TEM imaging and diffraction examples

Size: px
Start display at page:

Download "TEM imaging and diffraction examples"

Transcription

1 TEM imaging and diffraction examples Duncan Alexander EPFL-CIME 1 Diffraction examples Kikuchi diffraction Epitaxial relationships Polycrystalline samples Amorphous materials Contents Convergent beam electron diffraction (CBED) Excess and deficient lines HOLZ lines in CBED Thickness measurements Polarity measurements Nanobeam diffraction mapping 2

2 Measuring epitaxial relationships SADP excellent tool for studying orientation relationships across interfaces Example: Mn-doped ZnO on sapphire Sapphire substrate Sapphire + film Zone axes: [1-1 0]ZnO // [0-1 0]sapphire Planes: c-planezno // c-planesapphire 3 Ring diffraction patterns If selected area aperture selects numerous, randomly-oriented nanocrystals, SADP consists of rings sampling all possible diffracting planes - like powder X-ray diffraction Example: needles of contaminant cubic MnZnO3 - which XRD failed to observe! Note: if scattering sufficiently kinematical, can compare intensities with those of X-ray PDF files 4

3 Nanocrystalline sample image/diffraction Bright field image setup - select direct beam with objective aperture Diffraction mode Image mode 5 Nanocrystalline sample image/diffraction Bright field image setup - select direct beam with objective aperture Diffraction mode Image mode Contrast from different crystals according to diffraction condition 5

4 Nanocrystalline sample image/diffraction Dark field image setup - select some transmitted beams with objective aperture Diffraction mode Image mode Only crystals diffracting strongly into objective aperture give bright contrast in image 6 Nanocrystalline sample image/diffraction Dark field image setup - select some transmitted beams with objective aperture Diffraction mode Image mode Only crystals diffracting strongly into objective aperture give bright contrast in image 7

5 Amorphous diffraction pattern Crystals: short-range order and long-range order Amorphous materials: no long-range order, but do have short-range order (roughly uniform interatomic distances as atoms pack around each other) Short-range order produces diffuse rings in diffraction pattern Example: Figure from Williams & Carter Transmission Electron Microscopy Vitrified germanium (M. H. Bhat et al. Nature (2007) 8 Diffraction contrast imaging of defects 9

6 Principle of diffraction contrast imaging Typically we use an objective aperture to select either the direct beam or a specific diffracted beam in the back-focal plane If the diffraction condition changes across the sample the intensity in the selected beam changes; the intensity in the image changes correspondingly In other words we make a spatial map of the intensity distribution across the sample in the selected beam: it is a mapping technique In this way we can image changes in crystal phase and structural defects such as dislocations As an example such TEM imaging was a key piece of evidence proving the existence of dislocations 10 2-beam diffraction and imaging Off-axis rays for DF image! aberrations and astigmatism! image moves when change objective lens focus Incident e-beam Specimen Objective lens BF DF Back focal plane First image plane 11

7 Scan coils/beam deflectors Can use deflectors in condenser lens system to shift beam (with no tilt) and to tilt beam (with no shift). Use incident beam tilt for centered dark field imaging. 12 Centred dark-field imaging Tilt incident! e-beam by 2!B Corresponds to tilting of Ewald sphere by 2"B, excite g h k l;! takes place of gh k l in SADP Specimen Objective lens Can now go from BF image to DF image by pressing button, no offaxis aberrations in DF image DF Back focal plane First image plane 13

8 Imaging crystal defects: dislocations Burgers vector for edge (top right) and screw (bottom right) dislocations 14 Imaging crystal defects: dislocations Local bending of crystal planes around the dislocation change their diffraction condition This produces a contrast in the image => g.b analysis for Burgers vector From Williams & Carter Transmission Electron Microscopy 15

9 Crystal defects: dislocations - g.b analysis On a simple level, planes parallel to the Burger s vector are not distorted by the dislocation! => these planes show no change in contrast a condition corresponding to g.b = 0 Invisibility criterion! u: dislocation line vector For edge dislocation, glide plane is parallel to b but can be buckled => still gives some contrast. Plane perpendicular to u and parallel to b gives no contrast 16 Crystal defects: dislocations - g.b analysis Example: analysis of threading dislocations of hexagonal GaN grown on sapphire substrate )+*+*',!"#$%&%"#'!"#$%&%"#( F )'*'*+,-)'*'*(*+, F F )'*'*+,-)'*'*+*+,./+*+*(00./'*'* %56 Images by! Emad Oveisi, CIME 12334%56 7%8%9:6;** 7%8%9:6;** F F F F F F F 1<56=*)+*+*+*',*2#$*1<56=)+*+*+*',* C$.6*'@A)(*'*'*+,B*)'*'*(*+,B)'*(*'*+,* F F F F F F F F F F F F >%?6$*'@A)(*'*'*A,B)'*'*(*A,B)'*(*'*A, >%?6$*'@A)(*'*'*A,B)'*'*(*A,B)'*(*'*A, D#E%8%9:6;** D#E%8%9:6;* F F F F F F C$.6*'@A)(*'*'*+,B*)'*'*(*+,B)'*(*'*+, F 1<56=*)+*+*+*',*2#$*1<56=)+*+*+*', 17

10 Convergent beam electron diffraction 18 Convergent beam electron diffraction Instead of parallel illumination with selected-area aperture, CBED uses! highly converged illumination to select a much smaller specimen region Small illuminated area =>! no thickness and orientation variations There is dynamical scattering, but it is useful! Can obtain disc and line patterns! packed with information: Figures by Jean-Paul Morniroli 19

11 Convergent beam electron diffraction Figures by Jean-Paul Morniroli 20 Convergent beam electron diffraction Figures by Jean-Paul Morniroli 21

12 Convergent beam electron diffraction Figures from Williams & Carter Transmission Electron Microscopy 22 Convergent beam electron diffraction Back-focal plane Image plane:! see image of focused e-beam Figures by Jean-Paul Morniroli 23

13 Convergent beam electron diffraction Exact 2- beam condition Back-focal plane Near 2- beam condition Image plane:! see image of focused e-beam 24 Excess and Deficient lines Look at Ewald sphere construction!here Ewald sphