivity ρ Ωm.2 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T13.4*6.7* Test Core: T13.4*6.7*5.6 Frequency (khz) Saturation Flux Density V.S. Magnetic Field H (A/m) 25 C 1 C Test Core: T13.4*6.7*5.6 Initial Permeability V.S. Temperature Temperature (ºC) 1 5 Complex Permeability V.S. Frequency Test Core: T13.4*6.7*5.6 Frequency (khz)

37 35 Material Characteristics-A7 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A7 Initial Permeability µ 1kHz.25mT 25 C 7 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 8 1kHz 25 C < 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 4 1 C 2 Remanence Brms mt 1kHz H = 12A/m 25 C 15 1 C 11 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 13 Resistivity ρ Ωm.35 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

38 36 Material Characteristics-A71 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A71 Initial Permeability µ 1kHz.25mT 25 C 7 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 8 1kHz 25 C < 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 44 1 C 28 Remanence Brms mt 1kHz H = 12A/m 25 C 8 1 C 6 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 145 Resistivity ρ Ωm.35 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T25*15*1 Temperature (ºC) 1 5 Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz)

39 37 Material Characteristics-A1 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A1 Initial Permeability µ 1kHz.25mT 25 C 1 ± 3% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 6 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 41 1 C 21 Remanence Brms mt 1kHz H = 12A/m 25 C 14 1 C 11 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C ~ 1.5 Permeability 2 ~ 7 C -.5 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 13 Resistivity ρ Ωm.15 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Test Core: T25*15*1 Initial Permeability V.S. Temperature Temperature (ºC) 1 5 Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz)

40 38 Material Characteristics-A12 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A12 Initial Permeability µ 1kHz.25mT 25 C 1 ± 3% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 6 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 38 1 C 18 Remanence Brms mt 1kHz H = 12A/m 25 C 95 1 C 75 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 1 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 12 Resistivity ρ Ωm.15 Density d g/cm Remark: Best impedance, and permeability v. s. frequency performance for 1,µ materials. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Test Core: T25*15*1 Initial Permeability V.S. Temperature Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz)

41 39 Material Characteristics-A121 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A121 Initial Permeability µ 1kHz.25mT 25 C 12 ± 3% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 6 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 38 1 C 18 Remanence Brms mt 1kHz H = 12A/m 25 C 13 1 C 11 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C ~ 1.5 Permeability 2 ~ 7 C -.5 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 11 Resistivity ρ Ωm.12 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T13.4*6.7* Test Core: T13.4*6.7*5.6 Frequency (khz) Saturation Flux Density V.S. Magnetic Field H (A/m) 25 C 1 C Test Core: T13.4*6.7*5.6 Initial Permeability V.S. Temperature Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T13.4*6.7*5.6 Frequency (khz)

42 4 Material Characteristics-A13 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A13 Initial Permeability µ 1kHz.25mT 25 C 12 ± 3% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 8 1kHz 25 C < 4 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 4 1 C 2 Remanence Brms mt 1kHz H = 12A/m 25 C 12 1 C 65 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C 1 ~ 3 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 125 Resistivity ρ Ωm.15 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T25*15*1 Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz)

43 41 Material Characteristics-A151 Symbol Unit Measuring Conditions High Permeability Material Freq. Flux den. Temp. A151 Initial Permeability µ 1kHz.25mT 25 C 15 ± 3% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 11 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 4 1 C 17 Remanence Brms mt 1kHz H = 12A/m 25 C 22 1 C 1 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 11 Resistivity ρ Ωm.1 Density d g/cm 3 5. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T13.4*6.7* Test Core: T13.4*6.7*5.6 Frequency (khz) Saturation Flux Density V.S. Magnetic Field H (A/m) 25 C 1 C Initial Permeability V.S. Temperature Test Core: T13.4*6.7* Complex Permeability V.S. Frequency Test Core: T13.4*6.7*5.6 Frequency (khz)

44 42 Material Characteristics-N7 Symbol Unit Measuring Conditions Telecom High Permeability Material Freq. Flux den. Temp. N7 Initial Permeability µ 1kHz.25mT 25 C 7 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 5 1kHz 25 C < 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 4 1 C 22 Remanence Brms mt 1kHz H = 12A/m 25 C 7 1 C 6 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 13 Resistivity ρ Ωm.15 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Initial Permeability V.S. Temperature THD(dB) B (mt) Loss Factor* Test Core: T13.4*6.7* Test Core: T13.4*6.7*5.6 Frequency (khz) Saturation Flux Density V.S. Magnetic Field H (A/m) THD V.S. Temperature 25 C 1 C Test Core: T13.4*6.7* Test Core EP13(L), 5kHz 3Vp, 1Ω+1Ω Temperature(ºC) Complex Permeability V.S. Frequency Test Core: T13.4*6.7*5.6 Frequency (khz)

45 43 Material Characteristics-N1 Symbol Unit Measuring Conditions Telecom High Permeability Material Freq. Flux den. Temp. N1 Initial Permeability µ 1kHz.25mT 25 C 1 ± 3% Loss Factor V.S. Frequency -2 C > 9 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 9 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 38 1 C 16 Remanence Brms mt 1kHz H = 12A/m 25 C 16 1 C 11 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 1 Resistivity ρ Ωm.12 Density d g/cm 3 5. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T13.4*6.7*5.6 Test Core: T13.4*6.7*5.6 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T13.4*6.7* Complex Permeability V.S. Frequency Test Core: T13.4*6.7*5.6 Frequency (khz)

46 44 Material Characteristics-A43 Symbol Unit Measuring Conditions Telecom High Permeability Material Freq. Flux den. Temp. A43 Initial Permeability µ 1kHz.25mT 25 C 45 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 1 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 46 1 C 3 Remanence Brms mt 1kHz H = 12A/m 25 C 65 1 C 6 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C 1 ~ 2 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 16 Resistivity ρ Ωm.2 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T13.4*6.7*5.6 Test Core: T13.4*6.7*5.6 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 25 Initial Permeability V.S. Temperature 5 Initial Permeability V.S. Field Strength C C 7 C C C Test Core: T13.4*6.7* Test Core: T3.5*1.5*2.6 Field Strength (Oe) Complex Permeability V.S. Frequency Test Core: T13.4*6.7*5.6 Frequency (khz)

47 45 Material Characteristics-A61 Symbol Unit Measuring Conditions Telecom High Permeability Material Freq. Flux den. Temp. A61 Initial Permeability µ 1kHz.25mT 25 C 6 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 15 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 46 1 C 3 Remanence Brms mt 1kHz H = 12A/m 25 C 65 1 C 6 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C 1 ~ 2 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.5 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 16 Resistivity ρ Ωm.2 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

48 46 Material Characteristics-A11 Symbol Unit Measuring Conditions THD High Permeability Material Freq. Flux den. Temp. A11 Initial Permeability µ 1kHz.25mT 25 C 1 ± 3% Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1 1kHz 25 C < 9 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 4 1 C 22 Remanence Brms mt 1kHz H = 12A/m 25 C C 125 Temperature Factor of αf 1-6 / C 1kHz <.25 mt ~ 2 C -1 ~ 1 Permeability 2 ~ 7 C -1 ~ 1 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.2 Disaccommodation Factor DF 1-6 1kHz <.25 mt 25 C < 2 Curie Temperature Tc C 13 Resistivity ρ Ωm.15 Density d g/cm Remark: Best THD performance for 1,µ materials. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

49 47 Material Characteristics-N42 Symbol Unit Measuring Conditions Telecom High Bs Material Freq. Flux den. Temp. N42 Initial Permeability µ 1kHz.25mT 25 C 38 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 1.5 1kHz 25 C < 2.5 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 53 1 C 425 Remanence Brms mt 1kHz H = 12A/m 25 C 1 1 C 125 Coercivity Hc A/m 1kHz H = 12A/m 25 C 9 1 C 13 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C 7 ~ 9 Permeability 25 ~ 55 C < -4 ~ -2 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.3 Curie Temperature Tc C 1kHz <.25 mt 25 Resistivity ρ Ωm 5. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T25*15*1 1 5 Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz)

50 48 Material Characteristics-N4 Symbol Unit Measuring Conditions Senser and Telecom Filter Material Freq. Flux den. Temp. N4 Initial Permeability µ 1kHz.25mT 25 C 25 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 7 1kHz 25 C < 3 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 45 1 C 32 Remanence Brms mt 1kHz H = 12A/m 25 C 18 1 C 15 Coercivity Hc A/m 1kHz H = 12A/m 25 C 14 1 C 9 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C < 1.3 Permeability 25 ~ 55 C < 1.3 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.6 Curie Temperature Tc C 1kHz <.25 mt 17 Resistivity ρ Ωm 7.5 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T25*15*1 Test Core: T25*15*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T25*15*1 Complex Permeability V.S. Frequency Test Core: T25*15*1 Frequency (khz) 1 5

51 49 Material Characteristics-N43 Symbol Unit Measuring Conditions Senser and Telecom Filter Material Freq. Flux den. Temp. N43 Initial Permeability µ 1kHz.25mT 25 C 75 ± 25% Loss Factor V.S. Frequency Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < 6 1kHz 25 C < 15 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 49 1 C 4 Remanence Brms mt 1kHz H = 12A/m 25 C 4 1 C 325 Coercivity Hc A/m 1kHz H = 12A/m 25 C 25 1 C 21 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C < 2.2 Permeability 25 ~ 55 C < 1.8 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C < 2.5 (1kHz) Curie Temperature Tc C 1kHz <.25 mt 25 Resistivity ρ Ωm 2. Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T13.4*6.7*5.6 Test Core: T13.4*6.7*5.6 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T13.4*6.7* Complex Permeability V.S. Frequency Test Core: T13.4*6.7*5.6 Frequency (khz)

52 5 Material Characteristics-N5 Symbol Unit Measuring Conditions Freq. Flux den. Temp. N5 Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C < kHz 25 C < 23 Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 37 1 C 285 Remanence Brms mt 1kHz H = 12A/m 25 C 24 Coercivity Hc A/m 1kHz H = 12A/m 25 C 1 C 14 1 C EMI-Suppression Material Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C < 1.1 Permeability 25 ~ 55 C < 5.8 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C <.36 Curie Temperature Tc C 1kHz <.25 mt 13 Resistivity ρ Ωm 14 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

53 51 Material Characteristics-N51 Symbol Unit Measuring Conditions Freq. Flux den. Temp. N51 Initial Permeability µ 1kHz.25mT 25 C 45 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 1kHz 25 C Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C C 34 Remanence Brms mt 1kHz H = 12A/m 25 C C 25 Coercivity Hc A/m 1kHz H = 12A/m 25 C 7 1 C 32 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 5 ~ 25 C < 15 Permeability 25 ~ 55 C < 15 Hysteresis Material Constant ηb 1-6 /mt 1kHz mT 25 C EMI-Suppression Material Curie Temperature Tc C 1kHz <.25 mt 22 Resistivity ρ Ωm 1 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

54 52 Material Characteristics-K7 Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. K7 Initial Permeability µ 1kHz.25mT 25 C 7 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 35 Remanence Brms mt 1kHz H = 4A/m 25 C 195 Coercivity Hc A/m 1kHz H = 4A/m 25 C 45 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 18 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 8 Permeability Curie Temperature Tc C 18 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

55 53 Material Characteristics-K81 Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. K81 Loss Factor V.S. Frequency IInitial Permeability µ 1kHz.25mT 25 C 8 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 41 Remanence Brms mt 1kHz H = 4A/m 25 C 272 Coercivity Hc A/m 1kHz H = 4A/m 25 C 21 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 17 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 8 Permeability Curie Temperature Tc C 19 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 5 Initial Permeability V.S. Temperature 6 Power Loss V.S. Temperature Power Loss (KW/m 3 ) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

56 54 Material Characteristics-K1 Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. K1 Initial Permeability µ 1kHz.25mT 25 C 1 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 355 Remanence Brms mt 1kHz H = 4A/m 25 C 25 Coercivity Hc A/m 1kHz H = 4A/m 25 C 19 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 11 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 8 Permeability Curie Temperature Tc C 16 Resistivity ρ Ωm > 1 6 Density d g/cm B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field 4 25 C C 2 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 5 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

57 55 Material Characteristics-K12 Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. K12 Loss Factor V.S. Frequency IInitial Permeability µ 1kHz.25mT 25 C 12 ± 25% Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 355 Remanence Brms mt 1kHz H = 12A/m 25 C 25 Coercivity Hc A/m 1kHz H = 12A/m 25 C 12 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 13 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 11 Permeability Curie Temperature Tc C 16 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 5 Initial Permeability V.S. Temperature 6 Power Loss V.S. Temperature Power Loss (KW/m 3 ) Test Core: T2*12* Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

58 56 Material Characteristics-K15 Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. K15 Initial Permeability µ 1kHz.25mT 25 C 15 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 33 Remanence Brms mt 1kHz H = 12A/m 25 C 2 Coercivity Hc A/m 1kHz H = 12A/m 25 C 11 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 11 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 6 Permeability Curie Temperature Tc C 13 Resistivity ρ Ωm > 1 6 Density d g/cm B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 5 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

59 57 Material Characteristics-K2 Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. K2 Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 3 Remanence Brms mt 1kHz H = 12A/m 25 C 15 Coercivity Hc A/m 1kHz H = 12A/m 25 C 11 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 11 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 3 Permeability Curie Temperature Tc C 1 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) Initial Permeability V.S. Temperature Test Core: T2*12*1 1 4 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

60 58 Material Characteristics-D1C Symbol Unit Measuring Conditions Automotive EMI- Suppression Material Freq. Flux den. Temp. D1C Initial Permeability µ 1kHz.25mT 25 C 35 ± 25% 1 4 Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 36 Remanence Brms mt 1kHz H = 4A/m 25 C 255 Coercivity Hc A/m 1kHz H = 4A/m 25 C 31 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 3 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 5 Permeability Curie Temperature Tc C 16 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C 2 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 25 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

61 59 Material Characteristics-D25 Symbol Unit Measuring Conditions Automotive EMI- Suppression Material Freq. Flux den. Temp. D25 Initial Permeability µ 1kHz.25mT 25 C 5 ± 25% 1 4 Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 39 Remanence Brms mt 1kHz H = 4A/m 25 C 26 Coercivity Hc A/m 1kHz H = 4A/m 25 C 58 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 248 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 35 Permeability Curie Temperature Tc C 18 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field 4 25 C C Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 25 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

62 6 Material Characteristics-D27 Symbol Unit Measuring Conditions Automotive EMI- Suppression Material Freq. Flux den. Temp. D27 Initial Permeability µ 1kHz.25mT 25 C 7 ± 25% 1 4 Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 365 Remanence Brms mt 1kHz H = 4A/m 25 C 235 Coercivity Hc A/m 1kHz H = 4A/m 25 C 2 Relative Loss Factor tanδ/µ 1-6.1MHz <.25mT 25 C 2 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 7 Permeability Curie Temperature Tc C 15 Resistivity ρ Ωm > 1 6 Density d g/cm B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field 4 25 C C 2 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 3 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

63 61 Material Characteristics-D28 Symbol Unit Measuring Conditions Automotive EMI- Suppression Material Freq. Flux den. Temp. D28 Initial Permeability µ 1kHz.25mT 25 C 8 ± 25% 1 4 Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 365 Remanence Brms mt 1kHz H = 4A/m 25 C 18 Coercivity Hc A/m 1kHz H = 4A/m 25 C 26 Relative Loss Factor tanδ/µ 1-6.1MHz <.25mT 25 C 2 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 5 Permeability -5 ~ 8 C 1.5 Curie Temperature Tc C 15 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field 4 25 C C Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 25 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

64 62 Material Characteristics-D3 Symbol Unit Measuring Conditions Automotive EMI- Suppression Material Freq. Flux den. Temp. D3 Initial Permeability µ 1kHz.25mT 25 C 1 ± 25% 1 4 Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 34 Remanence Brms mt 1kHz H = 4A/m 25 C 115 Coercivity Hc A/m 1kHz H = 4A/m 25 C 28 Relative Loss Factor tanδ/µ 1-6.1MHz <.25mT 25 C 35 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 6 Permeability Curie Temperature Tc C 14 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C 2 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 25 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

65 63 Material Characteristics-D35 Symbol Unit Measuring Conditions Automotive EMI- Suppression Material Freq. Flux den. Temp. D35 Initial Permeability µ 1kHz.25mT 25 C 11 ± 25% 1 4 Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 35 Remanence Brms mt 1kHz H = 12A/m 25 C 14 Coercivity Hc A/m 1kHz H = 12A/m 25 C 22 Relative Loss Factor tanδ/µ 1-6.1MHz <.25mT 25 C 2 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 2 Permeability Curie Temperature Tc C 12 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 25 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

66 64 Material Characteristics-D4 Symbol Unit Measuring Conditions Automotive EMI- Suppression Material Freq. Flux den. Temp. D4 Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% 1 4 Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 12A/m 25 C 275 Remanence Brms mt 1kHz H = 12A/m 25 C 115 Coercivity Hc A/m 1kHz H = 12A/m 25 C 8 Relative Loss Factor tanδ/µ 1-6.1MHz <.25mT 25 C 18 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 2 Permeability Curie Temperature Tc C 9 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. 1 1 C Test Core: T2*12*1 H (A/m) 4 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

67 65 Material Characteristics-B25 Symbol Unit Measuring Conditions High Bs Material Freq. Flux den. Temp. B25 Initial Permeability µ 1kHz.25mT 25 C 25 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 45 Remanence Brms mt 1kHz H = 4A/m 25 C 32 Coercivity Hc A/m 1kHz H = 4A/m 25 C 95 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 6 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 12 Permeability Curie Temperature Tc C 25 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field H (A/m) C 1 C Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) 1 4 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

68 66 Material Characteristics-B3 Symbol Unit Measuring Conditions High Bs Material Freq. Flux den. Temp. B3 Initial Permeability µ 1kHz.25mT 25 C 3 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 47 Remanence Brms mt 1kHz H = 4A/m 25 C 25 Coercivity Hc A/m 1kHz H = 4A/m 25 C 8 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 35 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 16 Permeability Curie Temperature Tc C 3 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C 4 1 C H (A/m) 3 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

69 67 Material Characteristics-B4 Symbol Unit Measuring Conditions High Bs Material Freq. Flux den. Temp. B4 Initial Permeability µ 1kHz.25mT 25 C 4 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 43 Remanence Brms mt 1kHz H = 4A/m 25 C 3 Coercivity Hc A/m 1kHz H = 4A/m 25 C 45 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 21 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 1 Permeability Curie Temperature Tc C 24 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 3 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

70 68 Material Characteristics-B45 Symbol Unit Measuring Conditions High Bs Material Freq. Flux den. Temp. B45 Initial Permeability µ 1kHz.25mT 25 C 45 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 45 Remanence Brms mt 1kHz H = 4A/m 25 C 27 Coercivity Hc A/m 1kHz H = 4A/m 25 C 49 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 3 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 15 Permeability Curie Temperature Tc C 24 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 3 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

71 69 Material Characteristics-B6 Symbol Unit Measuring Conditions High Bs Material Freq. Flux den. Temp. B6 Initial Permeability µ 1kHz.25mT 25 C 6 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 43 Remanence Brms mt 1kHz H = 4A/m 25 C 3 Coercivity Hc A/m 1kHz H = 4A/m 25 C 4 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 18 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 12 Permeability Curie Temperature Tc C 21 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 3 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

72 7 Material Characteristics-B9 Symbol Unit Measuring Conditions High Bs Material Freq. Flux den. Temp. B9 Initial Permeability µ 1kHz.25mT 25 C 9 ± 25% Loss Factor V.S. Frequency Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 39 Remanence Brms mt 1kHz H = 4A/m 25 C 25 Coercivity Hc A/m 1kHz H = 4A/m 25 C 38 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 13 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 8 Permeability Curie Temperature Tc C 18 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 3 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

73 71 Material Characteristics-H3 Symbol Unit Measuring Conditions Automotive High Bs Material Freq. Flux den. Temp. H3 1 6 Loss Factor V.S. Frequency Initial Permeability µ 1kHz.25mT 25 C 3 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 435 Remanence Brms mt 1kHz H = 4A/m 25 C 3 Coercivity Hc A/m 1kHz H = 4A/m 25 C 68 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 35 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 25 Permeability Curie Temperature Tc C 25 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. H3=A3 B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C 4 1 C H (A/m) 2 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

74 72 Material Characteristics-H31 Symbol Unit Measuring Conditions Automotive High Bs Material Freq. Flux den. Temp. H Loss Factor V.S. Frequency Initial Permeability µ 1kHz.25mT 25 C 3 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 435 Remanence Brms mt 1kHz H = 4A/m 25 C 18 Coercivity Hc A/m 1kHz H = 4A/m 25 C 52 Relative Loss Factor tanδ/µ 1-6.4MHz <.25mT 25 C 25 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 25 Permeability Curie Temperature Tc C 25 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. H31=A31 B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C 4 1 C H (A/m) 2 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

75 73 Material Characteristics-H4 Symbol Unit Measuring Conditions Automotive High Bs Material Freq. Flux den. Temp. H4 1 6 Loss Factor V.S. Frequency Initial Permeability µ 1kHz.25mT 25 C 4 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 43 Remanence Brms mt 1kHz H = 4A/m 25 C 32 Coercivity Hc A/m 1kHz H = 4A/m 25 C 62 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 3 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 2 Permeability Curie Temperature Tc C 25 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. H4=A4 B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 2 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

76 74 Material Characteristics-H5 Symbol Unit Measuring Conditions Automotive High Bs Material Freq. Flux den. Temp. H5 1 6 Loss Factor V.S. Frequency Initial Permeability µ 1kHz.25mT 25 C 5 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 33 Remanence Brms mt 1kHz H = 4A/m 25 C 125 Coercivity Hc A/m 1kHz H = 4A/m 25 C 56 Relative Loss Factor tanδ/µ 1-6.1MHz <.25mT 25 C 3 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 8 C 1 ~ 5 Permeability Curie Temperature Tc C 15 Resistivity ρ Ωm > 1 6 Density d g/cm 3 5. Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. H5=A5 B (mt) Loss Factor* Test Core: T2*12*1 Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C H (A/m) 2 Initial Permeability V.S. Temperature 8 Saturation Flux Density V.S. Temperature Bm (mt) Test Core: T2*12*1 Temperature (ºC) Test Core: T2*12*1 Temperature (ºC) Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

77 75 Material Characteristics-H2 Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H2 Initial Permeability µ 1kHz.25mT 25 C 5 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 285 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 4 1 C 35 Remanence Brms mt 1kHz H = 4A/m 25 C C 238 Coercivity Hc A/m 1kHz H = 4A/m 25 C C 121 Temperature Factor of αf 1-6 / C 2 ~ 8 C 1 Permeability Curie Temperature Tc C 3 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

78 76 Material Characteristics-H3 Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H3 Initial Permeability µ 1kHz.25mT 25 C 1 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 88 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 33 1 C 275 Remanence Brms mt 1kHz H = 4A/m 25 C C 11 Coercivity Hc A/m 1kHz H = 4A/m 25 C 87 1 C 64 Temperature Factor of αf 1-6 / C 2 ~ 8 C 8 Permeability Curie Temperature Tc C 25 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

79 77 Material Characteristics-H3A Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H3A Initial Permeability µ 1kHz.25mT 25 C 125 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 39 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 32 1 C 262 Remanence Brms mt 1kHz H = 4A/m 25 C C 163 Coercivity Hc A/m 1kHz H = 4A/m 25 C C 83 Temperature Factor of αf 1-6 / C 2 ~ 8 C 11 Permeability Curie Temperature Tc C 23 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

80 78 Material Characteristics-H3B Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H3B Initial Permeability µ 1kHz.25mT 25 C 15 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 163 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 33 1 C 27 Remanence Brms mt 1kHz H = 4A/m 25 C C 186 Coercivity Hc A/m 1kHz H = 4A/m 25 C 91 1 C 62 Temperature Factor of αf 1-6 / C 2 ~ 8 C 6 Permeability Curie Temperature Tc C 22 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

81 79 Material Characteristics-H4 Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H4 Initial Permeability µ 1kHz.25mT 25 C 3 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 145 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 33 1 C 24 Remanence Brms mt 1kHz H = 4A/m 25 C C 133 Coercivity Hc A/m 1kHz H = 4A/m 25 C 47 1 C 3 Temperature Factor of αf 1-6 / C 2 ~ 8 C 1 Permeability Curie Temperature Tc C 16 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

82 8 Material Characteristics-H5 Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H5 Initial Permeability µ 1kHz.25mT 25 C 25 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 5 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 41 1 C 345 Remanence Brms mt 1kHz H = 4A/m 25 C C 243 Coercivity Hc A/m 1kHz H = 4A/m 25 C 68 1 C 32 Temperature Factor of αf 1-6 / C 2 ~ 8 C 4 Permeability Curie Temperature Tc C 25 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

83 81 Material Characteristics-H5M Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H5M Initial Permeability µ 1kHz.25mT 25 C 23 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 5 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 43 1 C 366 Remanence Brms mt 1kHz H = 4A/m 25 C C 189 Coercivity Hc A/m 1kHz H = 4A/m 25 C 92 1 C 79 Temperature Factor of αf 1-6 / C 2 ~ 8 C 3 Permeability Curie Temperature Tc C 28 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

84 82 Material Characteristics-H5R Symbol Unit Measuring Conditions Rod Core Material Freq. Flux den. Temp. H5R Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% Relative Loss Factor tanδ/µ 1-6 1kHz 25 C 5 Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 4 1 C 33 Remanence Brms mt 1kHz H = 4A/m 25 C 32 1 C 23 Coercivity Hc A/m 1kHz H = 4A/m 25 C 55 1 C 32 Temperature Factor of αf 1-6 / C 2 ~ 8 C 25 Permeability Curie Temperature Tc C 24 Resistivity ρ Ωm 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

85 83 Material Characteristics-F1 Symbol Unit Measuring Conditions Wide Temperature Antenna Material Freq. Flux den. Temp. F1 1 5 Loss Factor V.S. Frequency Initial Permeability µ 1kHz.25mT 25 C 1 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 33 Remanence Brms mt 1kHz H = 4A/m 25 C 185 Coercivity Hc A/m 1kHz H = 4A/m 25 C 22 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 55 Temperature Factor of αf 1-6 / C 1kHz <.25mT 2 ~ 8 C 35 Permeability Curie Temperature Tc C 17 Resistivity ρ Ωm > 1 6 Density d g/cm B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C 2 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size. 1 5 Test Core: T2*12* H (A/m) 5 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

86 84 Material Characteristics-F52 Symbol Unit Measuring Conditions Wide Temperature Antenna Material Freq. Flux den. Temp. F Loss Factor V.S. Frequency Initial Permeability µ 1kHz.25mT 25 C 5 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 33 Remanence Brms mt 1kHz H = 4A/m 25 C 15 Coercivity Hc A/m 1kHz H = 4A/m 25 C 7 Relative Loss Factor tanδ/µ 1-6.1MHz <.25mT 25 C 2 Temperature Factor of αf 1-6 / C 2 ~ 6 C 1 ~ 2 Permeability Curie Temperature Tc C 14 Resistivity ρ Ωm > 1 6 Density d g/cm B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C 2 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 2 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz) 1 4

87 85 Material Characteristics-L1 Symbol Unit Measuring Conditions Low µ Material Freq. Flux den. Temp. L1 Initial Permeability µ 1kHz.25mT 25 C 15 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 41 Remanence Brms mt 1kHz H = 4A/m 25 C 168 Coercivity Hc A/m 1kHz H = 4A/m 25 C 15 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 18 Curie Temperature Tc C 25 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

88 86 Material Characteristics-L2 Symbol Unit Measuring Conditions Low µ Material Freq. Flux den. Temp. L2 Initial Permeability µ 1kHz.25mT 25 C 6 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 421 Remanence Brms mt 1kHz H = 4A/m 25 C 274 Coercivity Hc A/m 1kHz H = 4A/m 25 C 141 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 15 Curie Temperature Tc C 25 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

89 87 Material Characteristics-L3 Symbol Unit Measuring Conditions Low µ Material Freq. Flux den. Temp. L3 Initial Permeability µ 1kHz.25mT 25 C 2 ± 25% Saturation Flux Density Bms mt 1kHz H = 8A/m 25 C 36 Remanence Brms mt 1kHz H = 8A/m 25 C 122 Coercivity Hc A/m 1kHz H = 8A/m 25 C 6 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 448 Curie Temperature Tc C 3 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

90 88 Material Characteristics-L4 Symbol Unit Measuring Conditions Low µ Material Freq. Flux den. Temp. L4 Initial Permeability µ 1kHz.25mT 25 C 5 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 395 Remanence Brms mt 1kHz H = 4A/m 25 C 255 Coercivity Hc A/m 1kHz H = 4A/m 25 C 2 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 169 Curie Temperature Tc C 3 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

91 89 Material Characteristics-L5 Symbol Unit Measuring Conditions Low µ Material Freq. Flux den. Temp. L5 Initial Permeability µ 1kHz.25mT 25 C 1 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 39 Remanence Brms mt 1kHz H = 4A/m 25 C 175 Coercivity Hc A/m 1kHz H = 4A/m 25 C 14 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 35 Curie Temperature Tc C 25 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

92 9 Material Characteristics-L6 Symbol Unit Measuring Conditions Low µ Material Freq. Flux den. Temp. L6 Initial Permeability µ 1kHz.25mT 25 C 14 ± 25% Saturation Flux Density Bms mt 1kHz H = 8A/m 25 C 266 Remanence Brms mt 1kHz H = 8A/m 25 C 175 Coercivity Hc A/m 1kHz H = 8A/m 25 C 154 Relative Loss Factor tanδ/µ 1-6 1MHz <.25mT 25 C 77 Curie Temperature Tc C 3 Resistivity ρ Ωm > 1 6 Density d g/cm Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

93 91 Material Characteristics-M8 Symbol Unit Measuring Conditions EMI-Suppression Material Freq. Flux den. Temp. M8 1 5 Loss Factor V.S. Frequency Initial Permeability µ 1kHz.25mT 25 C 8 ± 25% Saturation Flux Density Bms mt 1kHz H = 4A/m 25 C 315 Remanence Brms mt 1kHz H = 4A/m 25 C 215 Coercivity Hc A/m 1kHz H = 4A/m 25 C 17 Relative Loss Factor tanδ/µ 1-6 1kHz <.25mT 25 C 19 Temperature Factor of αf 1-6 / C 1kHz <.25 mt 2 ~ 6 C 1 Permeability Curie Temperature Tc C 14 Resistivity ρ Ωm > 1 6 Density d g/cm B (mt) Loss Factor* Test Core: T2*12*1 Frequency (khz) Saturation Flux Density V.S. Magnetic Field C C 2 15 Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size Test Core: T2*12*1 H (A/m) 2 Initial Permeability V.S. Temperature Test Core: T2*12*1 Complex Permeability V.S. Frequency Test Core: T2*12*1 Frequency (MHz)

94 92 Product Specifications (Mn-Zn Ferrite) Type : EFD Cores (1) Ordering Code: Shape: Type:1 Type:2 P4 Material 材質 EFD6.2 Core Size 品名 G Gapped AL Value Type:3 Type:4 Type:5 Type:6 Type:7 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F G H K A-A1 Type EFD ± ± ± ± ± ±.1 _ 1.25 ±.1 _.15max 2 EFD ± ± ± ± ± ±.1 _ 1.4 ±.1 2 EFD ± ±.. ± ± ± ±.1 _ 1.7 ±.1 2 EFD ± ±.. ± ± ± ±.1 _ 1.7 ±.1 _.15max 2 EFD ± ± ± ± ± ±.15 _ 1.15 ±.15 5 EFD8. 8. ± ± ±..4 ± min 2.3 ±.1 _.9 ±.1 _.15max 2 EFD9.2A 9.2 ± ± ± ± ± ±.1.5 ±.1.9 ±.1 3 EFD ± ± ±.1 4. ± ± ±.1 _ 1.15 ±.1 _.13mm 1 EFD9.7A 9.7 ± ±.. ±.1 4. ± ± ±.1 _ 1.5 ±.7 _.13mm 2 EFD ± ± ± ± ± ±.1 _ 1.31 ±.1 _.15max 2 EFD ± ±..5 ± ± ± ±.1 _ 1.5 ±.1 2 EFD11.2A ± ± ± ±.1 _ EFD ± ± ± ± min 5.2 ±.1 _ 1.5 ±.1 2 EFD11.7/ ± ± ± ± ± ±.1 _ 1.5 ±.1 _.2mm 2 EFD12.2A 12.2 ± ± ± ± ± ±.15 _ 2. ±.15 _.25mm 2 EFD12A/ ± ± ± ± min 6.3 ±.15 _ 1.5 ±.1 _.15max 2 EFD12.4B ±.2 4. ± ± min 4.6 ±.15 _ 2.2 ±.1 2 EFD ± ± ± ± ± ±.1 _ 2.55 ± ±.6 _ 4 EFD12.5A 12.5 ± ±..5 ± ± min 4.55 ±.15 _ 2. ±.2 7 EFD ± ± ± ± ± ±.15 _ 1.85 ±.1 _.2mm 2 EFD12.7A 12.7 ± ± ± ±.15 _ 3.5 ±.1 _ max 2 EFD ± ± ± ± ±.15 _ 1.4 ±.1 _ mm 1 EFD ± ± ± ± ± ±.2 _ 1.65 ± ±.2.3mm 6 EFD13.5A ± ± min 8.55 ±.1 _ 3. ±.1 _ max 2 EFD13.5B ± ± min 9.5 ±.1 _ 2.7 ±.1 _ max 2 EFD ± ± ± ± ± _ 1.6 ±.1 _.2mm 1 -.1

95 93 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EFD EFD EFD EFD EFD EFD EFD9.2A EFD EFD9.7A EFD EFD EFD11.2A EFD EFD11.7/ EFD12.2A EFD12A/ EFD12.4B EFD EFD12.5A EFD EFD12.7A EFD EFD EFD13.5A EFD13.5B EFD ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 N42 A5 A7 A1(L) A121(L) A151(L) EFD EFD6.4 4 EFD EFD EFD EFD EFD9.2A 44 EFD EFD9.7A 5 EFD9.8 3 EFD EFD11.2A 8 EFD EFD11.7/ EFD12.2A 15 EFD12A/ EFD12.4B 8 EFD EFD12.5A 85 EFD EFD12.7A 94 EFD EFD EFD13.5A 89 EFD13.5B 75 EFD Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

96 94 Product Specifications (Mn-Zn Ferrite) Type : EFD Cores (2) Ordering Code: Shape: Type:1 Type:2 P4 Material 材質 EFD15A Core Size 品名 G Gapped AL Value Type:3 Type:4 Type:5 Type:6 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F H K A-A1 Type EFD ± ± ± ± ± ± ±.1 _.2mm 2 EFD14.7/ ± ± ± ± ± ±.1 _.25max 2 EFD ±.6 9. ± ± ± ± ± ±.2 _.3max EFD14.8B 14.8 ±.3 1. ± ±.1 6. ± ± ±.1 _ max EFD15A 15. ± ± ± ± ± ±.1 _ mm EFD15C/ ± ± ± ± EFD15D ± ± ± ±.7 _ mm 2 EFD15E 15. ± ± ± ± ± ± ±.1 2 EFD15H 15. ± ± ± ± ± ±.1 _.25max 5 EFD ± ± ± ± ± ± ± ±.25.2mm 3 EFD15.3A ± ± ± ± ± ± ± ±.3 _ EFD ± ± ± ± ± ±.1 _ max 2 EFD16A 16. ± ± ±.2 6. ± ± ± ±.2 2 EFD16B 16. ± ±.2 4. ± ± min 12.3 ±.2 3. ±.13 6 EFD ± ± ± ± min ±.1 _.2mm EFD16.5/ ± ± ± ± min ± EFD16.5/ ± ± ± ± min ± EFD ± ± ± ± min 8.6 ± ±.1 _.25mm 2 EFD ± ± ±.1 9. ± ± ±.15.9 ±.1 _.2mm 2 EFD ± ± ± ± ± ± ±.15 _.3mm 2 EFD18.5/ ± ± ± ± ± ± ±.15 1 EFD ± ± ± ± min 18.2 ± ±.15 2

97 95 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EFD EFD14.7/ EFD EFD14.8B EFD15A EFD15C/ EFD15D EFD15E EFD15H EFD EFD15.3A EFD EFD16A EFD16B EFD EFD16.5/ EFD16.5/ EFD EFD EFD EFD18.5/ EFD ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 A5 A7 A1(L) A121(L) A151(L) EFD EFD14.7/ EFD EFD14.8B 82 EFD15A % - 2% % - 2% % - 2% % - 2% min 381min EFD15C/4.2 7 EFD15D 7 EFD15E 68 EFD15H 74 28min 32min EFD EFD15.3A EFD16 64 EFD16A 12 EFD16B 75 EFD EFD16.5/17 7 EFD16.5/5 59 EFD EFD18 5 EFD EFD18.5/ (ref) EFD Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

98 96 Product Specifications (Mn-Zn Ferrite) Type : EFD Cores (3) Ordering Code: P4 EFD2 G Material 材質 Core Size 品名 Gapped AL Value Shape: Type:1 Type:2 Type:3 Type:4 Type:5 Type:6 Type:7 Type:8 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F H A-A1 Type EFD2 2. ± ± ± ± ± ± ±.15.25mm 3 EFD2A 2. ± ± ± ± ±.15.2mm 3 EFD2B 2. ± ± ± ± ±.15.2mm 3 EFD2D 2.5 ±.4 1. ± ± ± ± ±.15.2mm 3 EFD2E 2. ± ± ± ± ± ± ±.12.2mm 2 EFD ± ± ± ± ± ± ±.15.3mm EFD ± ± ± ± ± ±.15 _ EFD ± ± ± ± ± ±.15 _ EFD ± ±.2 6. ± ± min 1. ± ±.1.25mm 2 EFD ± ± ± ± min ± ±.1 _ 1 EFD ± ± ± ± ± ± ±.15.25mm 4 EFD22A 22. ± ± ± ± ± min 1.91 ±.15.3max 2 EFD22.5A 22.5 ± ±.2 4. ± ± ± ± ±.15 _ 2 EFD ± ±.2 4. ± ± min 11.6 ± ±.2 _ 2 EFD ± ± ± ± ± ± ±.15.3mm 3 EFD25A 25.5 ± ± ± ± ± ± ±.3 _ 2 EFD25B 25. ± ± ± ± ± ± ±.15 _ 3 EFD25F 25.2 ± ± ± ± min 9.7 ± ±.15.3max 5 EFD ± ± ± ± min ± ±.2 _ 6 EFD ± ± ± ±.2 2.min 9.5 ± ±.15 _ 5 EFD ± ± ± ± ± ± ±.1.3mm 2 EFD ± ± ± ± ± ±.2 _ EFD3A 3. ± ± ± ± min 11.2 ± ±.25 _ 3 EFD ± ± ± min 11.4 ± ±.15 _ EFD ± ± ± ± ± ± ±.2 _ 2 EFD ± ± ± ± ± ± ±.15 _ 3 EFD31.2B 31.2 ± ±.2 9. ± ± min 11.4 ± ±.2 _ 5 EFD ± ± ± ± min 11.3 ± ±.15 _ 3 EFD31.4A 31.4 ± ±.3 9. ± ± min 11.7 ± ±.2 5 FD ± ± ± ± min 17. ± ±.15.4mm 2

99 97 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EFD EFD2A EFD2B EFD2D EFD2E EFD EFD EFD EFD EFD EFD EFD22A EFD22.5A EFD EFD EFD25A EFD25B EFD25F EFD EFD EFD EFD EFD3A EFD EFD EFD EFD31.2B EFD EFD31.4A EFD ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 A5 A7 A1(L) A121(L) A151(L) + 3% + 3% + 3% EFD2 12-2%. 12-2% % ± 3% 45min EFD2A 185 EFD2B 185 EFD2D EFD2E EFD EFD EFD2.7 8 EFD EFD EFD EFD22A 62 EFD22.5A 95 EFD EFD25 + 3% 2-2% ± 3% + 3% EFD25A 33-2% EFD25B 2 24 EFD25F 21 EFD EFD EFD EFD EFD3A 25 EFD EFD31 18 EFD EFD31.2B 215 EFD EFD31.4A 24 EFD Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

100 98 Product Specifications (Mn-Zn Ferrite) Type : EFD Cores (4) Ordering Code: Shape: Type:1 P4 Material 材質 EFD35 Core Size 品名 G Gapped AL Value Type:2 Type:3 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F H A-A1 Type EFD ± ± ± ± ± ± ±.1 _ 2 EFD ± ± ± ± min 16.9 ±.2 3. ±.15.5max 2 EFD ± ± ± ± ±.3 2. ± ±.15 _ 2 EFD35A 35. ± ± ± ± min 9.5 ± ±.2 _ 1 EFD ± ±.2 6. ± ± min 2.3 ± ±.15 _ 2 EFD35.4A 35.4 ± ±.2 6. ± ± ± ± ±.15.6max 2 EFD ± ± ± ± ± ± ±.15 _ 2 EFD ± ± ± ± ± ± ±.15 _ 2 EFD ± ± ±.3 1. ± min 12.8 ±.2 1. ±.3 _ 3 EFD ± ± ± ±.2 26.min 19. ±.2 5. ±.2 _ EFD ± ± ± ± ± ±.15 _ EFD37.7A ± ± ± min 13.1 ± ±.15 _ EFD ± ± ± ± ± ±.2 4. ±.15 _ 2 EFD ± ± ±.2 2. ± ± ±.2 3. ±.15 _ 2 EFD ± ± ± ± min 17. ± ±.15 _ 2 EFD ± ± ± ± ± ± ±.2 _ EFD ± ±.2 8. ± ± ± ±.15 _ EFD ± ±.2 8. ± ± min 17. ± ±.15 _ 2 EFD ± ± ± ± min 2.6 ± ±.15 _ 2 EFD43.7A 43.7 ± ± ± ± min 21.5 ±.2 4. ±.15 _ 2 EFD ± ± ± ± ± ± ±.15 _ 2 EFD ± ± ± ± ±.2 3. ±.15 _ EFD ± ± ± ± ± ±.2.5max 2 EFD ± ± ± ±.4 3.6min 2.7 ± ±.15 _ 2 EFD5 5. ± ± ± ± min 2.6 ± ±.2 _ 2 EFD ±.8 4. ± ± ± ± ± _ 2 -.3

101 99 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EFD EFD EFD EFD35A EFD EFD35.4A EFD EFD EFD EFD EFD EFD37.7A EFD EFD EFD EFD EFD EFD EFD EFD43.7A EFD EFD EFD EFD EFD EFD ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 A5 A7 A1(L) A121(L) A151(L) EFD EFD EFD35 16 EFD35A 23 EFD EFD35.4A 1672 EFD EFD36 19 EFD EFD EFD EFD37.7A 19 EFD EFD EFD EFD43 23 EFD EFD EFD EFD43.7A 195 EFD45 22 EFD EFD EFD47 34 EFD5 18 EFD Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

102 1 Product Specifications (Mn-Zn Ferrite) Type : EPC Cores Ordering Code: P4 EPC19 G Shape: Type:1 Type:2 Material 材質 Core Size 品名 Gapped AL Value Type:3 Type:4 Type:5 Type:6 Type:7 Type:8 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F G H K Type EPC1 1.2 ± ± ± ±.1 5.3min 2.55min _ 1.9 ±.1 7.6min 2 EPC1A 1.2 ± ± ± ±.1 5.7min 2.55min _ 1.9 ±.1 7.9min EPC _ EPC13A 13.5 ± ± ± ± min 4.5 ±.2 _ 2.5 ± ±.2 1 EPC13D 13.2 ± ± ± ± min 4.5 ±.2 _ 2.5 ±.1 11.min EPC13F 13.1 ± ± ± min 4.5 ± ± min 1 EPC ± ±.2 6. ± ± ± ±.15 _ 3.2 ± ±.3 2 EPC17A 17.6 ± ±.2 6. ± ± min 6.5 ±.2 _ 2.75 ± min 1 EPC17B 17.6 ± ± ± ±.2 12.min 6.25 ±.2 _ 2.85 ± min 7 EPC ± ± ± ± min 1.3 ±.15 _ 2.65 ± min EPC19/ ±.4 1. ±.2 6. ± ± min 7.5 _ ± min 1 EPC19A 19.6 ± ±.2 6. ± ± ± ±.2 _ 2.4 ± ±.5 1 EPC19B 19.6 ± ±.2 6. ± ± ± ±.2 _ 2.4 ± ±.5 1 EPC ± ±.2 6. ± ± min 8.4 ± ± ± min 3 EPC ± ± ± ± ± ±.2 _ 2.3 ± ±.35 4 EPC2 2. ± ± ± ± ± ±.2 _ 2.3 ± ±.35 4 EPC ± ± ± ± min ±.15 _ 4.2 ± min 5 EPC ± ± ± ± ± ±.15 _ 6.6 ±.15 _ 8 EPC ± ± ± ± ±.4 9. ±.2 6.2ref 4. ± ±.4 6

103 11 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EPC EPC1A EPC EPC13A EPC13D EPC13F EPC EPC17A EPC17B EPC EPC19/ EPC19A EPC19B EPC EPC EPC EPC EPC EPC ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 A5 A7 A1(L) A121(L) A151(L) EPC EPC1A EPC EPC13A EPC13D 8 EPC13F 82 EPC EPC17A 13 EPC17B EPC18 1 EPC19/1 93 EPC19A EPC19B 11 EPC EPC EPC2 82 EPC EPC EPC Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

104 12 Product Specifications (Mn-Zn Ferrite) Type : CI Cores (Power Inductor) Ordering Code: P47 CI4.4/4./1.35/.9 Shape: Material 材質 Core Size 品名 Type:1 Type:2 Type:3 Type:4 Type:5 Type:6 DIMENSIONS DIMENSIONS (mm) CORES A B C D E E1 E2 CI4.4/4./1.35/ ± ±.1 4. ±.15 _ 1.8 ±.15 CI5.6/5.65/2.9/ ± ± ± ±.1 2. ±.1 2. ±.1 _ CI6./3.6/1.2/ ± ±..6 ±.2 _ 3.63 ±.2 CI6.35/ ± ± ±.13 _ 3.5ref CI6.35/6.35A 6.35 ± ± ±.1 _ 3.2 ±.1 CI6.6/ ± ± ± ±..25ref CI6.6/6.8/2.65/2 6.6 ± ± ± ± ±.15 CI6.6/ ± ± ± ±..25ref CI6.6/9.1A 6.61 ± ± ± ±..25 ±.1 CI6.6A/6.1/2.55/ ± ± ±.15 _ 3.15 ± ±.15 _ CI6.6B/6./2.25/ ± ±.1 6. ±.15 CI6.6D/9.1/2.25/ ± ± ±.15 CI6.6F/6.8/2.65/ ± ± ± ± ±.1 CI6.7/6.7/3.6/3 6.7 ± ± ± ± ±.2 CI6.8B/6.8/2.45/ ± ± ±.15 _ 2.5 ±.15 CI6.85A/9.2/2.2/ ± ± ±.1 _ 2.55 ±.15

105 13 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) CI4.4/4./1.35/ CI5.6/5.65/2.9/ CI6./3.6/1.2/ CI6.35/ CI6.35/6.35A CI6.6/ CI6.6/6.8/2.65/ CI6.6/ CI6.6/9.1A CI6.6A/6.1/2.55/ CI6.6B/6./2.25/ CI6.6D/9.1/2.25/ CI6.6F/6.8/2.65/ CI6.7/6.7/3.6/ CI6.8B/6.8/2.45/ CI6.85A/9.2/2.2/ DIMENSIONS DIMENSIONS (mm) CORES F G H J A1 C1 I Type CI4.4/4./1.35/.9.35 ±.8 _ 4.4 ± ±.15.9 ±.5 4 CI5.6/5.65/2.9/2..6 ±.1.15 ± ±.15 _ 5.6 ± ± ±.5 5 CI6./3.6/1.2/ ±.8 _ 6. ± ±.2.95 ±.5 4 CI6.35/ ±.1.22 ±.5 _ 1.4 ± ± ± ± CI6.35/6.35A.4.25 ±.5 _ ± ± ± ±.1 2 CI6.6/ ±.1.25 ± ± ± ±.1 1 CI6.6/6.8/2.65/2.5 ±.1.15 ± ±.2 _ 6.6 ± ±.2 2. ±.1 1 CI6.6/ ±.1.25 ± ± ± ±.1 1 CI6.6/9.1A ± ± ± ±.2 1 CI6.6A/6.1/2.55/ ±.1.25 ± ± ± ±.1 6 CI6.6B/6./2.25/ ±.1.24 ± ± ± ±.1 7 CI6.6D/9.1/2.25/ ±.1.24 ± ± ± ±.1 7 CI6.6F/6.8/2.65/2.1.5 ±.1.2 ± ±.2 _ 6.6 ± ± ±.1 8 CI6.7/6.7/3.6/3.7 ±.1.35 ± ±.15 _ 6.7 ± ± ±.5 1 CI6.8B/6.8/2.45/ ±.1.1 ±.1 6. ±.15 _ 6.8 ± ± ±.5 9 CI6.85A/9.2/2.2/ ±.1 _ 6.85 ± ± ±.5 4

106 14 Product Specifications (Mn-Zn Ferrite) Type : CI Cores (Power Inductor) Ordering Code: Shape: Type:7 P47 Material 材質 CI7./9.8/4.5/2.2 Type:8 Core Size 品名 Type:9 Type:1 Type:11 Type:12 DIMENSIONS DIMENSIONS (mm) CORES A B C D E E1 E2 CI7./9.8/4.5/ ± ± ± ±.1 2.7ref CI7./9.9/3.6/ ± ± ± ±.. ±.1 CI7.B/3.6/1.35/ ± ±..6 ±.2 _ 5. ±.2 CI7.1B/9.95/4.2/ ± ± ±.1 2.5ref CI7.2A/1.2/4.75/ ± ± ±.2 _ 1.8 ±.15 CI7.5/13.3/2.5/ ± ± ±.2 _ 4.3 ±.15 CI7.5A/9./3.8/ ± ±.1 9. ±.15 CI7.5B/9.5/3./ ± ± ±.15 CI8.7/9.4/5.3/ ± ± ±.15 _ 1. ±.1 CI9.6/11.7/2.9/ ± ± ±.2 _ 4.2 ±.15 CI9.9/1.52/4.57/ ± ± ± ±..18 ±.15 CI1/1/5.2/ ± ± ± ± ±.1 CI1.52/ ± ± ± ±..18 ±.1 CI1.7/ ± ± ± ± ±.1 CI12.68/ ± ± ± ± ref CI12.7/13/4.57/ ± ± ± ±..98 ±.2 CI12.7D/12.7/3.6/ ± ± ±.15 CI13/12.5/5.2/ ± ± ± ± ±.1

107 15 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) CI7./9.8/4.5/ CI7./9.9/3.6/ CI7.B/3.6/1.35/ CI7.1B/9.95/4.2/ CI7.2A/1.2/4.75/ CI7.5/13.3/2.5/ CI7.5A/9./3.8/ CI7.5B/9.5/3./ CI8.7/9.4/5.3/ CI9.6/11.7/2.9/ CI9.9/1.52/4.57/ CI1/1/5.2/ CI1.52/ CI1.7/ CI12.68/ CI12.7/13/4.57/ CI12.7D/12.7/3.6/ CI13/12.5/5.2/ DIMENSIONS DIMENSIONS (mm) CORES F G H J A1 C1 I Type CI7./9.8/4.5/2.2.8 ±.7.65 ±.7 9. ±.15 _ 7. ± ± ±. CI7./9.9/3.6/ ±.1.15 ±.8 7. ± ± ±.1 1 CI7.B/3.6/1.35/ ±.1 _ 7. ± ±.2.95 ±.5 4 CI7.1B/9.95/4.2/ ±.7.35 ± ±.15 _ 7.15 ± ± ±.1 1 CI7.2A/1.2/4.75/ ±.1 _ 7.2 ± ± ±.5 11 CI7.5/13.3/2.5/ ±.1.2 ± ±.12 _ 7.5 ± ± ±.5 9 CI7.5A/9./3.8/3.2.7 ±.1.4 ± ± ± ±.1 7 CI7.5B/9.5/3./3..4 ±.1.2 ± ± ± ±.1 7 CI8.7/9.4/5.3/ ±.1 _ 8.7 ± ± ±.5 11 CI9.6/11.7/2.9/2.5.3 ±.1.1 ± ±.2 _ 9.6 ± ± ±.5 9 CI9.9/1.52/4.57/ ±.1.25 ±.1 1. ±.15 _ 9.9 ± ± ±.5 1 CI1/1/5.2/ ±.1.65 ± ±.15 _ 1. ± ± ±.1 12 CI1.52/ ±.5.25 ± ± ± ± CI1.7/ ± ± ± ±.1 1 CI12.68/ ±.1.15 ± ±.15 _ ± ± ±.8 1 CI12.7/13/4.57/ ±.1.25 ± ±.2 _ 12.7 ± ± ±.1 1 CI12.7D/12.7/3.6/3.7.4 ±.1.2 ± ± ± ±.1 7 CI13/12.5/5.2/ ±.1.5 ± ±.15 _ 13. ± ± ±.1 12

108 16 Product Specifications (Mn-Zn Ferrite) Type : DR Cores Ordering Code: P47 DR2.9*1*1.2*.5R C Shape: Type:1 Material 材質 Core Size 品名 Coating 塗裝 R : Slot, 出線槽 C : Black Epoxy Coating of Halogen-Free D3 : Shape with different flange size, 上下擺外徑不同 Type:2 Type:3 Type:4 Type:5 DIMENSIONS DIMENSIONS (mm) COATING DIMENSIONS (mm) CORES A A1 B C F H I Wt(g/set) Type DR2.2x.6x.8x ±.1 _.8 ±.5.6 ±.5.3 ±.5.15 ±.5.15 ± DR2.2x.85x.9x ±.1 _.9 ±.5.85 ±.5.25 ±.5.3 ±.5.3 ± DR2.2x1.25x1x ±.1 _ 1. ± ±.1.65 ±.5.3 ±.5.3 ± DR2.2x2.7x1.5x1.5R 2.2 ±.1 _ 1.5 ± ± ±.5.6 ±.5.6 ± DR2.8x.9x1.5x ±.1 _ ± DR2.9x1x1.2x.5R 2.9 ±.1 _ 1.2 ±.1 1. ±.1.5 ±.5.25 ±.5.25 ± DR2.9x1.6x1.4x.9R 2.9 ±.1 _ 1.4 ± ±.1.9 ±.1.35 ±.5.35 ± DR2.9x1.8x1.2x ±.1 _ 1.2 ± ± ±.1.35 ±.5.35 ± DR3.2x1.6x1.4x.9R 3.2 ±.5 _ 2.2 ± ±.5.9 ±.5.35 ±.5.35 ± DR3.8x.8x1.5x.3R 3.8 ±.1 _ 1.5 ±.1.8 ±.5.3 ±.5.25 ±.5.25 ± DR3.8x1.25x1.65x.65R 3.8 ±.1 _ 1.65 ± ±.1.65 ±.5.3 ±.5.3 ± DR3.8x2.15x1.5x ±.7 _ 1.5 ± ± ±.5.48 ±.5.48 ± ±.15 _ 1.56 ± ± ±.1.57 ±.1.57 ± DR4.2x.9x2.2x.4R _ ±.8.9 ±.5.4 ± ±.5.4 ± DR4.6x2.25x2.3x1.35R 4.6 ±.1 _ 2.3 ± ± ±.1.45 ±.5.45 ± DR5x1.1x1.4x.5D3 5. ±..95 ± ± ±.1.3 ±.5.25 ± ±..8 ± ±.. ± ±.8.45 ±.8.45 ±.8 DR5.5x3x1.9x2.1D ± ± ±..1 ±.1 2. ±.1.55 ±.1.55 ±.1 DR5.3x2x2.5x ±.1 _ 2.5 ±.1 2. ± ±.1.4 (Ref).4 (Ref) ±.15 _ 2.55 ± ± ± ±.15 _ DR5.4x2.95x2.7x ±.2 _ 2.7 ± ± ±.15.7 ±.15 _ DR5.4x4.2x2.7x2.7R DR5.4x5.7x3.2x4.2R 5.3 ±.1 _ 2.65 ± ± ±.1.67 ±.7 _ 5.4 ±.15 _ 2.7 ± ± ±.1.75 ±.1 _ 5.3 ±.1 _ 3.15 ± ± ±.1.67 ±.7 _ 5.4 ±.15 _ 3.2 ± ± ±.1.75 ±.1 _ 7.7 ±.15 _ 3.32 ±..1 ± ±.1.7 ±.5 _ DR7.8x3.2x3.4x1.6R 7.8 ±.15 _ 3.4 ± ±.1.77 ±.7 _ ±.15 _ 3.67 ±..6 ± ±.1.75 ±.1.75 ±.1 DR7.8x3.7x3.75x2.4R 7.8 ±.15 _ 3.75 ± ±.1.83 ±.1 _ -.1 Remark: Black epoxy Coating, breakdown Voltage : 5Vdc

109 17 Product Specifications (Mn-Zn Ferrite) Type : DR Cores Ordering Code: P47 DR9.63*4.56*4.76*2.71 D3 C Shape: Type:1 Material 材質 Core Size 品名 Coating 塗裝 R : Slot, 出線槽 C : Epoxy Coating of Halogen-Free D3 : Shape with different flange size, 上下擺外徑不同 Type:2 Type:3 Type:4 DIMENSIONS DIMENSIONS (mm) COATING DIMENSIONS (mm) CORES A A1 B C F H I G Wt(g/set) Type DR8.2x4.1x3.x ±.15 _ 3. ± ± ±.1.8 ±.1.8 ±.1 _ 8.3 ±.2 _ 3.1 ± ± ±.15.9 ±.15.9 ±.15 _.5 1 DR8.38x4.2x3.1x ±.25 _ 3.1 ± ± ±.2.68 ± max _ 3.95max 4.8max 1.85min _.52 1 DR8.38x1.2x4.4x ±.15 _ 4.4 ± ± ± ± max _ 5.15max 1.75max 7.3min _ DR9.5x6.4x4.95x ±.15 _ 4.95 ± ± ±.1.9 ±.1.9 ±.1 _ 9.6 ±.2 _ 5.5 ± ± ± ± ±.15 _ DR9.6x7.3x6.x5.5R 9.45 ±.15 _ 5.85 ± ± ± ± DR9.63x4.56x4.76x2.71D ± ± ± ± ± ± ± ± ± ± ± ± DR9.8x3.85x4.8x2.15D ± ± ± ± ± ±.1.78 ±.1 _ 9.8 ± ± ± ± ± ±.1.85 ±.1 _.69 2 DR9.8x5.8x4.95x ±.2 _ 4.95 ± ±..95 ±.2 _ 1.3max _ 5.8max 6.2max 3.5min _ DR1.85x5.2x5.1x ±.15 _ 5.1 ± ± ± ±.1 1. ±.1 _ 11. ±.2 _ 5.2 ± ± ± ± ±.15 _ DR12x7x6.2x _ 6.1 ± ± ±.1 _ ±.15 _ 6.2 ± ± ± ± ±.15 _ DR12.7x5.8x6.2x ±.2 _ 6.2 ± ± ± ± ±.1 _ 12.8 ±.2 _ 6.3 ±.2 6.2max 3.4 ± ± ±.15 _ DR12.7x6x6.2x ±.2 _ 6.2 ± ± ±.15 _ 13.5max _ 7.max 6.7max 2.75min _ DR14.85x6.8x7x ±.15 _ 7. ± ± ± ± ±.15 _ 15. ±.15 _ 7.1 ± ± ± ± ±.15 _ DR16.4x4.8x8x ±.15 _ 7.9 ± ± ± ± ±.1 _ 16.5 ±.2 _ 8. ± ± ± ± ±.15 _ Remark: Black epoxy Coating, breakdown Voltage : 5Vdc.

110 18 Product Specifications (Mn-Zn Ferrite) Type : R Cores Ordering Code: P4 Material 材質 R8*22 Core Size 品名 Shape: Type:1 Type:2 DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A B C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) Type R1.16x ±.8 _ 7.1 ± R1.7x ±.15 _ 18. ± R2.5x ±.2 _ 18. ± R3x19 3. ±.2 _ 19. ± R3.5x ±.1 _ R4x5 4. ±.1 _ R4.2x ±.1 _ 6.1 ± R4.3x7 4.3 ±.1 _ 7. ± R4.5x ±.1 _ 5.8 ± R5x3.6x8 5. ± ± ± R5x7 5. ±.1 _ 7. ± R5Bx _ 3. ± R5.5x ±.1 _ 7.9 ± R5.8x ±.1 _ 5.2 ± R5.9x ±.1 _ Remark: Black epoxy coating, breakdown voltage : 5vdc min 3sec.5mA.

111 19 Product Specifications (Mn-Zn Ferrite) Type:3 Type:4 Type:5 DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A B C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) Type R6x15 6. ±.15 _ 15. ± R6.5x ±.15 _ 8.2 ± R7x ±.15 _ 7.6 ± R7.5x2 7.6 ±.1 _ ± R8x22 8. ±.2 _ 22. ± R8x25 8. ±.6 _ 25. ± R9.4x8 9.4 ±.2 _ 8. ± R1x6 1. ±.2 _ 6. ± R12x ± ± ± R14x ±.2 _.8 ± R29x ±.4 _ 17.4 ± R3x4 3. ±.45 _ 4. ± R5x1 5. ±.7 _ 1. ± R5Ax ±.75 _ 1.2 ± Remark: Black epoxy coating, breakdown voltage : 5vdc min 3sec.5mA.

112 11 Product Specifications (Mn-Zn Ferrite) Type : ZT Cores Ordering Code: P47 ZT5.6 Material 材質 Core Size 品名 Shape: Type:1 Type:2 DIMENSIONS DIMENSIONS (mm) CORES A C D D1 F H K Wt(g/set) Type ZT5.35H ZT ±.1 4.7ref 1.7 ±.1 _ 3.9 ± ref.1ref.13 2

113 111 Product Specifications (Mn-Zn Ferrite) Type : I Cores Ordering Code: P4 I55*7*3TP Shape: Type:1 Material 材質 Core Size 品名 TP: Tape Type:2 Type:3 DIMENSIONS DIMENSIONS (mm) CORES A C I Wt(g/set) Type I3.95x3.95x ±..95 ± ± I4.5x4.5x ± ± ± I4.6x3.2x ±..2 ±..43 ± I4.8x4.85x ± ± ± I5.7x3.45x6 5.7 ±..45 ±.1 6. ± I6x3.45x ±..45 ± ± I6x4.2x ± ± ± I6x6x7 6. ±.1 6. ±.1 7. ± I6.1x4.9x ± ± ± I6.5x4.85x ± ± ± I7x5x ±.1 5. ± ± I8.6x7.7x ± ± ± I13.7x7.15x ± ± ± I3x4x2 3. ±.5 4. ± ± I35x35x ± ±.6.8 ± I5x8Ax ±.7 8. ± ± I5x12.5x ± ± ± I55x7x3TP 55. ± ±.2 3. ± I6x7.9Ax2 6. ± ±.2 2. ± I68x7x ± ± ± I79.5x8x ± ± ± I8x14.7x4 8. ± ±.2 4. ± I86x14.65x ± ± ± I9x8x ± ± ± I99.5x12x ± ±.3 5. ±

114 112 Product Specifications (Mn-Zn Ferrite) Type : SC/UT Cores Ordering Code: P4 SC7.8 C Shape: Type:1 Material 材質 Core Size 品名 Coating 塗裝 C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen Type:2 Type:3 Type:4 Type:5 DIMENSIONS DIMENSIONS (mm) COATING DIMENSIONS (mm) CORES A B C D E F G H Wt(g/set) Type 7.65 ± ± ± ± ± ± ±.1.2ref SC ± ±.3 _ ± ±.1.15ref SC1x ± ± ± ±.15 _ -.7 ± SC1A 1. ±.15 _ 1. ± ± ± ± ref _ SC1B/9 1. ±.2 7. ± ± ± ± ±.2 1. ± SC1.1Ax ± ± ±.2 8.min 6.1 ±.1 7. ± ref.2ref SC1.2x ± ± ± ± ± ±.15.7 ±..1 7 SC1.3Ax ± ± ± ± ±.2 8. ± SC ± ± ± ± ±.15 _ 1.2ref _ SC11x ± ± ± ± ± ± SC11x1 1. ± ± ± ± ±.2 _ SC11.3x ± ± ± ± ± ± ± ± ± ±.1.25ref SC ± ± ± ± ± ± ±.1.15ref SC12A 12. ±.15 _ 1. ± ± ± ± SC12.3x ± ± ± ± ± ± SC12.75x ± ± ±.2 _ 9.15 ±.2 8. ±.2 _ 4

115 113 Product Specifications (Mn-Zn Ferrite) Type : SC/UT Cores Ordering Code: P4 UT12 C Shape: Type:6 Material 材質 Core Size 品名 Coating 塗裝 C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen Type:7 Type:8 Type:9 Type:1 Type:11 Type:12 DIMENSIONS DIMENSIONS (mm) COATING DIMENSIONS (mm) CORES A B C D E F G H Wt(g/set) Type UT ± ± _ 8.7 ± ± UT11.4A 11.4 ±.2 8. ± _ 8.6 ± ± UT ± ± ± ± ±.15 _ UT11.5/ ± ± ± ± ±.15 _ UT11.5A 1.8 ± ± ± ± ±.15 _ UT11.5B 11.5 ± ± ±.2 _ 8.25 ± ± UT11.5D 11.5 ± ± _ ± ± ±.2 8. ± ±.2 _ UT max 12.4max 1.6max 7.2min 8.35min _ UT12/ ± ±.2 1. ±.2 8. ± ±.2 _ UT12A ± ± ± ± ±.2 _

116 114 Product Specifications (Mn-Zn Ferrite) Type : ER Cores (1) Ordering Code: Shape: P4 ER14.5/11.3 G Type:1 Material 材質 Core Size 品名 Gapped AL Value Type:2 Type:3 Type:4 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F K A1 C1 I Type ER ± ±.1 4. ± ± ± ± ±.15 _ 4 ER1/ ± ± ± ± _ 1 ER1/ ± ± ± ± ± ± ±.15 _ 1 ER12/9/ ± ± ±.1 1. ± ± ±.15 _ 1 ER12/9/ ± ±.8 9. ± ±.1 1. ± ± ±.15 _ 1 ER12/9/ ± ±.6 9. ± ±.1 1. ± ± ±.15 _ 1 ER12/9/ ± ±.8 9. ± ±.1 1. ± ± ±.15 _ 1 ER12/9/ ±.2 4. ±.6 9. ± ±.1 1. ± ± ±.15 _ 1 ER12.45/9/ ± ±.8 9. ± ± ± ±.15.8 _ 1 ERI12.85/9.3/3.96/ ± ± ± ± min 2.66min 8.7min ± ± ± ER13.6/9.35/ ± ± ± min 1.2 ±.1 3 ER14.5/ ± ± ±.2 6. ± ± ± ±.15 _ 2 ERI14.5B/ ± ± ± ± ± ± ± ± ± ±.1 4

117 115 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) ER ER1/ ER1/ ER12/9/ ER12/9/ ER12/9/ ER12/9/ ER12/9/ ER12.45/9/ ERI12.85/9.3/3.96/ ER13.6/9.35/ ER14.5/ ERI14.5B/ ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES P4 P41 P46 P47 P5 P51 P52 N42 ER ER1/ ER1/ ER12/9/ ER12/9/ ER12/9/ ER12/9/7 253 ER12/9/ ER12.45/9/ ERI12.85/9.3/3.96/ ER13.6/9.35/ ER14.5/ ERI14.5B/ Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering.

118 116 Product Specifications (Mn-Zn Ferrite) Type : ER Cores (2-1) Shape: Type:1 Ordering Code: P4 ER11/5 G Material 材質 Core Size 品名 Gapped AL Value Type:2 Type:3 Type:4 Type:5 Type:6 Type:7 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F G H A1 C1 I Type ER7.5/5 7.5 ± ±.1 4. ± ± ± ± ERI7.5/5 7.5 ± ±.1 4. ± ± ± ± _ ± ±.1.75 ± ER9.5/ ± ± ±..4 ±.1 7.min min ER9.5/ ± ± ±..4 ±.1 7.min 1.67 ±.7 7.4min ER11/ ± ± min ± ER11/ ± ± min ± ER11.1/ ± ± ± ±.15 8.min 1.6 ± ±.2 1 ER11.63/ ± ± ± ± min 1.7 ± ±.2 1 ER ± ± ±.2 5. ± ± ± ±.2 4 ER13/ ± ± ±.2 5. ± ± ± ±.2 1 ER13/ ± ± ±.2 5. ± ± ± ±.2 4 ERI ± ± ±.2 5. ± ± ± ±.2 _ 12.8 ± ±.2 1.1± ER14.5/ ± ± ± ± ± ±.1 _ 2 ER14.5/ ± ± ± ± ± ±.1 _ 2 ER14.5/ ± ± ± ± ± ±.1 _ 2 ER ± ± ± ± min 1.6 ± ±.3 4 ER18/7 18. ± ± ± ± min 1.95 ± ±.3 4 ER18A 18. ± ±.1 1. ± ± ±.2 2. ±.1 _ 5 ER18D/ ± ± ±.2 6. ± ± ±.15 _ 6 ER18.2D 18.2 ± ± ± ±.1 13.min 6. ± ER18.8/ ± ± ± ± ± ±.1 _ 5 ER ± ± ± ± ± ±.15 _ ER ± ± ±.2 6. ± ±.15 _ ER2/ ± ± ± ± ± ± ±.3 4 ERI2 2. ± ± ± ± ± ± ±.3 _ 2. ±.314. ± ± ERI2/ ± ± ± ± ± ± ±.3 _ 2. ±.314. ± ± ER2.5/ ± ± ± ± ± ± min 5.5 ±.15 _ 7

119 117 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) ER7.5/ ERI7.5/ ER9.5/ ER9.5/ ER11/ ER11/ ER11.1/ ER11.63/ ER ER13/ ER13/ ERI ER14.5/ ER14.5/ ER14.5/ ER ER18/ ER18A ER18D/ ER18.2D ER18.8/ ER ER ER2/ ERI ERI2/ ER2.5/ ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P41 P42 P46 P47 P5 P51 P52 N42 A5 A7 A1(L) A121(L) A151(L) ER7.5/ ERI7.5/5 8 ER9.5/ ER9.5/ min 37min ER11/3.9 14min ER11/ ER11.1/ ER11.63/ ER ER13/ ER13/ ERI ER14.5/ min ER14.5/ ER14.5/ ER ER18/ ER18A 4 ER18D/7.2 2 ER18.2D 165 ER18.8/ ER19 14 ER ER2/ ERI ERI2/ ER2.5/ Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

120 118 Product Specifications (Mn-Zn Ferrite) Type : ER Cores (2-2) Shape: Type:8 Ordering Code: P4 ER22.6/8.9 G Material 材質 Core Size 品名 Gapped AL Value Type:9 Type:1 Type:11 Type:12 Type:13 Type:14 Type:15 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F G H K A1 C1 I Type ER ±.4 9. ± ± ± ± ±.2 1 ERI22.2/15.8/6.7/ ± ± ±.3 1. ± ± ±.15 _ 22.2 ± ± ± ER22.6/ ± ± ± ± ± ±.1 1 ER22.7/14/7.1/ ± ± ± ± min 4.9 ± ± ± ± ±. + 4 ER ± ± ± ± min 1.6 ± ±.4 _ 4 ER ± ± ± ± min 3.55 ± ±.4 _ 4 ER25/ ± ± ± ± min 1.7 ± ±.4 _ 4 ERI ± ± ± ± min 3.55 ± ± ± ± ± ERI25F 25. ± ± ± ± min 3.1 ± ± ± ± ±.1 4 ER ± ± ± ± min 2. ±.15 1 ER25.5A 25.5 ± ± ± ± ± ± ±.3 _ 1 ER ± ± ± ± ±.4 3. ± ±.35 _ 11 ER ±.5 5. ± ± ± ± ±.15 _ 6. ±.2 8 ER27A 27. ± ± ± ± min 2.1 ± ±.4 _ 1 ER27B 27. ± ± ±.3 1. ±.2 _ 2.1 ± ±.4 _ 1 ER28A 28. ± ± ± ± ±.5 3. ± ±.4 _ 13.1 ±.4 _ 12 ERI ± ± ± ± ± ±.15 _ 23.4 ±.35 _ 28. ± ± ± ER ± ± ± ± ± ±.13 2 ER29.8A 29.8 ± ± ± ±.3 2.4min 1.8 ± ±.7 _ 4 ER3/8 3. ±.4 8. ± ± ± ± ± ±.3 _ 4 ER32B 32. ± ± ± ± min 3.18 ± min _ 4 ERI ± ± ± ± ± ± ± ± ±.4 6. ± ER ± ±.1 1. ± min 2.9 ±.1 _ 6.5 ± ER33/6 33. ±.5 3. ± ± ± ± ±.2 21.max _ 14 ERI36A 36. ± ± ± ±.2 22.min 7.8 ± ± ± ± ± ER ± ± ± min 4.5 ± ER ± ± ± ± ± ±.2 2

121 119 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) ER ERI22.2/15.8/6.7/ ER22.6/ ER22.7/14/7.1/ ER ER ER25/ ERI ERI25F ER ER25.5A ER ER ER27A ER27B ER28A ERI ER ER29.8A ER3/ ER32B ERI ER ER33/ ERI36A ER ER ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES P4 P41 P42 P46 P47 P48 P5 P51 P52 N42 ER ERI22.2/15.8/6.7/2.5 5 ER22.6/ ER22.7/14/7.1/2.2 5 ER ER ER25/8.2 7 ERI ERI25F 5 ER ER25.5A 25 ER ER ER27A 67(P45) ER27B 535(P45) ER28A 6 7 ERI28 32 ER ER29.8A 4 ER3/ ER32B 55 ERI32 11 ER33 41 ER33/6 65 ERI36A 5 ER42 31 ER Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

122 12 Product Specifications (Mn-Zn Ferrite) Type : ERX Cores Ordering Code: P47 ERX13 G Shape: Material 材質 Core Size 品名 Gapped AL Value Type:1 Type:2 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F G Type ERX ± ± ±.4 3. ± ± ± ±.4 2 ERX13A/28/ ± ± ± ± ± ± ±.5 1 ERX ± ±.4 3. ± ± ± ±.4 2 EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) ERX ERX13A/28/ ERX ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 P51 P52 N42 ERX13 48 ERX13A/28/ ERX26 5 Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering.

123 121 Product Specifications (Mn-Zn Ferrite) Type : EPO Cores Ordering Code: P4 EPO13 G Shape: Material 材質 Core Size 品名 Gapped AL Value Type:1 Type:2 DIMENSIONS DIMENSIONS (mm) CORES A B A1 D E F G Type EPO ± ± ± ± ± ± ref 2 EPO ± ± ± ± ± ± ±.15 1 EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EPO EPO ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P5 N42 A5 A5(L) A1(L) A11(L) A12 A12(L) EPO EPO Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering.

124 122 Product Specifications (Mn-Zn Ferrite) Type : EP Cores Ordering Code: P4 EP7 G Shape: Material 材質 Core Size 品名 Gapped AL Value Type:1 Type:2 Type:3 Type:4 Type:5 DIMENSIONS DIMENSIONS (mm) CORES A A1 B D E F H J T Type EP5 6. ± ± ± ± ± ±.1 _ 1 EP ± ±..4 ± ± ± ±.1 _ 1 EP7 9.2 ± ± ± ± ±.1 _ 1 EP ± ± ± ± ± ±.1 _ 1 EP7C 9.4 ± ± ±..3 ±.1 7.4min 2.6 ±.1 _ 1 EP ± ± ± ± ±.1 _ 1 EP1B 11.5 ± ± ±..3 ± ± ±.1 _ 1 EP ± ± ± ± ±.1 _ 1 EP ± ± ± ± ± ±.1 _ 2 EP ± ± ± ±.2 11.min 4.6 ±.15 _ 1 EP ± ± ± ± ± ±.2 _ 3 EP ± ± ± ± ± ±.15 _ 1 EP ± ± ± ± ± ± ± ± ±.1 4 EP ±.5 3. ± ± ± ± ±.15 _ 5

125 123 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EP EP EP EP EP7C EP EP1B EP EP EP EP EP EP EP ELECTRICAL CHARACTERISTICS AL + 3% - 2% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P5 N42 A5 A5(L) A11 A11(L) A121 A121(L) A151(L) EP5 4 ± 25% 38 ± 25% 5 ± 25% 53 ± 25% min EP ± 25% 45 ± 25% 185 EP ± 25% 16 ± 25% min 48min EP EP7C 11 EP ± 25% 16 ± 25% ± 3% min 48min EP1B 1 EP min 7min EP13.3 EP15.2 EP (ref) EP ± 25% 36 ± 25% 397 ± 25% EP EP31 15 ± 25% (P47) 6446min Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

126 124 Product Specifications (Mn-Zn Ferrite) Type : CUT Cores Ordering Code: P4 CUT14x8 G Shape: Material 材質 Core Size 品名 Gapped AL Value Type:1 Type:2 Type:3 Type:4 Type:5 DIMENSIONS * CUT Core = 1 PC POT Core + 1 PC CUT Core. * DCUT Core = 2 PCS CUT Cores. DIMENSIONS (mm) CORES A B D E F J K D1 G H Type CUT14x8 14. ± ±.6 6.9max 11.6min 2.79min 9.5 ± ±.6 _ 9.55 ± min CUT14x8CH 14. ± ±.8 6.9max 11.6min 2.79min 9.5 ± ± ± ± min CUT18x11CH 17.9 ± ± ± ± ± ±.3 3.2±.3 3.2± ±.2 1.5min CUT23x11CH ± ± max 17.93min 3.63min 5.8 ± ± min DCUT ± ± ± ± ±.1 _ 4.13 ± min 5 DCUT14x8 14. ± ±.6 6.9max 11.6min 2.79min _ 9.55 ± min 5 DCUT14x8CH 14. ± ±.8 6.9max 11.6min 2.79min 3.1 ± ± min 3 DCUT18x ± ± ± ± ±.15 _ 11.9 ±.2 1.5min 5 DCUT18x11CH 17.9 ± ± ± ± ± ± ±.2 1.5min 3 DCUT ± ± ± ± ± ± ref 5 DCUT21.6Ax13.4CH 21.6 ± ± ± ± ± ± ±.2 _ 3 DCUT22.9x ± ± ± ± ±.15 _ 15.2 ± ref 5 DCUT3 3.2 ± ± ± ± ±.1 _ 2.5 ± ±.25 5 DCUT3Ax14 3. ±.5 7. ± ± ± ±.15 _ 2.3 ± min 5 DCUT33.2x ± ± ± ± ±.15 _ 23.7 ±.3 18.min 4 DCUT33.2x ± ± ± ± ±.15 _ 23.7 ± min 5 DCUT33.2Ax ± ± ± ± ± ± min 5 DCUT4x ± ± ± ± ±.15 _ 28.3 ± min 5

127 125 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) CUT14x CUT14x8CH CUT18x11CH CUT23x11CH DCUT DCUT14x DCUT14x8CH DCUT18x DCUT18x11CH DCUT DCUT21.6Ax13.4CH DCUT22.9x DCUT DCUT3Ax , DCUT33.2x DCUT33.2x DCUT33.2Ax DCUT4x ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P47 P5 N4 N42 N43 A5 A1(L) A121(L) CUT14x ± 3% 622 ± 3% CUT14x8CH %-25% 8 CUT18x11CH %-25% 1 CUT23x11CH DCUT DCUT14x DCUT14x8CH 144 DCUT18x11 3 DCUT18x11CH 25 DCUT DCUT21.6Ax13.4CH 34 DCUT22.9x DCUT DCUT3Ax14 55 DCUT33.2x11 7 DCUT33.2x12 68 DCUT33.2Ax18.9 DCUT4x (P48) Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

128 126 Product Specifications (Mn-Zn Ferrite) Type : POT Cores Ordering Code: P4 POT14x8 G Shape: Material 材質 Core Size 品名 Gapped AL Value Type:1 Type:2 Type:3 Type:4 Type:5 DIMENSIONS DIMENSIONS (mm) CORES A B D E F J K D1 H Type POT3.35x ± POT5.5x ± ± ± ±.1 2 POT7.25x7.1CH 7.25 ± ± ± ± ± ± ± ±.5 _ 1 POT7.35x7CH 7.35 ± ±.. ±.1 6. ± ±.1 _ 2.1 ±.3 1. ±.1 _ 3 POT9x ± ± ± ± ±.3 1 POT9x5CH 9.15 ± ± ± ± ± ±.5 _ 1 POT9x5ACH 9. ± ±..8 ± ± ± ± ± _ 1 POT11x ± ± ± ± ±.3 1 POT11x7CH 11.1 ± ± ± ± ± ±.1 _ 1 POT14x8 14. ± ± max 11.6min 2.79min 9.5 ± ±.6 1 POT14x8CH 14. ± ±.8 6.9max 11.6min 2.79min 9.5 ± ± ±.7 _ 1 POT14Dx8CH 14. ± ± ± ± ± ± ±.3 3. ± ±.2 4 POT18x ± ± ± ± ± ± ±.3 1 POT18x11CH 17.9 ± ± ± ± ± ± ±.7 _ 1 POT18x11ACH 17.9 ± ± ± ± ± ±.3 1 POT18Dx ± ± ± ±.3 4. ± ± ± POT24.3x17.6CH 24.3 ± ± ± ± ± ±.2 _ POT33.5x21CH 33.5 ± ± ± ± ±.3 5. ±.5 _ 5.5 ±.2 _ 5 POT35.5x22CH 35.5 ± ± ± ± ± ±.5 4. ± ±.15 _ 1 POT69x28CH ± ± ± ± ± ± ±.5 _ 1 * POT Core = 1 PC POT Core + 1 PC POT Core.

129 127 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) POT3.35x POT5.5x POT7.25x7.1CH POT7.35x7CH POT9x POT9x5CH POT9x5ACH POT11x POT11x7CH POT14x POT14x8CH POT14Dx8CH POT18x POT18x11CH POT18x11ACH POT18Dx POT24.3x17.6CH POT33.5x21CH POT35.5x22CH POT69x28CH ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P47 P5 N4 N42 A5 A1(L) A121(L) POT3.35x (N43) POT5.5x8 56 POT7.25x7.1CH 66 POT7.35x7CH 86 POT9x ± 3% POT9x5CH POT9x5ACH 11 POT11x POT11x7CH min POT14x POT14x8CH %-25% 98 POT14Dx8CH 52 (N43) POT18x POT18x11CH %-25% 126 POT18x11ACH 285 POT18Dx11 31 POT24.3x17.6CH 52 POT33.5x21CH 68 POT35.5x22CH 75 POT69x28CH 15 Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

130 128 Product Specifications (Mn-Zn Ferrite) Type : RM/LM Cores Ordering Code: P4 RM5 G Material 材質 Core Size 品名 Gapped AL Value Shape: Type:1 Type:2 Type:3 Type:4 Type:5 Type:6 DIMENSIONS DIMENSIONS (mm) CORES A A1 B C D (Ø) D1 (Ø) E F G H 2X Type RM4 9.6 ± ± ± ± ±.1 _ 8.15 ± ±.1 5.8min _ 9. ±.25 3 RM ± ± ± ± ±.1 _ 1.4 ± ±.2 6.min _ 9.1 ±.25 5 RM ± ± ± ± ±.1 _ ± ±.2 8.5min _ 1.4 ±.25 5 RM6CH 14.4 ± ± ± ± ±.. ± ± ±.2 8.5min _ 1.4 ±.25 5 RM6C 17.6 ± ± ± ± ±.1 _ ± ± min _ 3.48 ±.15 2 RM6F 14.4 ± ± ±.1 8. ± ±.15 _ ± ± min 3 RM6H 14.4 ± ± ±.1 8. ± ±.1 _ ± ± ±.3 4 RM7A ± ± ± ± ±.15 _ 15.1 ± ± min _ 12.5 ±.3 4 RM7E ± ± ± ± ±.15 _ 15.1 ± min RM ± ± ± ± ±.15 _ 17.3 ± ±.2 9.8min _ 14.4 ±.25 5 RM8CH ± ± ± ± ± ± ± ±.2 9.8min _ 14.4 ±.25 1 RM8A ± ± ± ± ±.15 _ 17.3 ± ±.2 9.8min _ 14.4 ±.25 5 RM ± ± ± ± ±.2 _ ± ± min _ 16.3 ±.25 5 RM1B 24.2 ± ± ± ± ±.15 _ 22. ± ± min ±.25 _ 3 RM ± ± ±.1 _ 12.6 ±.2 _ ± ± min ± ±.25 5 LM8A 23. ±.45 _ 8. ± ref ± ±.2 _ LM ± 1.2 _ ± ± ±.4 _ 5. ± ±.25 _ 6 * RM 6,8 CAN ALSO BE MANUFACTURED WITH CENTER HOLES. (CH)

131 129 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS (PER SET) EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Amin(mm 2 ) Ve(mm 3 ) Wt(g/set) RM RM RM RM6CH (With Center Hole) _ RM6C _ RM6F RM6H RM7A _ RM7E RM RM8CH (With Center Hole) _ RM8A _ RM RM1B _ RM LM8A _ LM _ ELECTRICAL CHARACTERISTICS A L + 3% - 2% (nh/n 2 ) AL + 4% - 3% (nh/n 2 ) CORES P4 P47 P48 P5 P51 N4 N42 A5 A5(L) A1(L) A121(L) RM ± 25% 1 ± 25% 1 14 ± 25% RM ± 25% 186 ± 25% 129 ± 25% ± 25% min RM ± 25% 23 ± 25% 165 ± 25% ± 25% ± 25% min RM6CH ± 25% 78 RM6C 244 ± 25% RM6F 24 RM6H 22 RM7A RM7E 24 (P41) 26 (P41) RM ± 25% ± 25% 125 RM8CH ± 25% 111 RM8A 33 RM ± 25% 365 ± 25% 31 ± 25% ± 25% 16 RM1B ± 25% 16 RM ± 25% 44 ± 25% LM8A 45 LM61 95(P45) Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

132 13 Product Specifications (Mn-Zn Ferrite) Type : PEI Cores (Planner Core) Ordering Code: P4 PEI14 G Material 材質 Core Size 品名 Gapped AL Value Shape: Type:1 Type:2 Type:3 Type:4 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F H A1 C1 I X Type PEE ± ±.1 5. ±.. ± ± ±.1 _ 1 PEI ± ±.1 5. ±.. ± ± ±.1 _ 14. ±.3 5. ± ±.5 _ 1 PEE ± ±.1 1. ±.2 4. ± ±.3 2. ± ±.15 2 PEI ± ± ±.2 4. ± ±.3 2. ±.1 _ 18. ± ±.2 2. ± ±.1 E : 2 I : 1 PEE ± ± ±.3 5. ± ± ±.1 _ 1 PEI ± ± ±.3 5. ± ± ±.1 _ 21.8 ± ± ±.5 _ 1 PEE ± ± ± ±.3 2.5min 15. ±.3 _ 1 PEI ± ± ± ± min 3.18 ±.2 _ ± ± ±.2 _ 3 PEE ± ±.2 1. ± ± ± ±.2 5. ±.2 4 PEE ± ± ± ± min 4.45 ±.13 _ 1 PEI ± ± ± ± min 4.45 ±.13 _ 38.1 ± ± ±.13 _ 1

133 131 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) PEE PEI PEE PEI PEE PEI PEE PEI PEE PEE PEI ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES P4 P41 P42 P46 P47 P48 P5 P51 P52 N42 PEE PEI PEE PEI PEE PEI PEE31 87 PEI PEE PEE (ref) PEI (ref) Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering.

134 132 Product Specifications (Mn-Zn Ferrite) Type : PQ Cores Ordering Code: Shape: Type:1 Type:2 P4 Material 材質 PQ2/1 Core Size 品名 G Gapped AL Value Type:3 Type:4 Type:5 Type:6 Type:7 Type:8 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F G I A1 C1 G1 I1 Type PQ2/1 2.5 ± ± ± ± ± ± min 4.min 1 PQ2/ ± ± ± ± ± ± min 4.min 1 PQ2/2 2.5 ± ± ± ± ± ± min 4.min 1 PQ2A/ ± ± ± ± ± ± min 4.min 1 PQ26/ ± ± ± ± ± min 5.25min PQ26/ ± ± ± ± ± min 5.25min PQ26B/ ± ± ± ± ± ± min 6.8 ±.2 3 PQ27/ ± ± ± ± ± ± min 6.min 2 PQ27A/ ± ± ± ± min 5.75 ± min 6.min 2 PQ27D/ ± ± ± ± min 6. ± min _ 1 PQ31.5/ ± ± ± ± ± ± ±.4 _ 6 PQ32A/ ± ± ± ± ± ± min _ 3 PQ32B/ ± ± ± ± ± ± min _ 5 PQ32E/ ± ± ± ± ± ± min 6.ref 5 PQ32H/ ± ± ± ± ± ± min 7.45 ±.2 1 PQ35A/ ± ± ± ± ± ± ref _ 4 PQ35B/ ± ± ± min 15.5 ± min 5.5min PQ ± ± ± ± ± ± ±.5 5.6min 1 PQ35/ ± ± ± ± min 12.5 ± min 5.2min 1 PQ ± ± ±.5 2. ± ± ± ±.3 _ 7 PQ ± ± ± ± ± ± min _ 4 PQ4 4.3 ± ± ± ± min 15.3 ± min _ 3 PQI4B/28/14.6/5 4.3 ± ± ± ± min 9.5 ± ± ± ± ± ±.4 5. ±.1 8

135 133 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) PQ2/ PQ2/ PQ2/ PQ2A/ PQ26/ PQ26/ PQ26B/ PQ27/ PQ27A/ PQ27D/ PQ31.5/ PQ32A/ PQ32B/ PQ32E/ PQ32H/ PQ35A/ PQ35B/ PQ PQ35/ PQ PQ PQ PQI4B/28/14.6/ ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES P4 P41 P42 P46 P47 P48 P5 P51 P52 N42 PQ2/ PQ2/ PQ2/ PQ2A/16 37 PQ26/ PQ26/ PQ26B/ (P45) PQ27/ PQ27A/ PQ27D/ PQ31.5/ PQ32A/25 62 PQ32B/ PQ32E/ PQ32H/25 63(P45) PQ35A/ PQ35B/41 59 PQ PQ35/35 51 PQ PQ38 55 PQ4 45 PQI4B/28/14.6/5 71 Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering.

136 134 Product Specifications (Mn-Zn Ferrite) Type : EE/EEL Cores Ordering Code: Shape: P4 Material 材質 EE4.2 Core Size 品名 G Gapped AL Value DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A B C D E F C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EE ± ± ± ±..15 ±.1.85 ± EE ± ± ± ±.5 3.8min 1.98 ± EE5.C 5.25 ±.. ± ± ± ± EE5.D 5.25 ± ± ± ±.5 3.8min 1.98 ± EE ± ± ± ± ± EE ± ± ± ±..7 ± ± EE ± ± EE6.3/ EE ± ± ± ±.5 4.3min 2.3 ± EE ± ±.. ± ±.1 5.2min 2.55 ± EE8./5. 8. ± ±.8 5. ± ± ± ± EE ±.2 7. ± ± ± ± ± EE8.3A 8.3 ±.2 4. ±..9 ± ± ±.2 3. ± EE8.3A ±.2 4. ±..9 ± ± ±.2 3. ± EE8.3B 8.3 ± ± ± ±.15 6.min 3.13 ± EE8.3B ±.3 4. ± ± ±.15 6.min 3. ± EE8.3D 8.3 ±.2 4. ±..9 ± ± ±.2 3. ± EE8.3F ± ± ± min EE ± ±..65 ± ±.2 6.3min 3.55min EE ± ±..9 ± ±.1 6.8min 3.5 ± EE ±.2 6. ± ± ±.1 6. ± ± EE8.8A 9. ±.4 4. ± ± ± ± ± EE8.8B 9. ± ± ± ±.1 5.2min 2.29 ± EE8.8D 8.8 ± ± ± ± ± ± EEL ± ± ± ±.1 6. ± ± EE9. 9. ± ± ± ± ± ± EE9.A 9. ± ± ± ± min 3.75 ± EE ± ± ± ± EE1 1.2 ± ± ± ± min 4.2 ± EE1/1 1.2 ± ± ± ± ± ± EE1A 1. ± ± ± ± ± ± EE ± ± ± ± ± ± EE ± ± ± ± ±

137 135 Product Specifications (Mn-Zn Ferrite) ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 N42 A5 A7 A1(L) A121(L) A151(L) EE EE min 18min 135min EE5.C EE5.D min 18min 135min EE EE6.2 EE EE6.3/ EE6.6 1 EE6.75 EE8./ EE min 125min EE8.3A EE8.3A-1 2+4%-3% EE8.3B EE8.3B EE8.3D EE8.3F EE min EE EE EE8.8A EE8.8B 47 EE8.8D EEL min EE EE9.A 33 EE min EE min 386min EE1/ EE1A EE min EE Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

138 136 Product Specifications (Mn-Zn Ferrite) Type : EE/EEL Cores Ordering Code: Shape: P4 Material 材質 EE19 Core Size 品名 G Gapped AL Value DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A B C D E F C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EE ± ± ±.2 2. ±.2 9. ± ± EEL ± ± ±..4 ± ±.2 6. ± EE ± ± ±..1 ± ± ± EEL ± ± ± ± ± ± EE12.9/ ± ± ± ± EE12.9A 12.9 ± ± ±.2 6. ± ± ± EE ±.3 6. ± ± ± ± EE13/ ± ± ±..53 ±.15 9.min 5.11 ± EE13B 13. ± ± ± ±.15 1.min 3.1 ± EEL ± ± ± ± ± ± EE ± ± ± ± ± ± EEL ± ± ± ± ± ± EEL14A ± ± ±.1 1. ± ± EEL ± ± ± ± ± ± EEL14.6A ± ± ± ± ± EE ± ± ± ± ± EEL15.4A ± ± ± ± EE ± ± ±.2 4. ± min 5.2 ± EE16A 16. ± ± ± min 5.5 ± EE16D 16. ± ± ± ± ± ± EE16F 16. ± ± ± ± ± ± EEL ± ± ±.2 4. ± min 1.2 ± EE ± ±.2 8. ± ± ± ± EE16.4A 16.4 ± ± ± ± ± ± EE ±.3 6. ± ± ± ± ± EE ± ± ± min 4.2 ± EE16.5A 16.5 ± ± ± ± min 8.4 ± EE ± ±.2 4. ± min 5.35 ± EEL ± ± ±.2 4. ± min 1.3 ± EE ± ± ± ± ± ± EEL ± EEL17A ± ± EEL17B 17.2 ± ± ±.2 4. ± min 1.2 ±

139 137 Product Specifications (Mn-Zn Ferrite) ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 N42 A5 A7 A1(L) A121(L) A151(L) EE11 EEL (ref) EE EEL EE12.9/ EE12.9A min EE min EE13/ EE13B 15 EEL13 13 EE EEL14 7 EEL14A 5 EEL EEL14.6A 7 EE15 EEL15.4A 12 2min EE EE16A EE16D 12 EE16F 12 EEL EE EE16.4A 24 EE EE EE16.5A 66 EE EEL EE17 3 EEL17 84 EEL17A 77 EEL17B 17 Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

140 138 Product Specifications (Mn-Zn Ferrite) Type : EE/EEL Cores Ordering Code: Shape: P4 Material 材質 EEL19-1 Core Size 品名 G Gapped AL Value DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A B C D E F C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EE ± ±.3 5. ± ± min 5.7 ± EE19A 19. ± ± ± ± ± ± EE19B 19. ± ± ± ± min 5.8 ± EE19C 19. ±.4 8. ± ± ± ± ± EE19D ± ± ± ± min 5.75 ± EE ± ± ± ± ± ± EE19/ ± ± ± ± min EEL ± ± ± min ± EEL ± ± EEL19A ± ± ± ± ± EEL19D ± ± ± ± ± EE19.8/1.6/ ± ± ± ± ±.3 3. ± EE2A 2. ± ± ± ± ± ± EEL2D 2. ± ± ± ± ± ± EEL2H 2. ± ± ± ± min 8.7 ± EE ± ± ± ± ± ± EEL ± ± ± ± min 11.2 ± EEL22A 22.4 ± ± ± ± ± ± EEL22B 22. ±.3 3. ± ± ± ± EEL22C 22.4 ± ± ± ± min 23. ± EE25/ ± ± ± ± min 6.65 ± EEL ± ± ± ± min 12.7 ± EEL25A 25.1 ± ± ± ± ± ± EEL25C 25.2 ± ±.2 4. ± ± ± EEL25E 25.2 ± ±.2 4. ± ±.2 17.min 15. ± EEL ± ± ±.2 8. ±.2 2.min 16.4 ± EEL3 3.2 ± ±.2 4. ± ± ± EE3A ± ± ± ± ± EE ± ± ± ± ±.4 1. ± EE ± ± ± ± min 8.min EE35A ± ± ± ± min 9.78 ± EE ± ± ± ± min 12.min EE ± ± ± ± min EEL ± ± ± ± ± ± EE ± ± ± ±.2 37.min 4.1 ± EE ± ± ± ± ±

141 139 Product Specifications (Mn-Zn Ferrite) ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P41 P46 P47 P48 P5 N42 A5 A7 A1(L) A121(L) A151(L) EE EE19A 9 EE19B EE19C 13 EE19D 136 EE EE19/ EEL EEL EEL19A 8 19 EEL19D 9 EE19.8/1.6/ EE2A 3536 EEL2D 255 ± 35% EEL2H EE EEL EEL22A 86 EEL22B 65 EEL22C min EE25/ min 95min EEL min EEL25A 155 EEL25C 12 EEL25E 16 EEL EEL3 153 EE3A 19 EE EE EE35A 315 EE36 35 EE EEL EE42 26 EE65 95 Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

142 14 Product Specifications (Mn-Zn Ferrite) Type : EF Cores Ordering Code: Shape: P4 Material 材質 EF16 Core Size 品名 G Gapped AL Value DIMENSIONS DIMENSIONS (mm) CORES A B C D E F EF1 1. ±.3 5. ± ± ± ± ±.15 EF ±..6 ± ± min 4.65 ±.15 EF12.6A 12.6 ± ± ± ± ± ±.2 EF12.6D ± ±..55 ± ± min 4.65 ±.15 EF12.6F ±..55 ± ± min 5.65 ±.15 EF ±.3 1. ± ± ±.2 8.9min 8.3 ±.2 EF ± ± ± ± ± ±.15 EF13/ ± ± ± ± ± ±.15 EF ± ± ± ± ±.2 EF ± ± ± ± min 5.9 ±.2 EF16A 16. ± ± ± ± min 5.8 ±.15 EF16C ± ± ± min 5.9 ±.2 EF ± ± ± ± min 7.25 ±.2 EF2 2. ± ± ± ± min 7.2 ±.2 EF2A 2. ± ± ± ± ± ±.15 EF ± ± ± ± ± ±.25 EF ± ± ± ± min 8.95 ±.25 EF25A 25.5 ± ± ± ± min 8.95min

143 141 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) EF EF EF12.6A EF12.6D EF12.6F EF EF EF13/ EF EF EF16A EF16C EF EF EF2A EF EF EF25A ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P5 N42 A5 A7 A1(L) A121(L) A151(L) EF1 67 EF EF12.6A 115 EF12.6D 83 EF12.6F EF min EF EF13/14 86 EF EF min 45min 5min EF16A EF16C 11 EF EF min EF2A 16 EF24 18 EF min EF25A 18min Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Gapped core is available, please specify upon request & ordering. ACME's standard gapped core set is a combination of one gapped core and one ungapped core. If gapping on both pcs to make a set is needed, please specify upon request & ordering. 3. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

144 142 Product Specifications (Mn-Zn Ferrite) Type : ET Cores Ordering Code: Shape: A7 Material 材質 ET28 Core Size 品名 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F ET2 2.1 ± ± ±.2 4. ± min 15.7min ET2A 2.3 ± ± ±.2 4. ± min 15.8min ET ± ±.5 4. ±.3 4. ±.2 19.min 19.min ET ± ±.5 5. ±.3 5. ± min 22.2min ET ± ±.5 5. ±.3 5. ± min 22.2min

145 143 Product Specifications (Mn-Zn Ferrite) DIMENSIONS AND EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) ET ET2A ET ET ET ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES A7 A1 A121 A151 ET ET2A 48 ET ET min ET % -3% Remark: AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering.

146 144 Product Specifications (Mn-Zn Ferrite) Type : UU Cores Shape: Type:1 Ordering Code: A1 UU1.5 L Material 材質 Core Size 品名 Lapping 鏡面拋光 Type:2 Type:3 Type:4 Type:5 E A H DIMENSIONS AND EFFECTIVE PARAMETERS B F C DIMENSIONS (mm) CORES A B C E F H Type UU ± ± ± ±.15 1 UU ± ± ± ± ±.15 1 UU ± ± ±..5 ± ±.2 1 UU ± ± ±.2 4.2min 4.2 ±.2 1 UU9.8B 9.8 ±.3 9. ± ± min 6. ±.2 1 UU1B ±.2 4.5min 2.4 ±.1 1 UU ± ±.3 5. ± min 5.3 ±.3 1 UU ± ± UU11.2A ± ± ± ± ±.15 1 UU ± ± ± min 5.65 ±.1 1 UU ± ±..55 ± ± ±.1 2 UU ± ± ± ± ±.2 4 UU ± ± ± min 6.25 ±.35 1 UU ± ± ± ± ±.2 4 UU15.1B 15.1 ± ± ± ± ±.2 1 UU ±.3 1. ±.2 6. ± min 6. ±.15 1 UU ± ± ± ± ±.2 3 UU16.5A 16.5 ± ± ± ± ±.2 3 UU ± ±.3 4. ± ± ±.2 4 UU ± ± ± ± ±.2 4 UU17.8B 17.8 ± ± ± ± ±.2 1 UU ± ± ± ± ±.2 4 UU ± ± ± ± ±.2 1 UU ± ± ± ± ±.15 2 UU ± ± ± ±.3 8. ± ±.2 5 UU ± ±.2 5. ± ± ±.2 1 UU19.6A 19.6 ± ± ±.2 5. ± ±.2 4 UU19.6B 19.6 ± ± ±.2 5. ± ±.2 1 UU22 22.± ± ±.3 12.min 1. ±.25 1 UU ± ± ±.2 5. ± ±.2 4 UU ± ± ± ± ±.2 1

147 145 Product Specifications (Mn-Zn Ferrite) EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) UU UU UU UU UU9.8B UU1B UU UU UU11.2A UU UU UU UU UU UU15.1B UU UU UU16.5A UU UU UU17.8B UU UU UU UU UU UU19.6A UU19.6B UU UU UU EFFECTIVE PARAMETERS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P41 P47 N42 P5 A5 A7 A1 A1(L) A121(L) A151(L) UU UU UU UU min 159min UU9.8B 14 UU1B 19 UU min 41 UU UU11.2A 93 UU12 63(P46) UU UU14 43 UU UU UU15.1B 32 UU min 57min UU UU16.5A 83(P46) UU UU UU17.8B 44 UU UU UU19 5 UU UU UU19.6A 53 UU19.6B 57 UU22 2 UU24 13 UU Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. L : Mirror Finished Lapping. Please specify upon request & ordering by adding "L" at the end of Core Size if you need.

148 146 Product Specifications (Mn-Zn Ferrite) Type : RF Cores Ordering Code: Shape: A5 Material 材質 RF1x5.1x2 Core Size 品名 DIMENSIONS DIMENSIONS (mm) CORES A B C D RF1x5.1x2 1. ± ±.1 2. ± ±.2 EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) RF1x5.1x ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES P4 P41 P46 A5 A7 RF1x5.1x2 36 Remark: AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering.

149 147 Product Specifications (Mn-Zn Ferrite) Type : UI/UT Cores Ordering Code: A1 Material 材質 UI11.4 Core Size 品名 Shape: Type:1 Type:2 Type:3 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F A1 C1 I UI ± ± ±.2 _ 6.4 ± ± ± ± ±.1 UT8 8. ± ± ±.1 _ 4. ±.1 12.min _ UT2 2.6 ± ± ± ± min 7.35min _ UT ± ± ± ± min 8.7min _ UT3 3. ± ± ± ± min 8.9min _ EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) Type UI UT UT UT UT ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P41 P46 A7 A1 A121 A151 UI UT8 13 UT UT % -2% 335 UT % -2% 45 Remark: AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering.

150 148 Product Specifications (Mn-Zn Ferrite) Type : URT Cores Ordering Code: A1 Material 材質 URT15.2 Core Size 品名 Shape: Type:1 Type:2 DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A B C E F J T C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) Type URT ± ± ± ± ± ±.3 2. ± URT ± ± ± ± ±.3 _ 2.5 ± URT ± ±.2 6. ±.2 2. ± ± ±.2 2. ± URT ± ± ± ±.6 7. ± ±.25 _ ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3% (nh/n 2 ) CORES P4 P5 A7 A1 A12 A121 A151 URT URT19 42 URT24 39 URT Remark: AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering.

151 149 Product Specifications (Mn-Zn Ferrite) Type : RID Cores Ordering Code: Shape: A5 Material 材質 RID3.51*2.6*2.54 Core Size 品名 HP Coating 塗裝 C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS DIMENSIONS (mm) CORES A B C D E RID3.51x2.6x ± ± ± ± ±.1 RID3.6x2.1x ± ± ± ± ±.2 RID3.66x2.36x ± ± ± ± ref RID13.3x7.5x ± ± ± ± ±.2 RID19.45x9.5x ± ± ± ± ±.25

152 15 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: A1 T2.5*1.5*1.3 HP G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS PARYLENE COATING DIMENSIONS (mm) CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) 2.5 ± ± ±.15 T2.5x1.5x ± ± ±.15 T2.54x1.27x1.27 T2.57x1.5x1.3 T2.83x1.3x1.9 T2.9x1.5x1.7 T2.93x1.63x2.42 T3.5x1.27x2 T3.5x1.5x2.6 T3.5x1.68x2.6 T3.5x1.78x2.7 T3.25x1.4x.78 T3.3x1.78x1.27 T3.3x2x2.2 T3.43x1.27x1.27 T3.43x1.78x1.78 T3.45x1.75x1.3 T3.45x1.78x2.2 T3.5x1.5x1.78 T3.5x1.78x1.78 T3.5x1.8x ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

153 151 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 2.5mm - 12.mm Height.7mm - 8.mm Gap Sizes :.3mm -.8mm AL Tolerance AL ± 1% Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A43 A5 A7 A1 A12 A121 A151 T2.5x1.5x T2.54x1.27x T2.57x1.5x T2.83x1.3x1.9 7 T2.9x1.5x T2.93x1.63x T3.5x1.27x T3.5x1.5x T3.5x1.68x T3.5x1.78x T3.25x1.4x T3.3x1.78x T3.3x2x T3.43x1.27x T3.43x1.78x T3.45x1.75x T3.45x1.78x T3.5x1.5x T3.5x1.78x T3.5x1.8x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

154 152 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: A1 T3.68*1.65*2.54 HP G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) PARYLENE COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) T3.68x1.65x ± ± ± ± ± ± T3.94x1.68x ± ± ± ± ± ± T3.94x2.24x ± ± ± ± ± ± T3.94x2.24x ± ± ± ± ± ± T3.95x2.5x ± ± ± ± ± ± T4x2x2 4. ±.2 2. ±.2 2. ±.2 4. ±.2 2. ±.2 2. ± T4x2x ±.2 2. ± ±.2 4. ±.2 2. ± ± T4x2.2x ± ± ±.2 4. ± ± ± T4x2.4x ± ± ± ± ± ± T4.3x1.27x ± ± ± ± ± ± T4.3x2.1x ± ± ± ± ± ± T4.3x2.8x ± ± ± ± ± ± T4.4x1.78x ± ±.2.76 ± ± ±.2.76 ± T4.5x2x ± ± ± ± ± ± T4.5x2.7x ± ± ± ± ± ± T4.83x2.29x ± ± ± ± ± ± T4.95x1.55x ± ± ± ± ± ± T5x3x ±.3 3. ± ±.3 5. ±.3 3. ± ± T5.5x1.78x ± ±.2.85 ± ± ±.2.85 ± T5.5x2.42x1 5.5 ± ± ± ± ± ± T5.8x1.3x ± ± ± ± ± ±

155 153 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 2.5mm - 12.mm Height.7mm - 8.mm Gap Sizes :.3mm -.8mm AL Tolerance AL ± 1% Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A43 A5 A7 A1 A12 A121 A151 T3.68x1.65x T3.94x1.68x T3.94x2.24x T3.94x2.24x T3.95x2.5x T4x2x T4x2x min 58 T4x2.2x T4x2.4x T4.3x1.27x T4.3x2.1x T4.3x2.8x T4.4x1.78x T4.5x2x T4.5x2.7x T4.83x2.29x T4.95x1.55x T5x3x T5.5x1.78x T5.5x2.42x T5.8x1.3x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

156 154 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: P4 T5.84*3.5*1.52 HP G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS PARYLENE COATING DIMENSIONS (mm) CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) 5.33 ± ± ±.2 T5.33x3.12x ± ± ±.2 T5.4x2.6.x2 T5.4x3.15.x1.96 T5.84x3.5x1.52 T5.95x2.8x2.5 T6x3x3 T6x4x2.15 T6.22x2.8x3.38 T6.35x3.81x3.18 T6.5x3.5x2.3 T6.95x4.x2 T7x4.x2 T7.1x4.4x2.7 T7.62x3.18x4.8 T8x4x4 T8x4.5x4 T8.15x4.3x4.5 T8.35x3.33x4.18 T8.89x3.81x ± ±.2 2. ± ± ±.2 2. ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±.3 3. ±.3 3. ±.2 6. ±.3 3. ±.3 3. ± ±.3 4. ± ±.2 6. ±.3 4. ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±.2 4. ± ± ±.2 4. ± ± ±.2 4. ± ± ±.2 4. ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±.3 4. ±.2 4. ±.3 8. ±.3 4. ±.2 4. ± ± ±.2 4. ±.3 8. ± ±.2 4. ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±.15

157 155 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 2.5mm - 12.mm Height.7mm - 8.mm Gap Sizes :.3mm -.8mm AL Tolerance AL ± 1% Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A43 A5 A7 A1 A12 A121 A151 T5.33x3.12x T5.4x2.6x2 336 T5.4x3.15x T5.84x3.5x T5.95x2.8x T6x3x T6x4x T6.22x2.8x T6.35x3.81x T6.5x3.5x T6.95x4x2 215 T7x4x2 545 T7.1x4.4x T7.62x3.18x T8x4x T8x4.5x T8.15x4.3x T8.35x3.33x T8.89x3.81x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

158 156 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: A5 T9*5*3 C G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EPOXY COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) T9x5x3 9.1 ± ±.3 3. ±.3 1.max 4.2min 3.9max T9x5x5 9.1 ± ±.3 5. ±.3 1.max 4.2min 5.9max T9x5x ± ± ±.3 1.max 4.2min 6.4max T9x5x7 9.1 ± ±.3 7. ±.3 1.max 4.2min 7.9max T9x6x3 8.9 ±.3 6. ±.3 3. ±.3 9.8max 5.1min 3.9max T9x6x5 8.9 ±.3 6. ±.3 5. ±.3 9.8max 5.1min 5.9max T9.5x3x ±.4 3. ± ±.2 1.5max 2.1min 2.5max T9.53x4.75x ± ± max 3.9min 3.93max T9.53x4.75x ± max 4.3min 5.53max T9.53x4.75x ± max 4.3min 5.63max T9.53x4.75x ± ± ± max 3.95min 7.13max T9.53x5.59x ± ± max 4.74min 3.93max T9.53x5.59x ± ± max 4.74min 4.73max T9.53x5.59x ± ± max 4.74min 5.63max T9.53x5.59x ± ± ± max 4.74min 8.1max

159 157 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 2.5mm - 12.mm Height.7mm - 8.mm Gap Sizes :.3mm -.8mm AL Tolerance AL ± 1% Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A5 A7 A1 A12 A121 A151 T9x5x T9x5x T9x5x T9x5x T9x6x T9x6x T9.5x3x T9.53x4.75x T9.53x4.75x T9.53x4.75x T9.53x4.75x T9.53x5.59x T9.53x5.59x T9.53x5.59x T9.53x5.59x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

160 158 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: A5 T1*5*3 C G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EPOXY COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) T1x5x ±.2 5. ± ± max 4.27min 3.3max T1x5x3 1. ±.2 5. ± ± max 4.27min 3.73max T1x5x5 1. ±.2 5. ± ± max 4.27min 5.73max T1x6x ± ± ±.3 11.max 5.2min 3.68max T1x6x4 1.1 ± ±.3 4. ±.3 11.max 5.2min 4.9max T1x6x5 1.1 ± ±.3 5. ±.3 11.max 5.2min 5.9max T1x6x6 1.1 ± ±.3 6. ±.3 11.max 5.2min 6.9max T1.6x5.2x ± ± ± max 4.3min 5.2max T11.5x7.5x ± ± ± ±.5 7. ±.5 4. ± T12x6x4 12. ±.4 6. ±.3 4. ±.3 13.max 5.1min 4.9max T12.4x7.8x ± ± ± max 6.9min 4.65max T12.5x7.5x ± ±.3 5. ± max 6.6min 5.9max T12.5x7.5x ± ± ± max 6.6min 7.35max T12.7x5.16x ± ± ± max 4.26min 7.25max T12.7x7.14x ± ± ± max 6.24min 5.68max T12.7x7.14x ± ± ± max 6.24min 7.25max

161 159 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 2.5mm - 12.mm Height.7mm - 8.mm Gap Sizes :.3mm -.8mm AL Tolerance AL ± 1% Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A5 A7 A1 A12 A121 A151 T1x5x T1x5x T1x5x T1x6x T1x6x T1x6x T1x6x T1.6x5.2x T11.5x7.5x T12x6x T12.4x7.8x T12.5x7.5x T12.5x7.5x T12.7x5.16x T12.7x7.14x T12.7x7.14x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

162 16 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: P4 T12.7*7.92*4.7 C G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS EPOXY COATING DIMENSIONS (mm) CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) 12.7 ± ± ±.3 T12.7x7.92x max 7.2min 5.6max T12.7x7.92x4.9 T12.7x7.92x5.2 T12.7x7.92x6.35 T12.7x7.92x7 T12.7x8.12x5.8 T12.85x7.35x5 T13.21x7.37x3.96 T13.3x7.1x12.7 T13.3x8.3x5 T14x7x7 T14x7.5x7 T14x8x4 T14x8x7 T14x8x9 T14x8.4x4 T14x8.4x ± ± ± max 7.2min 5.8max ± ± ± max 7.2min 6.1max ± ± ± max 7.2min 7.25max ± ±.3 7. ± max 7.2min 7.9max ± ± ± max 7.22min 5.98max ± ±.3 5. ± max 6.45min 5.9max ± ± ± max 6.47min 4.86max ± ± ± max 6.1min 13.6max ± ±.3 5. ± max 7.4min 5.9max ±.4 7. ±.3 7. ±.3 15.max 6.1min 7.9max ± ±.3 7. ±.3 15.max 6.6min 7.9max ±.4 8. ±.3 4. ±.3 15.max 7.1min 4.9max ±.4 8. ±.3 7. ±.3 15.max 7.1min 7.9max ±.4 8. ±.3 9. ±.3 15.max 7.1min 9.9max ± ±.3 4. ±.3 15.max 7.5min 4.9max ± ± ±.3 15.max 7.5min 12.9max

163 161 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 12.mm - 38.mm Height 3.mm - 15.mm Gap Sizes :.45mm - 2.mm AL Tolerance AL ± 1% Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A5 A7 A1 A12 A121 A151 T12.7x7.92x T12.7x7.92x T12.7x7.92x T12.7x7.92x T12.7x7.92x T12.7x8.12x T12.85x7.35x T13.21x7.37x T13.3x7.1x T13.3x8.3x T14x7x T14x7.5x T14x8x T14x8x T14x8x T14x8.4x T14x8.4x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

164 162 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: A1 T14*9*5 C G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS EPOXY COATING DIMENSIONS (mm) CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) 14. ±.4 9. ±.3 5. ±.3 T14x9x max 8.1min 5.9max T14.3x9.7x6.3 T15.7x1.2x6.8 T15.88x8.89x4.7 T16x8x8 T16x9x5 T16x9x8 T16x9.6x6.1 T16x1x5 T16x12x7 T16x12x8 T16.4x12x8 T17x1.6x6.8 T18x1x7 T18x1x1 T18x12x6 T19x11x5 T19x13x6 T19.3x1.2x ± ± ± max 8.8min 7.2max ± ± ± max 9.2min 7.6max ± ± ± max 7.99min 5.6max ±.3 8. ±.3 8. ± max 7.1min 8.9max ± ±.4 5. ±.3 17.max 8.5min 5.9max ± ±.4 8. ±.3 17.max 8.5min 8.9max ± ± ± max 8.7min 7.max ±.3 1. ±.3 5. ± max 9.1min 5.9max ± ±.3 7. ± max 11.1min 7.9max ± ±.3 8. ± max 11.1min 8.9max ± ±.3 8. ± max 11.1min 8.9max ± ± ± max 9.7min 7.7max ±.3 1. ±.3 7. ± max 9.1min 7.9max ±.3 1. ±.3 1. ± max 9.1min 1.9max ± ±.2 6. ± max 11.1min 6.8max ± ±.3 5. ± max 1.1min 5.9max ± ±.3 6. ± max 12.1min 6.8max ± ± ±.3 2.3max 9.3min 11.3max

165 163 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 12.mm - 38.mm Height 3.mm - 15.mm Gap Sizes :.45mm - 2.mm AL Tolerance AL ± 1% Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A5 A7 A1 A12 A121 A151 T14x9x T14.3x9.7x T15.7x1.2x T15.88x8.89x T16x8x T16x9x T16x9x T16x9.6x T16x1x T16x12x T16x12x T16.4x12x8 595 T17x1.6x T18x1x T18x1x T18x12x T19x11x T19x13x T19.3x1.2x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

166 164 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: A1 T2*1*7 C G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EPOXY COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) T2x1x7 2. ±.4 1. ±.4 7. ±.3 21.max 9.min 7.9max T2x1x1 2. ±.4 1. ±.4 1. ±.3 21.max 9.min 1.9max T2x1x12 2. ±.4 1. ± ±.3 21.max 9.min 12.9max T2x11x1 2. ± ±.4 1. ±.3 21.max 1.min 1.9max T2x11x15 2. ± ± ±.3 21.max 1.min 15.9max T2x12x8 2. ± ±.4 8. ±.3 21.max 11.min 8.9max T22x11x7 22. ± ±.3 7. ± max 1.1min 7.9max T22x14x ± ± ±.3 23.max 13.min 7.4max T22x14x8 22. ± ±.4 8. ±.3 23.max 13.min 8.9max T22x14x1 22. ± ±.4 1. ±.3 23.max 13.min 1.9max T22x14x ± ± ±.3 23.max 13.min 13.6max T22.1x13.72x ± ± ± max 12.72min 7.25max T23x11x6 23. ± ±.4 6. ±.3 24.max 1.min 6.9max T23x14x7 23. ± ±.4 7. ±.3 24.max 13.min 7.9max T24x18x6 24. ± ±.4 6. ±.3 25.max 17.min 6.9max T25x9x ±.4 9. ± ±.3 26.max 8.min 3.4max T25x15x5 25. ± ±.4 5. ±.3 26.max 14.min 5.9max T25x15x8 25. ± ±.4 8. ±.3 26.max 14.min 8.9max T25x15x9 25. ± ±.4 9. ±.3 26.max 14.min 9.9max T25x15x1 25. ± ±.4 1. ±.3 26.max 14.min 1.9max T25x15x ± ± ±.3 26.max 14.min 13.9max T25x15x ± ± ±.3 26.max 14.min 15.9max

167 165 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 12.mm - 38.mm Height 3.mm - 15.mm Gap Sizes :.45mm - 2.mm AL Tolerance AL ± 1% ELECTRICAL CHARACTERISTICS Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A5 A7 A1 A12 A121 A151 T2x1x T2x1x T2x1x T2x11x T2x11x T2x12x T22x11x T22x14x T22x14x T22x14x T22x14x T22.1x13.72x T23x11x6 21 T23x14x T24x18x6 13 T25x9x2.5 76(P51) T25x15x T25x15x T25x15x T25x15x T25x15x T25x15x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

168 166 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: P5 T25.4*15.5*1 C G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EFFECTIVE PARAMETERS EPOXY COATING DIMENSIONS (mm) CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) 25.4 ± ±.4 1. ±.3 T25.4x15.5x max 14.5min 1.9max T26x14.5x1 T26.4x14.5x1.2 T28x12x12 T28x16x13 T28x18x16 T29x19x7.49 T29x19x15.2 T31x19x6 T31x19x8 T31x19x12 T31x19x13 T31x19x16 T31x2x15 T34.4x2.2x12.6 T34.74x5.4x1. T36x23x15 T36x23Ax22 T36x25x11.3 T36x26x1 26. ± ±.3 1. ±.3 27.max 13.6min 1.9max ± ± ± max 13.5min 11.1max ± ± ± max 11.1min 12.85max ± ± ± max 15.min 14.max ± ± ± max 17.min 17.max ± ± ± max 18.5min 8.24max ± ± ±.3 3.1max 18.5min 16.max ± ±.5 6. ± max 17.9min 6.9max ± ±.5 8. ± max 17.9min 8.9max ± ± ± max 17.9min 13.max ± ± ± max 17.9min 14.max ± ± ± max 17.9min 17.max ±.5 2. ± ± max 18.9min 16.max ±.5 2.2± ± max 19.1min 13.6max ± ± ±.1 _ ± ± ± max 22.35min 16.max ± ± ± max 22.35min 23.max ± ± ± max 24.min 12.2max ± ±.5 1. ± max 24.9min 11.max

169 167 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 12.mm - 38.mm Height 3.mm - 15.mm Gap Sizes :.45mm - 2.mm AL Tolerance AL ± 1% ELECTRICAL CHARACTERISTICS Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A5 A7 A1 A12 A121 A151 T25.4x15.5x T26x14.5x T26.4x14.5x T28x12x12 65 T28x16x T28x18x T29x19x T29x19x T31x19x T31x19x T31x19x T31x19x T31x19x T31x2x T34.4x2.2x T34.74x5.4x1. 83 T36x23x T36x23Ax T36x25x T36x26x1 165 Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

170 168 Product Specifications (Mn-Zn Ferrite) Type : T Cores Ordering Code: Shape: A5 T37*22*15 C G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EPOXY COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) T37x22x ± ± ± max 2.9min 16.max T38x19x ± ± ± max 17.85min 13.9max T38x2.5x ± ± ± max 19.6min 14.8max T38x22x ± ± ± max 2.8min 15.max T4x5.3x1. 4. ± ±.4 1. ± max 4.3min 1.7max T4x25x2 4. ± ±.8 2. ± max 23.6min 21.max T42x26x ± ± ± max 24.6min 13.8max T47x27x ± ± ± max 25.8min 16.max T48x3x ±.8 3. ± ± max 28.6min 16.max T48x32x ± ± ± max 3.5min 18.2max T49.1x33.8x ± ± ±.4 5.7max 32.2min 16.9max T5x3x2 5. ± ±.7 2. ± max 28.4min 21.max T5x34x3 5. ± ±.5 3. ± max 32.9min 31.max T51x31x2 51. ± ±.5 2. ± max 29.7min 21.max T55.5x32.6x ± ± ± max 3.9min 19.1max T58.3x4.8x ± ± ±.5 6.5max 39.2min 18.7max T63x38x ± ± ±.6 65.max 35.8min 26.2max T78x5.5x ± ± ±.5 8.1max 48.4min 17.1max T8x4x15 8. ± ± ± max 38.1min 16.2max T85x62x2 85. ± ± ± max 6.4min 21.4max T85.7x55.5x ± ± ± max 53.4min 18.2max

171 169 Product Specifications (Mn-Zn Ferrite) MANUFACTURING CAPABILITY APPLICATIONS Gapped Toroid Sizes(OD) 12.mm - 38.mm Height 3.mm - 15.mm Gap Sizes :.45mm - 2.mm AL Tolerance AL ± 1% ELECTRICAL CHARACTERISTICS Power Telecom DC-DC Converters Compact Power Transformer Small, Low Profile Power lnductors xdsl pass-band Filiters Spilters EMI Inductors Filiter Inductors with Tight Tolerance AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P47 P5 N42 A5 A7 A1 A12 A121 A151 T37x22x min T38x19x T38x2.5x (A6) T38x22x14 17 T4x5.3x1. 13 T4x25x (A6) T42x26x T47x27x T48x3x T48x32x T49.1x33.8x T5x3x2 5 1 T5x34x3 11 T51x31x T55.5x32.6x T58.3x4.8x (P46) T63x38x T78x5.5x T8x4x15 52 T85x62x T85.7x55.5x Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

172 17 Product Specifications (Mn-Zn Ferrite) Type : RH Cores Ordering Code: Shape: A5 Material 材質 RH3*1.2*6.5 Core Size 品名 C Coating 塗裝 C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) EPOXY COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) RH3x1.2x ± ± ±.2 3. ± ± ± RH3x1.2x ± ± ±.2 3. ± ± ± RH3x1.2x7 3. ± ± ±.2 3. ± ± ± RH4.1x2.7x1 4.1 ± ±.1 1. ± ± ±.1 1. ± RH5.15x2.5x ± ± ± ± ± ± RH5.33x1.58x ± ± ± ± ± ± RH5.6x2.65x ± ± ± ± ± ± RH6x3x25 6. ± ± ± ± ± ± RH6.6x3.3x ± ± ± ± ± ± RH9.5x4.8x9.5* 9.5 ± ± ± max* 3.9min* 1.4max* RH9.75x6.7x15* 9.75 ± ± ± max* 5.8min* 15.9max* RH9.75x6.7x19.6* 9.75 ± ± ± max* 5.8min* 2.5max* RH1x4.5x2* 1. ± ±.3 2. ±.5 1.9max* 3.6min* 21.1max* RH17x4.5x ± ± ±.8 _ Remark: * Epoxy coating dimensions.

173 171 Product Specifications (Mn-Zn Ferrite) ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) AL ± 3%(nH/N 2 ) CORES P4 P5 A5 A7 A1 A12 A121 A151 RH3x1.2x3.5 3 RH3x1.2x RH3x1.2x7 6 RH4.1x2.7x1 2 RH5.15x2.5x RH5.33x1.58x RH5.6x2.65x RH6x3x25 8 RH6.6x3.3x RH9.5x4.8x RH9.75x6.7x RH9.75x6.7x RH1x4.5x2 8 RH17x4.5x19 11 Remark: 1. AL Value Testing Condition : 1kHz, 5mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material (1) Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max. (2) Toroid Size T9 and Above:green epoxy coating, breakdown voltage:15vdc, coating thickness :.6mm max.

174 172 Product Specifications (Ni-Zn Ferrite) Type : R Cores C : Highly Ordering Code: H5 Material 材質 R1.6*C Core Size 品名 Shape: Type:1 Type:2 Type:3 K E 2º F G DIMENSIONS DIMENSIONS (mm) CORES A C O Type R1.6xC 1.6 ± _ 2 R1.8xC _ R2.xC 2. ± _ 1 +. R2.4xC _ R2.5xC _ R3.xC 3. ± _ 1 R3.5xC 3.5 ± _ 1 +. R4.xC º (Ref) 3.1 R4.xC 4. ± _ 1 R4.6xC _ 1 +. R5.xC º (Ref) 3.1 R5.xC 5. ± _ 1 R5.2xC º (Ref) 3 R5.5xC º (Ref) 3 +. R6.xC º (Ref) R6.xC _ R6.5xC _ R7.xC 7. ± _ 1 +. R7.xC º (Ref) 3.2 R8.xC 8. ± _ 1 R8.xC _ 1 +. R8.xC º (Ref) 3 R9.5xC 9.5 ± _ 1 R1xC 1. ± _ 1 +. R1xC _ R12.xC 12. ± _ 1

175 173 Product Specifications (Ni-Zn Ferrite) Type : SC Cores Ordering Code: Shape: Type:1 K8 Material 材質 SC8.4*8 Core Size 品名 Type:2 Type:3 Type:4 Type:5 DIMENSIONS DIMENSIONS (mm) CORES A B C D E F G SC ± ± ± ± ± ± ±.2 SC8.4x8 8.4 ± ± ± ± ± ±.15.8 ±.15 SC1x8x ± ±.2 8. ± ± ± ±.2 _ SC1.4x1x9 1.4 ±.2 9. ±.2 1. ± ± ± ± ±.2 SC ± ± ± ± ± ± ±.1 SC11.4A 11.4 ± ± ± ± ± ±.2 4. ±.2 SC11.6x ±.2 1. ± ± ± ± ± ±.15 SC12x1 12. ± ± ±.2 _ 2.1 ± ± ±.2 EFFECTIVE PARAMETERS AND ELECTRICAL CHARACTERISTICS DIMENSIONS (mm) CORES H J K M N Wt(g/set) Type SC ±.2.22 ± ± SC8.4x8 1.3 ±.1.55 ±.1 _ SC1x8x ± ±.15 _ SC1.4x1x9 1. ±.2.22 ±..3 ± SC ±.1.8 ±..4 ± SC11.4A 1.3 ±.2.27 ±..8 ± SC11.6x ±.1.8 ±..4 ± SC12x1 1.4 ± ±.15 _ 3.4 ± ±

176 174 Product Specifications (Ni-Zn Ferrite) Type : DR Cores B45 Material 材質 Ordering Code: DR1.95*1.4*.85*.9R Core Size 品名 R : Slot, 出線槽 D3 :Shape with different flange size, 上下擺外徑不同 Shape: Type:1 W : Hole, 接 PIN 的孔 ; (2W: 2 holes) SV : Plating, 電鍍 Type:2 Type:3 Type:4 Type:5 DIMENSIONS DIMENSIONS (mm) CORES A A1 B C D F H I Wt(g/set) Type DR1.67x1.6x.93x.9WW 1.67 ±.7 _.87 ± ±.1 _.9 ±.7.35 ±.7.35 ± DR1.95x1.4x.85x.9R 1.95 ±.7 _.85 ± ±.5 _.9 ±.1.25 ±.1.25 ± DR2x1.1x1x ±.5 _ 1. ± ±.5 _.56 ±.5.27 ±.5 _.1 1 DR2.15x.9x.8x.4D ± ±.1.9 ±.5.9 ±.1 _.4 ±.1.25 (Ref).25 (Ref).1 2 DR2.3x.9x.8x.4D3 2.3 ± ±.1.8 ±.5.9 ±.5 _.4 ±.5.25 (Ref).25 (Ref).1 2 DR2.3x1x1.1x ±.7 _ 1.1 ±.5 1. ±.5 _.58 ±.5.21 ±.5.21 ± DR2.35x1.1x1x.5R 2.35 ±.7 _ 1.1 ±.5 1. ±.6 _.5 ±.1.25 (Ref).25 (Ref).1 5 DR2.45x2.25x1.3x1.35WW 2.45 ±.5 _ 1.3 ± ±.1 _ ±.7.45 ± DR2.5x2.5x1.1x1.34WW 2.5 ±.1 _ 1.1 ± ±.1 _ 1.34 ±.7.58 (Ref).58 (Ref) _ 6 DR2.8x1.5x.85x ±.1 2. ±.1.85 ± ±.1 _.5 ±.1.28 ±.1.28 ± DR2.8x1.35x1.2x.75D3 2.8 ±.1 2. ± ± ±.1 _.75 ±.1.3 ±.1.3 ± DR2.85x.65x1.3x ± ± ±.5.65 ±.5 _.25 ±.5.2 ±.5.2 ± DR2.9x1x1.5x.6R 2.9 ±.1 _ 1.5 ±.1 1. ±.5 _.6 ±.1.2 ±.1.2 ± DR3.2x.65x1.5x ± ± ±.5.65 ±.5 _.25 ±.5.2 ±.5.2 ± DR3.3x1.1x1.1x ±.8 _ 1.1 ± ±.8 _.45 ±.5.33 ±.5.33 ± DR3.5x1.5x1.35x.7D3 3.5 ± ± ± ±.1 _.7 ±.1.4 ±.1.4 ± DR3.5x2.2x1.85x ±.15 _ 1.85 ± ±.15 _ 1.2 ±.15.5 ±.15 _.6 1 DR3.5x4.5x1.9x3WW 3.5 ±.15 _ 1.9 ± ±.2 _ 3. ± (Ref).75 (Ref) _ 7 DR3.8x1.75x1.55x.95R 3.8 ±.1 _ 1.55 ± ±.1 _.95 ±.1.4 ±.1.4 ± DR3.8x1.75x2x ±.5 _ 2. ± ±.5 _ 1.5 ±.5.35 ±.5.35 ± DR3.9x.85x2x ± ±.5 2. ±.5.85 ±.5 _.35 ±.5.25 ±.5.25 ± DR4.x3.x1.7x1.2WW 4. ±.1 _ 1.7 ±.. ±.15 _ 1.2 ±.1.9 (Ref).9 (Ref) _ 6 DR4.x4.5x2.x ±.2 _ 2. ± ±.2 _ 2.3 ± (Ref) 1.1 (Ref) _ 1 DR4.2x2.5x1.65x ±.5 _ 1.65 ± ±.5 _ 1.6 ±.5.45 ±.5.45 ± DR4.25x2.3x2.45x1.3D ± ± ± ±.5 _ 1.35 ±.5.3 ±.5.65 ± DR4.4x.77x2.1x ± ± ±.5.77 ±.5 _.27 ±.5.25 ±.5.25 ± DR4.5x3.2x1.7x1.5R 4.5 ±.2 _ 1.7 ± ± ± ± ±.15 _ DR4.5x3.2x2.45x2.2R 4.5 _ 2.2 ±..2 ±.1 _ ±.1.5 ±.1.5 ± DR4.6x1.6x1.6x.65D3 4.6 ±..32 ± ± ±.1 _ ± DR4.7x2.2x1.6x1.3D ± ± ±.8 _ ±.8.45 ±.8.45 ± DR4.9x1.8x1.7x1 4.9 ± ± ± ±.5 _ 1. ±.5.4 ±.5.4 ±

177 175 Product Specifications (Ni-Zn Ferrite) Type:6 Type:7 Type:8 Type:9 Type:1 Type:11 Type:12 DIMENSIONS DIMENSIONS (mm) CORES A A1 B C D F H I Wt(g/set) Type DR5.x1.7x2x1.5D ±.1 2. ± ±.5 _ ±.1.3 ±.5.3 ± DR5.x7.x2.2x.4 5. ±.2 _ 2.2 ± ±.3 _ 4. ± (Ref) 1.5 (Ref) _ 1 DR5.x8.x2.5x4.2WW 5. ±.2 _ 2.5 ± ±.3 _ 4.2 ± (Ref) 1.9 (Ref) _ 7 +. DR5.7x1.7x1.8x.8D ± ± ±.7 _ ±.7.45 ±.7.45 ± DR5.8x4.1x3.7x2.9D3 5.8 ± ±..7 ± ±.1 _ 2.9 ±.1.6 ±.1.6 ± DR5.8x4.5x2.5x2.4R 5.8 ±.15 _ 2.5 ± ± ± ±.15 _.8 ± DR6.x1.3x3.8x.6 6. ±.1 _ 3.8 ± ±.1 _.6 ±.1.35 ±.1.35 ± DR6.x8.x3.x3.WW 6. ±.2 _ 3. ±.2 8. ±.3 _ 3. ± (Ref) 2.5 (Ref) _ 7 DR6.x8.x2.5x4.2-2W 6. ±.2 _ 2.5 ±.2 8. ±.3 _ 4.2 ± (Ref) 1.9 (Ref) _ 8 DR6.x8.x2.5x4.4R 6. ±.15 _ 2.5 ± ±.25 _ 4.4 ± (Ref) 1.8 (Ref) _ 5 DR6.4x1.4x2.18x.6D3 6.4 ± ± ± ±.5 _.6 ±.5.4 ±.5.4 ± DR6.5x9.6x3.x4.8R2W 6.5 ±.2 _ 3. ± ±.3 _ 4.8 ± (Ref) 2.4 (Ref) _ 9 DR7x4.2x2.55x2 7. ±.1 7. ± ± ±.1 2. ±.8 1. ±.8 1. ± DR7.5x9.x3.x2.8WW 7.5 ±.2 _ 3. ±.2 9. ±.3 _ 2.8 ±..1 (Ref) 3.1 (Ref) _ 7 DR7.5x9.x3.2x5.R2W 7.5 ±.2 _ 3.2 ±.2 9. ±.3 _ 5. ±.2 2. (Ref) 2. (Ref) _ 9 DR7.6x3.7x3.2x ±.15 _ 3.2 ± ±.1 _ 2.2 ±.1.75 ±.1.75 ± DR7.8x5x3x2.6R 7.8 ±.2 _ 3. ± ±.2 7. ± ± ±.15.9 ± DR8.x4.1x4x2.5D3 8. ± ± ± ±.1 _ 2.5 ±.1.8 ±.1.8 ± DR8.x4.2x4x2.6RD3 8. ± ± ± ±.1 _ 2.6 ±.1.8 ±.1.8 ± DR8.x1.x3.x5.-2W 8. ±.2 _ 3. ±.2 1. ±.4 _ 5. ± (Ref) 2.5 (Ref) _ 8 DR8.x1.x4.x6.R2W 8. ±.2 _ 4. ±.2 1. ±.3 _ 6. ±.2 2. (Ref) 2. (Ref) _ 9 DR8.38x4x3x ±.15 _ 3. ± ±.2 _ 2. ± (Ref) _.61 1 DR8.7x2.7x3.x1.5D3 8.7 ± ±.. ± ±.1 _ 1.5 ±.1.6 ±.1.6 ± DR9.6x3.65x5.2x1.8D3 9.6 ± ± ± ±.15 _ 1.8 ± ±.1.93 ± DR9.8x3.65x4.8x1.95D3 9.8 ± ± ± ±.15 _ 1.95 ±.1.85 (Ref).85 (Ref).67 2 DR9.8x5.2x5.5x3.2R 9.8 ±.15 _ 5.5 ± ±.15 _ 3.2 ± ±.1 1. ± DR1x5.4x4x2.6R 1. ±.2 _ 4. ± ±.2 9. ± ± ± ± DR1x16x6.x1WW 1. ±.3 _ 6. ± ±.5 _ 1. ±.3 3. (Ref) 3. (Ref) _ 7 DR1x16x6.x1A2W 1. ±.3 _ 6. ± ±.4 _ 1. ±.3 3. (Ref) 3. (Ref) _ 8 DR12.8x1.x6.x6.6R 12.8 ±.2 _ 6. ± ±.3 _ 6.6 ± ± ±..24 5

178 176 Product Specifications (Ni-Zn Ferrite) Type : SRI/RI Cores Ordering Code: Shape: Type:1 Type:2 B45 Material 材質 SRI3*2.4*.9 Core Size 品名 Type:3 Type:4 Type:5 Type:6 Type:7 Type:8 DIMENSIONS DIMENSIONS (mm) CORES A A1 A2 C D Wt(g/set) Type SRI2.95x2.15x ± ±.1 _ 2.15 ± ± SRI3x2.4x.9 3. ±.. ±.. ± ±.1.9 ± SRI3x2.4x ± ± ± SRI3x2.4x ± ± ±.1 _ 1 SRI3x2.5x ± ± ± SRI3.2x.98x ±..2 ±.1 _ 2.55 ±.3.98 ± SRI3.5x3.1x1 3.5 ±..5 ±.1 _ 3.1 ±.1 1. ± SRI3.8x3.1x ± ± ± SRI4.7x3.9x ± ±.1 _ 3.9 ± ± SRI4.8x3.9x ±.1 5. ± ±..9 ± ± SRI4.8x4.1x ± ± ± ± ± SRI5.1x4x ± ±.1 _ 4. ± ± SRI5.1x4.3x ± ±.1 _ 4.3 ± ± SRI5.7x4.7x ± ±.1 6. ± ± SRI5.9x4.4x ± ±.1 _ 4.4 ± ± SRI5.95x4.75x ±.15 _ ±

179 177 Product Specifications (Ni-Zn Ferrite) Type:9 Type:1 Type:11 Type:12 Type:13 Type:14 Type:15 Type:16 Type:17 Type:18 Type:19 Type:2 DIMENSIONS DIMENSIONS (mm) CORES A A1 A2 C D E Wt(g/set) Type SRI6.7x5.5x ± ± ± SRI6.8x5.3x4 6.8 ±.1 7. ± ± ±.1 4. ±.1 _ SRI7.3x5.6x ± ± ±.15 9 SRI7.3x5.9x ± ± ± SRI7.3x5.9x ± ± ± ± SRI8x6.6x ± ±.15 _ 6.6 ±..4 ±.1 _ SRI8.1x6.5x ± ± ± ±..65 ±.1 _ SRI1x8.2x ±.2 1. ±.2 _ 8.2 ± ±.15 _.67 5 SRI12x1.6x ± ± ± SRI12x1.8x SRI12.1x1.6x ± ± ±.15 8 SRI14.8x12.2x ± ± ± ± SRII4.8x12.3x ± ± ± ± SRI19.9x17.7x ± ±.2 _ 17.7 ± ±.15 _ RI3.3x2.58x ± ±.1 _ 2.58 ± RI12.2x1.6x ± ±.15 _ 1.6 ±

180 178 Product Specifications (Ni-Zn Ferrite) Type : SDR/CM Cores Ordering Code: B45 SDR3*.93*1.2*.27D3SV K8 CM2.*1.27*.9SV Material 材質 Core Size 品名 Material 材質 Core Size 品名 D3 :Shape with different flange size, 上下擺外徑不同 SV : Plating, 電鍍 Shape: Type:1 Type:2 DIMENSIONS DIMENSIONS (mm) CORES A A1 B C D D1 E SDR3x.93x1.2x.27D3SV 3. ±.5 3. ± ±.5.93 ± ±.5 SDR3Ax.9x1.4x.3D3SV 3. ±.5 3. ± ±.7.9 ± ±.7 _ 2.5 ±.7 SDR4x.93x2.2x.27D3SV 4. ±.5 4. ±.5 2.2±.5.93 ± ±.5 SDR4Ax.9x2x.25D3SV 4. ±.7 4. ±.7 2. ±.7.9 ± ±.7 _ 3.5 ±.5 SDR6Ax.9x3.8x.25D3SV 6. ±.1 6. ±..8 ±.1.9 ± ±.1 _ 5.5 ±.1 SDR6Ax1.5x3.4x.3D3SV 6. ±.1 6. ±..4 ± ± ±.1 _ 5.5 ±.1 SDR6Dx.9x4.x.25D3SV 5.95 ± ±.1 4. ±.1.9 ± ±.1 5. ± ±.1 SDR6Dx1.8x3.4x.32D3SV 5.95 ± ±..4 ± ± ±.1 5. ± ±.1 SDR6Dx1.35x3.3x.55D3SV 5.95 ± ±..3 ± ± ±.1 5. ± ±.1 SDR6Ex1.4x3.3x.55D3SV 5.95 ± ± ± ± ±.1 5. ± ±.1 SDR8x3.7x3.6x2.SV ±..7 ± ±.1 _ 6.3 ±.15 CM2.x1.27x.9SV 2. ±.8 _.9 ± ±.8.57 ±.8.97 ±.8 _

181 179 Product Specifications (Ni-Zn Ferrite) Type:3 Type:4 Type:5 DIMENSIONS DIMENSIONS (mm) CORES F H H1 I K Wt(g/set) Type SDR3x.93x1.2x.27D3SV.27 ±.5.33 ±.5.1 ±.5.33 ± ± SDR3Ax.9x1.4x.3D3SV.3 ±.5.32 ±.5 _.28 ±.5 1. ± SDR4x.93x2.2x.27D3SV.27 ±.5.33 ±.5.1 ±.5.33 ± ± SDR4Ax.9x2x.25D3SV.25 ±.5.35 ±.5 _.3 ± ± SDR6Ax.9x3.8x.25D3SV.25 ±.4.35 ±.5 _.3 ± ± SDR6Ax1.5x3.4x.3D3SV ±.5 _.38 ± ± SDR6Dx.9x4.x.25D3SV.25 ±.5.35 ±.5.12 ±.5.3 ± ± SDR6Dx1.8x3.4x.32D3SV.32 ±.5.38 ±.5.12 ±.5.38 ± ± SDR6Dx1.35x3.3x.55D3SV.55 ±.5.45 ±.5.12 ±.5.35 ± ± SDR6Ex1.4x3.3x.55D3SV.55 ±.8.45 ±.8.18 ±.5.4 ± ± SDR8x3.7x3.6x2.SV 2. ±.1.95 ±.1.4 ±.1.7 ±.1 4. ± CM2.x1.27x.9SV.25 ±.8 _.8 ±

182 18 Product Specifications (Ni-Zn Ferrite) Type : RID Cores Ordering Code: Shape: Type:1 K8 Material 材質 RID5*3*3 Core Size 品名 HP Coating 塗裝 C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen Type:2 Type:3 DIMENSIONS DIMENSIONS (mm) CORES A B C D E Wt(g/set) Type RID3.6x2.1x ± ± ± ± ±.2 _ 3 RID5x2x ±.2 2. ± ± ref 1 RID5x2.3x ± ± ± ±.1 1 RID5x3x3 5. ±.3 3. ±.2 3. ± ± ±.2 _ 1 RID5.1x2.6x ± ± ±.1 1 RID6x3x5 6. ±.3 3. ±.3 5. ± ±.1 1 RID6.9x4.6x ± ± ± ±.1 2 RID7.1x4.x ±.2 4. ±.2 8. ± ±.1 2 RID8.4x4.2x7 8.4 ± ±.2 7. ± ±.1 2 RID9.4x5.3x8 9.4 ± ± ± ±.1 2 RID12x6.8x4 12. ± ±.3 4. ± ±.2 1 RID13.3x7.5x ± ± ± ± ±.3 _ 1 RID13.5x7.5x ± ± ± ± ± RID2x1x15 2. ±.5 1. ± ±

183 181 Product Specifications (Ni-Zn Ferrite) Type : R Cores (Multi Aperture) Ordering Code: H5 Material 材質 R2H7/5.5 Core Size 品名 Shape: Type:1 R2H:2 Holes Type:2 Type:3 DIMENSIONS DIMENSIONS (mm) CORES A C E L Type R2H7/ ± ± ± ref 1 R6H6/1 6. ± ± ref 2 R11H1/1 1. ± ± ref 3

184 182 Product Specifications (Ni-Zn Ferrite) Type : AR Cores Shape: Ordering Code: H5 Material 材質 AR4.1*4.2*4 Core Size 品名 B DIMENSIONS DIMENSIONS (mm) CORES A B C AR4.1x4.2x4 4.1 ± ±.2 4. ± 1. AR4.1x5x4 4.1 ±.2 5. ±.2 4. ± 1. AR6.15x6.35x ± ±.2 5. ± 1. AR6.15x6.35x ± ± ± 1. AR9x1x5 9. ±.3 1. ±.3 5. ± 1. AR9x1x6 9. ±.3 1. ±.3 6. ± 1. AR9.2x9.4x ± ± ± 1. AR9.2x9.4x ± ± AR11x12x6 11. ± ±.4 6. ± 1.6

185 183 Product Specifications (Ni-Zn Ferrite) Type : FC Cores Ordering Code: Shape: Type:1 H5 Material 材質 FC14.5*2.75*15 Core Size 品名 Type:2 Type:3 DIMENSIONS DIMENSIONS (mm) CORES A B C D E Type FC11.5x3x ± ± ±.25.7 ± ±.2 3 FC14.5x2.75x ± ± ±.4.7 ± ±.4 1 FC14.5x2.75x ± ±.3 2. ±.5.7 ± ±.4 1 FC15.5x3.4x ± ± ± ± ±.38 2 FC17x5x6 17. ±.4 5. ±.3 6. ±.5.8 ± ±.4 1 FC17x5x9 17. ±.4 5. ±.3 9. ±.5.8 ± ±.4 1 FC22.35x7.75x ± ± ± ± ±.25 3 FC24.5x5x ± ± FC31x5x ± ±.5 1. ± FC31.4x7.75x ± ± ± ± ±.38 3 FC37x8x ±.8 8. ± ± ± ±.8 1

186 184 Product Specifications (Ni-Zn Ferrite) Type : I Cores (Plates) Ordering Code: H5 Material 材質 I11*2*1 Core Size 品名 Shape: Type:1 Type:2 Type:3 Type:4 DIMENSIONS DIMENSIONS (mm) CORES A B C Type I11x2x1 11. ±.1 2. ±.5 1. ±.5 1 I11x2x1A 11. ±.1 2. ±.5 1. ±.5 2 I11.3x2.1x I11.3x2.2x I29.2x12x ± ±.3 5. ±.3 4 I31.2x9.6x ± ± ±.3 4 I43.5x16.2x ± ±.3 4 I5x12x ±.2 3. ±.1 1

187 185 Product Specifications (Ni-Zn Ferrite) Type : I Cores Ordering Code: Shape: Type:2 K81 Material 材質 I53.3*53.3*2.5 Core Size 品名 Type:3 Type:6 Type:7 Type:8 Type:9 DIMENSIONS DIMENSIONS (mm) CORES A B C I Wt(g/pc) Type I25x25x ± ±.4.6 ± I26.42x26.42x ±.38 _ ± ± I5x12x3 5. ±.6 _ 12. ±.3 3. ± I5x8x ±.6 _ 8. ± ± I5x5x ±.4 _ 5. ± ± I51.2x46.5x ± ± ±.5.8 ± I53.3x53.3x ±.7 _ 53.3 ± ± I54x46x ±.5 _ 46.5 ±.4.8 ± I59.5x52x ±.5 _ 52. ± ±

188 186 Product Specifications (Ni-Zn Ferrite) Type : ET Cores Ordering Code: K12 Material 材質 ET25/9.2 Core Size 品名 Shape: DIMENSIONS DIMENSIONS (mm) CORES A B C D E F ET25/ ± ± ±.3 2. ± ±.4 7. ±.25 EFFECTIVE PARAMETERS EFFECTIVE PARAMETERS CORES C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) ET25/

189 187 Product Specifications (Ni-Zn Ferrite) Type : T Cores (EMI Suppression) Ordering Code: K8 T3.5*1.6*3.25 Material 材質 Core Size 品名 Shape: Type:1 Type:2 DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) Impedance CORES A E C 25MHz (min) 1MHz (min) Type T3.5x1.6x ± ± ± T4x2x3 4. ±.2 2. ±.. ± T5.84x3.5x ± ± ± T6.35x3.18x ± ±.2 6. ± T7.6x3.6x ± ± ± T8x4x3 8. ±.3 4. ± ± T9.52x4.8x ± ± ± T1.5x5.5x5 1.5 ± ±.2 5. ± T12x6x4 12. ±.4 6. ±.2 4. ± T12.7x7.92x ± ± ± T13x7x7 13. ± ± T14.27x6.35x ± ± ± T16x9x4 16. ±.5 9. ±.3 4. ± T17.42x9.52x ± ± ± T18.5x1x ±.5 1. ±.3 5. ± T2x1x5 2. ±.5 1. ±.3 5. ± T25x15x ± ± ± T31x19x ± ± ± T38.1x19.5x ± ± ±

190 188 Product Specifications (Ni-Zn Ferrite) Type : T Cores Ordering Code: Shape: K8 T2.3*1.27*.76 HP G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) PARYLENE COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) T2.3x1x ± ± ± ± ± ± T2.3x1.1x ± ± ± ± ± ± T2.3x1.27x ± ± ± ± ± ± T2.3x1.27x ± ± ± ± ± ± T2.5x1.5x ± ± ± ± ± ± T2.54x1.27x ± ± ± ± ± ± T2.54x1.27x ± ± ± ± ± ± T2.54x1.27x ± ± ± ± ± ± T2.54x1.27x ± ± ± ± ± ± T3.5x1.27x ± ± ± ± ± ± T3.5x1.27x2 3.5 ± ± ± ± ± ± T3.5x1.5x2 3.5 ± ± ± ± ±.15 2.± T3.5x1.5x ± ± ± ± ± ± T3.5x1.68x ± ± ± ± ± ± T3.5x1.78x ± ± ± ± ± ± T3.5x1.78x2 3.5 ± ± ± ± ± ±

191 189 Product Specifications (Ni-Zn Ferrite) ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES K7 K8 K81 K1 K11 K12 K17 B3 B45 B6 B9 T2.3x1x T2.3x1.1x T2.3x1.27x T2.3x1.27x T2.5x1.5x T2.54x1.27x T2.54x1.27x T2.54x1.27x T2.54x1.27x T3.5x1.27x T3.5x1.27x T3.5x1.5x T3.5x1.5x T3.5x1.68x T3.5x1.78x T3.5x1.78x2 355 Remark: 1. AL Value Testing Condition : 1kHz, 1mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material : Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max.

192 19 Product Specifications (Ni-Zn Ferrite) Type : T Cores Ordering Code: Shape: K8 T3.3*1.2*1.6 HP G Material 材質 Core Size 品名 Coating 塗裝 Gapped AL Value C : Epoxy Coating of Halogen-Free UC : Epoxy Coating of UL & Halogen HP : Parylene Coating of Halogen-Free P : Parylene Coating of Halogen DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) PARYLENE COATING DIMENSIONS (mm) EFFECTIVE PARAMETERS CORES A E C C1(mm -1 ) Le(mm) Ae(mm 2 ) Ve(mm 3 ) Wt(g/set) T3.3x1.2x ± ± ± ± ± ± T3.3x1.3x ± ± ± ± ± ± T3.43x1.27x ± ± ± ± ± ± T3.5x1.5x3 3.5 ± ± ± ± ± ± T3.5x1.8x ± ± ± ± ± ± T3.5x1.8x ± ± ± ± ± ± T3.94x2.24x ± ± ± ± ± ± T4x2x1 4. ±.3 2. ±.3 1. ±.2 4. ±.3 2. ±.3 1. ± T4x2x2 4. ±.2 2. ±.2 2. ±.2 4. ±.2 2. ±.2 2. ± T4x2x3 4. ±.2 2. ±.2 3. ±.2 4. ±.2 2. ±.2 3. ± T4.4x2.8x ± ± ± ± ± ± T4.83x2.29x ± ± ± ± ± ± T4.95x2.97x ± ± ± ± ± ± T5x3x2 5. ±.15 3.± ± ±.15 3.± ± T5.38x2.97x ± ± ± ± ± ± T5.84x3.5x ± ± ± ± ± ± T5.84x3.5x ± ± ± ± ± ± T6x3x2 6. ±.3 3. ±.3 2. ±.2 6. ±.3 3. ±.3 2. ± T7.62x3.18x ± ± ± ± ± ± T16.25x7.9x14.3* ± ± ± max 6.9min 15.2max T24x11x14* 24. ± ± ± max 1.min 15.1max Remark: * Epoxy coating dimensions.

193 191 Product Specifications (Ni-Zn Ferrite) ELECTRICAL CHARACTERISTICS AL ± 25% (nh/n 2 ) CORES L2 K7 K8 K81 K1 K11 K12 K15 K17 B3 B45 B5 B6 B9 T3.3x1.2x T3.3x1.3x T3.43x1.27x3 55 T3.5x1.5x3 385 T3.5x1.8x T3.5x1.8x T3.94x2.24x T4x2x1 15 T4x2x T4.4x2.8x T4x2x T4.83x2.29x T4.95x2.97x T5x3x2 2 T5.38x2.97x T5.84x3.5x T5.84x3.5x T6x3x T7.62x3.18x T16.25x7.9x T24x11x Remark: 1. AL Value Testing Condition : 1kHz, 1mV, 1Ts. If testing condition is different from ACME's, please specify upon request & ordering. 2. Coating Material : Toroid Size T8 and Below:clear parylene coating, breakdown voltage:1vdc, coating thickness :.5mm max.

194 192 Product Specifications (Ni-Zn Ferrite) Type : RH Cores Ordering Code: K8 RH3*1.2*3.5 Shape: Type:1 Material 材質 Core Size 品名 Type:2 Type:3 DIMENSIONS AND EFFECTIVE PARAMETERS DIMENSIONS (mm) Impedance CORES A E C 25MHz (min) 1MHz (min) Type RH2.3x.89x ± ± ±.7 2 RH3x1.2x ± ± ±.2 1 RH3.5x.9x ±.2.9 ± ±.2 3 RH3.5x1.2x4 3.5 ± ± ± RH3.5x1.6x5 3.5 ± ±.1 5. ± RH4x2x6 4. ±.2 2. ± ± RH5x1.5x ± ± ± RH5.8x3.8x1 5.8 ± ±.2 1. ± RH6.35x3.18x ± ± ± RH7.8x4x ± ± ± RH9x4.5x1 9. ± ± ± RH9.52x5.8x ± ± ± RH1.5x5.5x2 1.5 ± ±.2 2. ± RH12x5.6x3 12. ± ±.2 3. ± RH12.7x7.92x ± ± ± RH14.27x6.35x ± ± ± RH15.88x7.87x ± ± ± RH16x9x ±.5 9. ± ± RH17.42x9.52x ± ± ± RH18.5x1x ±.5 1. ± ± RH26x13x ± ± ±

195 Introduction ACME Electronics (Guangzhou) Co., Ltd., Guangdong province, China ACME Electronics (Kunshan) Co., Ltd., Jiang-Su Province, China Our Commitment - Emphasis on Customer Service - Emphasis on Manufacturing Quality - Emphasis on Competitive Pricing - Emphasis on Timely Deliveries - Mutual Beneficial Customer Partnerships - Maintain TS 16949, ISO 91, QC 8 and ISO 141 ACME Ferrite Product SDN. BHD.,Ipoh,Malaysia Our Quality Policy Our corporate philosophy is rooted firmly in achieving and maintaining MANUFACTURING EXCELLENCE through the efficient production of the highest quality products for our customers. This will be accomplished by an EMPOWERED, QUALITY CONSCIOUS WORK FORCE and SUPPLIER BASE through CONTINUOUS IMPROVEMENT.

EHE TECHNICAL BULLETIN. Ferrimagnetic 1 materials for HF welding impeders. TB1010. History. Composition. Manufacturing Process

EHE TECHNICAL BULLETIN. Ferrimagnetic 1 materials for HF welding impeders. TB1010. History. Composition. Manufacturing Process BULLETIN EHE TECHNICAL TB1010 Ferrimagnetic 1 materials for HF welding impeders. There is now a wide variety of ferrite types available from several manufacturers around the world. Only a small number

More information

Temperature time profile this determines the grain growth, i.e. their final size in the order of some µm, and the properties of grain boundaries.

Temperature time profile this determines the grain growth, i.e. their final size in the order of some µm, and the properties of grain boundaries. Custom Services for Magnetic Components A user guide to soft magnetic materials (part 3 of 4) Ferrites Soft magnetic ferrites are principally a ceramic material, i.e. sintered grains of non metallic (semiconducting)

More information

INTRODUCTION:- 1.Classification of magnetic material Diamagnetic

INTRODUCTION:- 1.Classification of magnetic material Diamagnetic INTRODUCTION:- Ferrites are ferromagnetic material containing predominantly oxides iron along with other oxides of barium, strontium, manganese, nickel, zinc, lithium and cadmium.ferrites are ideally suited

More information

HOEGANAES INSULATED POWDER COMPOSITES CHARACTERISTICS AND ELECTROMAGNETIC APPLICATION GUIDELINES

HOEGANAES INSULATED POWDER COMPOSITES CHARACTERISTICS AND ELECTROMAGNETIC APPLICATION GUIDELINES HOEGANAES INSULATED POWDER COMPOSITES CHARACTERISTICS AND ELECTROMAGNETIC APPLICATION GUIDELINES HOEGANAES INSULATED POWDER COMPOSITES INTRODUCTION The molecular field theory was developed nearly years

More information

7. FERROMAGNETIC MATERIALS. aligned atomic dipoles

7. FERROMAGNETIC MATERIALS. aligned atomic dipoles 7. FERROMAGNETIC MATERIALS 7.1 What are ferromagnets? Earlier, in Section 6.2, we considered the following visualization of atomic dipoles in a material in a uniform applied B field: aligned atomic dipoles

More information

MAGNETIC PROPERTIES OF SOME PERMINVAR FERRITES

MAGNETIC PROPERTIES OF SOME PERMINVAR FERRITES Journal of Optoelectronics and Advanced Materials Vol. 5, No. 4, December 2003, p. 945-949 MAGNETIC PROPERTIES OF SOME PERMINVAR FERRITES A. Paduraru *, M. Feder, O. Caltun 1 Alexandru Ioan Cuza" University,

More information

COMPLEX PERMEABILITY AND TRANSPORT PROPERTIES OF Zn SUBSTITUTED Cu FERRITES. Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

COMPLEX PERMEABILITY AND TRANSPORT PROPERTIES OF Zn SUBSTITUTED Cu FERRITES. Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh Journal of Bangladesh Academy of Sciences, Vol. 34, No. 1, 1-8, 2010 COMPLEX PERMEABILITY AND TRANSPORT PROPERTIES OF Zn SUBSTITUTED Cu FERRITES KAZI HANIUM MARIA 1, SHAMIMA CHOUDHURY 1* and M.A. HAKIM

More information

Multi-Aperture/Binocular Ferrite Cores 1/5

Multi-Aperture/Binocular Ferrite Cores 1/5 Multi-Aperture/inocular Ferrite Cores 1/5 1. 43 Material Characteristics This NiZn is our most popular ferrite for suppression of conducted EMI from 20 to 250. This material is also used for inductive

More information

High Performance Amorphous and Nanocrystalline Cores

High Performance Amorphous and Nanocrystalline Cores High Performance Amorphous and Nanocrystalline Cores Zhuhai King Magnetics Technology Co., Ltd. Company Profile Zhuhai King Magnetics Technology Co., Ltd. locates at Zhuhai High Technology Zone, mainly

More information

Electronic materials and components-inductive components

Electronic materials and components-inductive components Electronic materials and components-inductive components Inductive components make use of the voltage that is generated when a field changes either on the same piece of wire (self-induction) or in a nearby

More information

Energy Efficiency of Amorphous Metal Based Transformers. R. Hasegawa Metglas, Inc 440 Allied Drive, SC USA

Energy Efficiency of Amorphous Metal Based Transformers. R. Hasegawa Metglas, Inc 440 Allied Drive, SC USA Energy Efficiency of Amorphous Metal Based Transformers R. Hasegawa Metglas, Inc 440 Allied Drive, SC 29526 USA October 2004 OVERVIEW Basics Introduction Amorphous versus crystalline magnetic material

More information

Permeability characterization of ferrites in the radio frequency range

Permeability characterization of ferrites in the radio frequency range Permeability characterization of ferrites in the radio frequency range Author: Mireia Alenyà Sistané Advisor: Arturo Lousa Rodríguez Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona,

More information

Glossary of Magnetic Terms

Glossary of Magnetic Terms AlNiCo Permanent magnets based upon alloys containing aluminum, nickel, cobalt, iron + additions. They are very stable materials and are not sensitive to moderate temperature changes or mildly corrosive

More information

Broadband Ferrite Toroidal Cores For Non-Tuned Circuits and EMI Filters

Broadband Ferrite Toroidal Cores For Non-Tuned Circuits and EMI Filters roadband Ferrite Toroidal Cores 1/8 1. 31 Material Characteristics A MnZn ferrite designed specifically for EMI suppression applications from as low as 1 Mz up to 500 Mz. This material does not have the

More information

B H. Magnetic materials

B H. Magnetic materials Magnetic materials In engineering applications the ferromagnets are used because of their high μ, which enable high magnetic induction to be obtained with only modest magnetic field. (Their ability to

More information

Power/Inductive Materials and Components

Power/Inductive Materials and Components Fair-Rite Products Corp. Your Signal Solution Power/Inductive Materials and Components Fair-Rite Products Corp. www.fair-rite.com Phone: 888-FAIRRITE (324-7748)/845-895-255 Fax: 888-FERRITE (337-7483)/845-895-2629

More information

NaNOcRysTallINE VITROPERM. EMc PROducTs. advanced MaTERIals THE KEy TO PROGREss

NaNOcRysTallINE VITROPERM. EMc PROducTs. advanced MaTERIals THE KEy TO PROGREss NaNOcRysTallINE VITROPERM EMc PROducTs advanced MaTERIals THE KEy TO PROGREss VITROPERM NaNOcRysTallINE EMc PROducTs VacuuMscHMElZE GmbH & co. KG (Vac) is a leading global manufacturer of modern magnetic

More information

CHAPTER 8 SYNTHESIS AND CHARACTERIZATION OF COPPER DOPED NICKEL-MANGANESE MIXED FERRITE NANOPARTICLES BY CO-PRECIPITATION METHOD

CHAPTER 8 SYNTHESIS AND CHARACTERIZATION OF COPPER DOPED NICKEL-MANGANESE MIXED FERRITE NANOPARTICLES BY CO-PRECIPITATION METHOD 198 CHAPTER 8 SYNTHESIS AND CHARACTERIZATION OF COPPER DOPED NICKEL-MANGANESE MIXED FERRITE NANOPARTICLES BY CO-PRECIPITATION METHOD 8.1 INTRODUCTION Ferrites are hard, brittle and chemically inert ceramic

More information

STUDY OF MICROSTRUTURE AND TEMPERATURE DEPENDENT LOW FREQUENCY AC PROPERTY OF

STUDY OF MICROSTRUTURE AND TEMPERATURE DEPENDENT LOW FREQUENCY AC PROPERTY OF Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09-RT-01 STUDY OF MICROSTRUTURE AND TEMPERATURE DEPENDENT LOW FREQUENCY

More information

Section Pot Cores Low Level Applications

Section Pot Cores Low Level Applications The information contained in this section is primarily concerned with the design of linear inductors for high frequency LC tuned circuits using ferrite pot cores. Magnetics has arranged the data in this

More information

Effect of annealing process of iron powder on magnetic properties and losses of motor cores

Effect of annealing process of iron powder on magnetic properties and losses of motor cores Bull. Mater. Sci., Vol. 4, No. 4, July 2011, pp. 829 8. Indian Academy of Sciences. Effect of annealing process of iron powder on magnetic properties and losses of motor cores FUZHENG YIN, HAIBO YANG,

More information

Induction Heating. Jean Callebaut, Laborelec. 1 Introduction Physical principles Induction Installations... 5

Induction Heating. Jean Callebaut, Laborelec. 1 Introduction Physical principles Induction Installations... 5 Induction Heating Jean Callebaut, Laborelec 1 Introduction... 2 2 Physical principles... 2 2.1 Electromagnetic induction... 2 2.2 The Joule-effect... 3 2.3 Penetration depth... 3 3 Induction Installations...

More information

Structure and Magnetic Properties of Mn and Al Doped Magnesium Ferrite

Structure and Magnetic Properties of Mn and Al Doped Magnesium Ferrite 44 China Steel Technical Report, No. Structure 29, pp.44-48, and Magnetic (2016) Properties of Mn and Al Doped Magnesium Ferrite Structure and Magnetic Properties of Mn and Al Doped Magnesium Ferrite MING-FENG

More information

CONTENTS PART II. MAGNETIC PROPERTIES OF MATERIALS

CONTENTS PART II. MAGNETIC PROPERTIES OF MATERIALS PART I. INTRODUCTION 1. CONCEPTS OF FERROMAGNETISM I Magnetic Field 1 Intensity of Magnetization and Magnetic Induction 2 Magnetization and Permeability Curves 3 Hysteresis Loop 4 Ferromagnetism, Paramagnetism

More information

Study of the Structural and Magnetic Properties of Li Substituted Cu-Mn Mixed Ferrites

Study of the Structural and Magnetic Properties of Li Substituted Cu-Mn Mixed Ferrites IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Study of the Structural and Magnetic Properties of Li Substituted Cu-Mn Mixed Ferrites To cite this article: M A M Quraishi and

More information

Study with Magnetic Property Measurement of Amorphous HB1 Material and its Application in Distribution Transformer

Study with Magnetic Property Measurement of Amorphous HB1 Material and its Application in Distribution Transformer Study with Magnetic Property Measurement of Amorphous HB1 Material and its Application in Distribution Transformer Yeong-Hwa Chang a, Chang-Hung Hsu a,b, Ching-Pei Tseng c a Department of Electrical Engineering,

More information

New Materials and Design Tools for Magnetic Materials Suitable for GaN and SiC Switching Frequencies

New Materials and Design Tools for Magnetic Materials Suitable for GaN and SiC Switching Frequencies New Materials and Design Tools for Magnetic Materials Suitable for GaN and SiC Switching Frequencies APEC 2017 Industry Session ID 1100 Christopher G. Oliver Director of Technology Micrometals, Incorporated

More information

Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak

Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak 3.014 Materials Laboratory November 13 th 18 th, 2006 Lab week 3 Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak Objectives: a) Understand magnetic and thermal

More information

Permanent Magnet Options: How To Select The Optimum Solution For Your Application.

Permanent Magnet Options: How To Select The Optimum Solution For Your Application. Permanent Magnet Options: How To Select The Optimum Solution For Your Application. Dr. John Ormerod Senior Technology Advisor Magnet Applications, Inc. Presentation Outline Introductions. Major permanent

More information

Soft Magnetic Powder Core

Soft Magnetic Powder Core 2011. 09. Changsung Corp. Soft Magnetic Powder Core 1. Toroidal Core Design 2. Special Shape Powder Core 3. Solar Inverter & Magnetic Materials 4. Q & A -CSC- 1. Toroidal Core Design 1. Soft Magnetic Materials

More information

Corporate Concept. Monthly production capacity is 80 tons for Ni-Zn Ferrite Cores and 100 tons for Mn-Zn Ferrite Cores.

Corporate Concept. Monthly production capacity is 80 tons for Ni-Zn Ferrite Cores and 100 tons for Mn-Zn Ferrite Cores. Corporate Concept Yeng Tat Electronics Co., Ltd. is organized by a group of enthusiastic people who have already been engaged in the field of ferrite industry with technical and manufacturing experiences.

More information

TSC International North Magnetics Blvd. Wadsworth IL 60083Tel (847) Fax (847)

TSC International North Magnetics Blvd. Wadsworth IL 60083Tel (847) Fax (847) TSC International TSC International is a manufacturer of magnetic materials for all frequencies. Our many end markets include: automotive, computer, lighting, telecommunications, instrumentation, industrial

More information

Garnets, Ferrite spinel and Hexaferrites

Garnets, Ferrite spinel and Hexaferrites Microwave Ferrites Part 8 Garnets, Ferrite spinel and Hexaferrites FERRITE DOMEN Co. Since 1959 The company performing R&D and production of all kind of microwave garnets, spinels, hexaferrites, and absorbing

More information

A study of ultrasonic velocity and attenuation on polycrystalline Ni Zn ferrites

A study of ultrasonic velocity and attenuation on polycrystalline Ni Zn ferrites Bull. Mater. Sci., Vol. 24, No. 6, December 2001, pp. 611 616. Indian Academy of Sciences. A study of ultrasonic velocity and attenuation on polycrystalline Ni Zn ferrites S R MURTHY Department of Physics,

More information

Cobalt doping effect on Ni-Zn-Cu ferrites produced by reactive sintering

Cobalt doping effect on Ni-Zn-Cu ferrites produced by reactive sintering Physics Procedia Volume 75, 2015, Pages 1306 1313 20th International Conference on Magnetism Cobalt doping effect on Ni-Zn-Cu ferrites produced by reactive sintering Adrien Mercier 1, Gérard Chaplier 1,

More information

Real and Complex Permeability of Ni- Zn-Ti Ferrite

Real and Complex Permeability of Ni- Zn-Ti Ferrite International Journal of Materials Science ISSN 0973-4589 Volume 12, Number 1 (2017), pp. 153-160 Research India Publications http://www.ripublication.com Real and Complex Permeability of Ni- Zn-Ti Ferrite

More information

Corporate Concept. Monthly production capacity is 80 tons for Ni-Zn Ferrite Cores and 100 tons for Mn-Zn Ferrite Cores.

Corporate Concept. Monthly production capacity is 80 tons for Ni-Zn Ferrite Cores and 100 tons for Mn-Zn Ferrite Cores. Corporate Concept Yeng Tat Electronics Co., Ltd. is organized by a group of enthusiastic people who have already been engaged in the field of ferrite industry with technical and manufacturing experiences.

More information

Why is the Ferrite Material Development for GaN so Difficult?

Why is the Ferrite Material Development for GaN so Difficult? Why is the Ferrite Material Development for GaN so Difficult? JC Sun 04. December 2018 power electronics conference in München 1 content Introduction Bs&T Demand on ferrite material development Need for

More information

CHAPTER -4. STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF Ni-Cu-Zn FERRITE PROCESSED WITH POLYETHYLENE GLYCOL AS CHELATING AGENT

CHAPTER -4. STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF Ni-Cu-Zn FERRITE PROCESSED WITH POLYETHYLENE GLYCOL AS CHELATING AGENT 64 CHAPTER -4 STRUCTURAL, ELECTRICAL AND MAGNETIC PROPERTIES OF Ni-Cu-Zn FERRITE PROCESSED WITH POLYETHYLENE GLYCOL AS CHELATING AGENT 4.1 (a) Introduction A potential ferrite candidate for multi layer

More information

Soft Materials and Applications

Soft Materials and Applications Soft Materials and Applications O. Geoffroy Grenoble Electrical Engineering (G2Elab) Materials Application Fields Transformation of Energy Actuation Recording Magnetic Properties Soft Hard Coupling properties

More information

VDM Magnifer 50. Material Data Sheet No August 2002 Edition

VDM Magnifer 50. Material Data Sheet No August 2002 Edition VDM Magnifer 50 Material Data Sheet No. 9002 August 2002 Edition 2 Magnifer 50 Magnifer 50 is a soft-magnetic nickel-iron alloy with about 48 % Ni. It has a saturation induction of 1.55 T and high permeability.

More information

High Saturation Induction for Bi-Substituted Yttrium Iron Garnet Prepared Via Sol Gel Technique

High Saturation Induction for Bi-Substituted Yttrium Iron Garnet Prepared Via Sol Gel Technique American Journal of Applied Sciences 4 (2): 8-84, 27 ISSN 1546-9239 27 Science Publications Corresponding Author: High Saturation Induction for Bi-Substituted Yttrium Iron Garnet Prepared Via Sol Gel Technique

More information

PRECIS AND CONCLUSIONS

PRECIS AND CONCLUSIONS CHAPTER VIII PRECIS AND CONCLUSIONS 8.1 SUMMARY Present study was undertaken to establish a new mechano-chemical method using auto combustion for preparing nanoparticle Mn-Zn materials by using metal oxides

More information

Modeling & Analysis Of Core losses in High Frequency Transformer

Modeling & Analysis Of Core losses in High Frequency Transformer 3.1 Background The work discussed in this chapter focuses on the high density transformer design for high-frequency and high-power applications. In this chapter, a background description and review will

More information

NANOCRYSTALLINE VITROPERM EMC COMPONENTS ADVANCED MATERIALS THE KEY TO PROGRESS

NANOCRYSTALLINE VITROPERM EMC COMPONENTS ADVANCED MATERIALS THE KEY TO PROGRESS NANOCRYSTALLINE VITROPERM EMC COMPONENTS ADVANCED MATERIALS THE KEY TO PROGRESS VACUUMSCHMELZE NANOCRYSTALLINE VITROPERM EMC COMPONENTS VACUUMSCHMELZE GmbH & Co. KG (VAC) is one of the worldwide leading

More information

Ferromagnetic Transitions

Ferromagnetic Transitions Ferromagnetic Transitions Module γ -3: Phase Transitions and Magnetic Properties Jorge Feuchtwanger Objectives: 1. understand the chemical order-disorder transition and how it alters magnetic properties,

More information

Study on electro-magnetic properties of La substituted Ni-Cu-Zn ferrite synthesized by auto-combustion method

Study on electro-magnetic properties of La substituted Ni-Cu-Zn ferrite synthesized by auto-combustion method Archived in http://dspace.nitrkl.ac.in Accepeted in Journal of Magnetism and Magnetic Materials (2007) http://dx.doi.org/10.1016/j.jmmm.2007.10.025 This is author version post-print Study on electro-magnetic

More information

SMSS POWDER E-CORE and BLOCK CORE

SMSS POWDER E-CORE and BLOCK CORE Arnold Technical Bulletin SMSS POWDER E-CORE and BLOCK CORE INTRODUCTION Arnold s SMSS powder E-cores and Block cores are made of an alloy powder which has low losses at elevated temperature and has relatively

More information

Complex Permeability Spectra in Ni-Zn Ferrites

Complex Permeability Spectra in Ni-Zn Ferrites 1 N.D. CHAUDHARI, 2 S. G. SONKAMBALE, 3 P. V. PATIL Introduction: 1 Department of Physics, Pratishthan Mahavidyalaya, Paithan, Dist. Aurangabad, MS 2 Department of Chemistry, Pratishthan Mahavidyalaya,

More information

NANOPERM - Design Considerations for advanced EMI filter chokes

NANOPERM - Design Considerations for advanced EMI filter chokes NANOPERM - Design Considerations for advanced EMI filter chokes May 26th 2004 PCIM, Nuremberg Fritz Rauscher MAGNETEC GmbH, Booth 525 in Hall 12 MAGNETEC GmbH www.magnetec.de 05/2004/ra 1/15 Content of

More information

Ferrite Cores For High Power High Power Cores

Ferrite Cores For High Power High Power Cores FETURES Large size ferrite cores developed for reactors and transformers used in high power units. Please contact us for machinability of non-standard special forms. MTERIL HRTERISTIS (Typical) Material

More information

Magnetic Materials Enabling Electrified Aircraft Propulsion

Magnetic Materials Enabling Electrified Aircraft Propulsion National Aeronautics and Space Administration Magnetic Materials Enabling Electrified Aircraft Propulsion Dr. Cheryl Bowman, Hybrid Gas Electric Propulsion Technical Lead NASA John H. Glenn Research Center

More information

CSC Soft Magnetic Powder Core CSC Core Division

CSC Soft Magnetic Powder Core CSC Core Division CSC Soft Magnetic Powder Core CSC Core Division Ⅰ. Soft Magnetic Powder Cores Ⅱ. CSC Soft Magnetic Powder Cores Ⅲ. Applications of CSC Cores Ⅳ. CSC Specialty Special shape Cores Ver. 2018. 04. I. Soft

More information

NATIONAL MAGNETICS GROUP, INC.

NATIONAL MAGNETICS GROUP, INC. NATIONAL MAGNETICS GROUP, INC. MANUFACTURERS OF MAGNETIC AND ADVANCED MATERIALS AFFILIATE: TCI CERAMICS, INC. To Whom it May Concern: Enclosed please find an electronic version of our existing catalog

More information

Division of Spang & Company. Core Selection for Saturating Transformers

Division of Spang & Company. Core Selection for Saturating Transformers Division of Spang & Company Core Selection for Saturating Transformers A Division of Spang & Company Core Selection for Saturating Transformers The advent of semiconductors opened the door to a wide variety

More information

LOSSES IN FERRITE ROD ANTENNAS

LOSSES IN FERRITE ROD ANTENNAS LOSSES IN FERRITE ROD ANTENNAS The losses in ferrite rod antennas are much higher than predicted by the accepted theory. This article shows that the increased loss is due to an increase in the copper losses

More information

Causes for residual magnetism on parts. Residual magnetism of steel products:

Causes for residual magnetism on parts. Residual magnetism of steel products: Causes for residual magnetism on parts Residual magnetism of steel products: Physical background, causes, existing field configurations, hard magnetic spots, recurrence of magnetism, concentration effects

More information

Development of New Soft Magnetic Composite Material Possessing Higher Levels of Magnetic and Mechanical Performance.

Development of New Soft Magnetic Composite Material Possessing Higher Levels of Magnetic and Mechanical Performance. Development of New Soft Magnetic Composite Material Possessing Higher Levels of Magnetic and Mechanical Performance. Francis Hanejko Hoeganaes Corporation Cinnaminson, NJ 08077 USA Abstract Greater usage

More information

EMI Conducted and Radiated Emissions

EMI Conducted and Radiated Emissions EMI Conducted and Radiated Emissions Mark Rine Product Manager VAC Magnetics March 2016 ADVANCED MATERIALS THE KEY TO PROGRESS Abstract This presentation overviews the EMC Conducted and Radiated Emissions

More information

Magnetic Properties and Electrical Resistivity of Zr 4+ Substituted Li-Zn Ferrite

Magnetic Properties and Electrical Resistivity of Zr 4+ Substituted Li-Zn Ferrite American Journal of Applied Sciences 4 (2): 89-93, 2007 ISSN 1546-9239 2007 Science Publications Magnetic Properties and Electrical Resistivity of Zr 4+ Substituted Li-Zn Ferrite 1 A.A. Sattar, 1 H.M.

More information

Synthesis, Permeability and Microstructure of the Optimal Nickel-Zinc Ferrites by Sol-Gel Route

Synthesis, Permeability and Microstructure of the Optimal Nickel-Zinc Ferrites by Sol-Gel Route J. Electromagnetic Analysis & Applications, 2010, 2: 56-62 doi:10.4236/jemaa.2010.21009 Published Online January 2010 (http://www.scirp.org/journal/jemaa) Synthesis, Permeability and Microstructure of

More information

Material Advances Enable New Generation of Power Inductors

Material Advances Enable New Generation of Power Inductors Material Advances Enable New Generation of Power Inductors By Eliminating Organic Binder, Boosting Permeability and Insulation Capability, New Power Inductor Material Lays Foundation for Higher Current

More information

Temperature stable design of Microwave Circulators using HFSS and Maxwell. Dr. Thomas Lingel

Temperature stable design of Microwave Circulators using HFSS and Maxwell. Dr. Thomas Lingel Lingel, 2003 Temperature stable design of Microwave Circulators using HFSS and Maxwell Dr. Thomas Lingel Outline Motivation Principle of Operation of Circulators Modeling of the RF behavior using HFSS

More information

Soft Ferrite Cores Mr. Probal Mukherjee, Head, Technical, Speedofer Components Pvt. Ltd.

Soft Ferrite Cores Mr. Probal Mukherjee, Head, Technical, Speedofer Components Pvt. Ltd. Soft Ferrite Cores Mr. Probal Mukherjee, Head, Technical, Speedofer Components Pvt. Ltd. Plot No: 101 & 102, Toy City, Ecotech III, Greater Noida 201306, Uttar Pradesh, India. probal@speedofer.com, +919830876431

More information

MAGNETIC CORE DIMENSIONAL EFFECTS FLUX PROPAGATION IN FERRITES

MAGNETIC CORE DIMENSIONAL EFFECTS FLUX PROPAGATION IN FERRITES MAGNETIC CORE DIMENSIONAL EFFECTS FLUX PROPAGATION IN FERRITES 2018-03-03 - Marcin Kącki, Marek Ryłko, Edward Herbert, John Hayes, Charles Sullivan SMA Magnetics Sp. z o.o. Content 1 2 3 4 5 6 Introduction

More information

Behavior of dielectric constant and dielectric loss tangent in Cd 2+ and Cr 3+ substituted magnesium ferrites

Behavior of dielectric constant and dielectric loss tangent in Cd 2+ and Cr 3+ substituted magnesium ferrites Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2013, 4(4):335-339 ISSN: 0976-8610 CODEN (USA): AASRFC Behavior of dielectric constant and dielectric loss tangent

More information

COMPANY PROFILE A Y A G E O C O M P A N Y

COMPANY PROFILE A Y A G E O C O M P A N Y COMPANY PROFILE A Y A G E O C O M P A N Y WHO WE ARE... Company profile Building on our Philips Magnetic Components heritage, FERROXCUBE can offer customers the highest level of support in the development

More information

NOVEMBER 10. FINEMET is a registered trademark of Hitachi Metals, Ltd.

NOVEMBER 10. FINEMET is a registered trademark of Hitachi Metals, Ltd. NOVEMBER 10 FINEMET is a registered trademark of Hitachi Metals, Ltd. http://www.hitachi-metals.co.jp/e/prod/prod02/prod02.html As IT and electronic devices become small and improve its performance, issues

More information

EMC PRODUCTS. Advanced Materials The Key to Progress

EMC PRODUCTS. Advanced Materials The Key to Progress EMC PRODUCTS based on NANOCRYSTALLINE VITROPERM Advanced Materials The Key to Progress The Company VACUUMSCHMELZE We are a global company with our headquarters in Hanau, Germany. We currently have approximately

More information

Keywords: Eddy current, Shot peening, Work-induced martensite transformation, Retained austenite

Keywords: Eddy current, Shot peening, Work-induced martensite transformation, Retained austenite Influence of work-induced martensite transformation by shot peening content on eddy current reaction Yoshiyasu MAKINO, Nobukazu KONDO, Hideaki KAGA SINTOKOGIO LTD, Japan, email y-makino@sinto.co.jp, no-kondo@sinto.co.jp,

More information

INTRODUCTION TO MAGNETIC MATERIALS

INTRODUCTION TO MAGNETIC MATERIALS INTRODUCTION TO MAGNETIC MATERIALS Second Edition B. D. CULLITY University of Notre Dame С D. GRAHAM University of Pennsylvania 4>IEEE PRESS WILEY A JOHN WILEY & SONS, INC., PUBLICATION PREFACE TO THE

More information

Magnetic properties of stainless steels. Dr M.Mantel R&D Center Ugitech Fr. Schmolz&Bickenbach Group

Magnetic properties of stainless steels. Dr M.Mantel R&D Center Ugitech Fr. Schmolz&Bickenbach Group Magnetic properties of stainless steels Dr M.Mantel R&D Center Ugitech Fr. Schmolz&Bickenbach Group PCV EXPO MOSCOW October 2009 SUMMARY 1. How an electro-valve functions 2. Magnetism and ferromagnetism

More information

Magnetic behaviour of nano-particles of Ni 0.5 Co 0.5 Fe 2 O 4 prepared using two different routes

Magnetic behaviour of nano-particles of Ni 0.5 Co 0.5 Fe 2 O 4 prepared using two different routes Indian Journal of Pure & Applied Physics Vol. 42, May 24, pp 366-37 Magnetic behaviour of nano-particles of Ni. Co. Fe 2 O 4 prepared using two different routes Subhash Chander, Bipin K Srivastava & Anjali

More information

Using Magnetic Cores at High Temperatures

Using Magnetic Cores at High Temperatures A Division of Spang & Company Technical Bulletin BULLETIN NO. CG-06 Using Magnetic Cores at High Temperatures All cores are not the same. Designers need to know the differences in order to make the best

More information

3C95 3C97 Extreme ferrites for extreme conditions

3C95 3C97 Extreme ferrites for extreme conditions 3C95 Extreme ferrites for extreme conditions Low power loss, wide temperature for power conversion FERROXCUBE is a member of the Yageo Group, which is among the world's strongest suppliers of high quality

More information

CHAPTER I INTRODUCTION AND THEORETICAL ASPECTS OF FERRITES

CHAPTER I INTRODUCTION AND THEORETICAL ASPECTS OF FERRITES CHAPTER I INTRODUCTION AND THEORETICAL ASPECTS OF FERRITES 1.1 INTRODUCTION: The magnetic materials such as ferrite are of great interest and importance in magnetism owing to possessing high crystalline

More information

Flaky-Shaped Iron Powder KIP MG150D for Soft Magnetic Applications *

Flaky-Shaped Iron Powder KIP MG150D for Soft Magnetic Applications * KAWASAKI STEEL TECHNICAL REPORT No. 47 December 22 Flaky-Shaped Iron Powder KIP for Soft Magnetic Applications * Naomichi Nakamura Dr. Eng., Senior Researcher, Iron Powder & Magnetic Materials Lab., Technical

More information

Influence of Rare Earth (Tb 3+ ) on Electrical and Magnetic Studies of Nickel ferrite Nanoparticles

Influence of Rare Earth (Tb 3+ ) on Electrical and Magnetic Studies of Nickel ferrite Nanoparticles IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. III (May. - Jun. 2015), PP 21-25 www.iosrjournals.org Influence of Rare Earth (Tb 3+ ) on Electrical and Magnetic Studies

More information

Cut-cores for High Power Applications

Cut-cores for High Power Applications AMOS AMOSENSE High Quality s Product Summary Description AMCU Series Cut cores are the ideal solutions for implementing energy storage chokes in several types of SMPS topologies even in high frequency

More information

Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions

Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping X.C. Zhong 1, X.J. Guo 1,2, S.Y. Zou 1, H.Y. Yu 1, Z.W. Liu 1,*, Y.F. Zhang 2, K.X. Wang 2 1 School of Materials Science and

More information

Session 1A4a AC Transport, Impedance Spectra, Magnetoimpedance

Session 1A4a AC Transport, Impedance Spectra, Magnetoimpedance Session 1A4a AC Transport, Impedance Spectra, Magnetoimpedance Magneto-impedance of [Co 40Fe 40B 20/Cu] Multilayer Films S. U. Jen, T. Y. Chou, C. K. Lo,.................................................................

More information

REC(SAMARIUM COBALT) MAGNETS

REC(SAMARIUM COBALT) MAGNETS REC(SAMARIUM COBALT) MAGNETS Introduction... 1 Material Characteristics... 2 / Characteristic Distribution... 3 Temperature Characteristics Reversible Temperature Coefficient... 4 Irreversible Demagnetization...

More information

SOLID STATE

SOLID STATE SOLID STATE Short Answer Questions: 1. Derive Bragg s equation? Ans. Bragg s equation: W.H. Bragg has proposed an equation to explain the relation between inter planar distance (d) and wave length ( λ

More information

What is HICOREX? Remanence Br. HICOREX - Powder Metallurgy. Intrinsic and Normal Coercivity, Hci, Hc. Properties of HICOREX 90, 96, 99

What is HICOREX? Remanence Br. HICOREX - Powder Metallurgy. Intrinsic and Normal Coercivity, Hci, Hc. Properties of HICOREX 90, 96, 99 What is HICOREX? Hicorex is the Hitachi Magnetics Corp. tradename for a new family of rare-earth cobalt high energy permanent magnets. Special manufacturing techniques and equipment for this product have

More information

(TRMI) Multilayer Ferrite Chip Inductors. Token Electronics Industry Co., Ltd. Version: January 13, Web:

(TRMI) Multilayer Ferrite Chip Inductors. Token Electronics Industry Co., Ltd. Version: January 13, Web: Version: January 13, 2017 (TRMI) Multilayer Ferrite Chip Inductors Token Electronics Industry Co., Ltd. Web: www.token.com.tw Email: rfq@token.com.tw Taiwan: No.137, Sec. 1, Zhongxing Rd., Wugu District,

More information

Microstructure and magnetic properties of nanocrystalline Fe-based alloys

Microstructure and magnetic properties of nanocrystalline Fe-based alloys Materials Science-Poland, Vol. 26, No. 1, 2008 Microstructure and magnetic properties of nanocrystalline Fe-based alloys M. HASIAK 1*, M. MIGLIERINI 2, J. KALETA 1, J. ZBROSZCZYK 3, H. FUKUNAGA 4 1 Institute

More information

A Study of Electrical and Magnetic Properties of La +3 Substituted Ni-Zn Ferrites

A Study of Electrical and Magnetic Properties of La +3 Substituted Ni-Zn Ferrites IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 2 Ver. II (Mar. - Apr. 2015), PP 33-38 www.iosrjournals.org A Study of Electrical and Magnetic Properties of La +3 Substituted

More information

Modelling the power losses in the ferromagnetic materials

Modelling the power losses in the ferromagnetic materials Materials Science-Poland, 35(2), 2017, pp. 398-404 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.1515/msp-2017-0050 Modelling the power losses in the ferromagnetic materials KALINA DETKA, KRZYSZTOF

More information

Crystal structure and properties of ferrites

Crystal structure and properties of ferrites CHAPTER 2 Crystal structure and properties of ferrites 2.1 Crystal structure of ferrite Ferrite is a body-centered cubic (BCC) form of iron, in which a very small amount (a maximum of 0.02% at 1333 F /

More information

The Effect of Processing and Density on P/M Soft Magnetic Properties. Ian W. Donaldson, GKN Sinter Metals, Worcester, MA, USA

The Effect of Processing and Density on P/M Soft Magnetic Properties. Ian W. Donaldson, GKN Sinter Metals, Worcester, MA, USA he Effect of Processing and Density on P/M Soft Magnetic Properties Ian W. Donaldson, GKN Sinter Metals, Worcester, MA, USA Fran Hanejko, Hoeganaes Corporation, Cinnaminson, NJ, USA Abstract: With the

More information

Analysis of Differences in Inductance of Ni-Cu-Zn Ferrite Chip Inductors during the Plating Process

Analysis of Differences in Inductance of Ni-Cu-Zn Ferrite Chip Inductors during the Plating Process J. Chem. Chem. Eng. 8 (2014) 1125-1134 doi: 10.17265/1934-7375/2014.12.005 D DAVID PUBLISHING Analysis of Differences in Inductance of Ni-Cu-Zn Ferrite Chip Inductors during the Plating Process Yin-Lai

More information

TELCON STRIP WOUND TOROIDAL CORES

TELCON STRIP WOUND TOROIDAL CORES TOROIDAL CORES 1. INTRODUCTION Telcon high permeability strip wound toroidal cores are manufactured to the highest international standards, in a range of alloys and sizes developed to meet the most stringent

More information

NdFeB. Title Here. for High Temperature Motor Applications. Author Venue. Steve Constantinides. Date. with Dale Gulick

NdFeB. Title Here. for High Temperature Motor Applications. Author Venue. Steve Constantinides. Date. with Dale Gulick NdFeB Title Here for High Temperature Motor Applications Author Venue Steve Constantinides Date with Dale Gulick SMMA Fall Technical Conference November 3-5, 24 1 Arnold Magnetic Technologies Topics Magnet

More information

Conference Paper Study of Magnetic Property of Sn Doped Ni-Zn-Fe Nanoparticles

Conference Paper Study of Magnetic Property of Sn Doped Ni-Zn-Fe Nanoparticles Conference Papers in Science, Article ID 816970, 4 pages http://dx.doi.org/10.1155/2014/816970 Conference Paper Study of Magnetic Property of Sn Doped Ni-Zn-Fe Nanoparticles B. S. Tewari, Archana Dhyani,

More information

Electrical and Dielectric Properties Analysis of Vanadium Penta-Oxide (V 2 O 5 ) Doped Ni-Zn Ferrite Samples.

Electrical and Dielectric Properties Analysis of Vanadium Penta-Oxide (V 2 O 5 ) Doped Ni-Zn Ferrite Samples. Electrical and Dielectric Properties Analysis of Vanadium Penta-Oxide (V 2 O 5 ) Doped Ni-Zn Ferrite Samples. Abdul Ahad, M.Phill. 1* ; Rajib Ahmed, M.Sc. 2,3 ; and Rifat Ahmmed, B.Sc. 4 1 Department of

More information

Magnetic Properties. WHY STUDY the Magnetic Properties of Materials? FIRST PAGES. Chapter

Magnetic Properties. WHY STUDY the Magnetic Properties of Materials? FIRST PAGES. Chapter 1496T_c20_76-113 10/31/05 16:31 Page 76 Chapter 20 Magnetic Properties P hotomicrographs of an iron single crystal, showing magnetic domains and their change in shape as a magnetic field (H) is applied.

More information

Effect of the Annealing Temperature on Magnetic property for Transformer with Amorphous Core

Effect of the Annealing Temperature on Magnetic property for Transformer with Amorphous Core Effect of the Annealing Temperature on Magnetic property for Transformer with Amorphous Core a Chang-Hung Hsu a, b, Yeong-Hwa Chang Electrical Engineering, Chang Gung University, Tao-Yuan, Taiwan b Electric

More information

SYNTHESIS, MICROSTRUCTURE AND AC ELECTRICAL CONDUCTIVITY OF COPPER SUBSTITUTED NICKEL-ZINC FERRITES.

SYNTHESIS, MICROSTRUCTURE AND AC ELECTRICAL CONDUCTIVITY OF COPPER SUBSTITUTED NICKEL-ZINC FERRITES. SYNTHESIS, MICROSTRUCTURE AND AC ELECTRICAL CONDUCTIVITY OF COPPER SUBSTITUTED NICKEL-ZINC FERRITES. Khe Cheng Seong, Jumiah Hassan, Mansor Hashim, W. Mohd. Daud W. Yusoff Department of Physics, Faculty

More information

Ferrite EMI Cable Cores

Ferrite EMI Cable Cores Ferrite EMI Cable Cores About Laird Laird is a global technology business focused on enabling wireless communication and smart systems, and providing components and systems that protect electronics. Laird

More information

Magnetic, Electric and Structural Properties of Ni Substituted Co-Zn Ferrite Nanoparticles Synthesized by Sol-Gel Method.

Magnetic, Electric and Structural Properties of Ni Substituted Co-Zn Ferrite Nanoparticles Synthesized by Sol-Gel Method. IOSR Journal of Applied Physics (IOSR-JAP) ISSN: 2278-4861. Volume 2, Issue 4 (Nov. - Dec. 2012), PP 07-12 Magnetic, Electric and Structural Properties of Ni Substituted Co-Zn Ferrite Nanoparticles Synthesized

More information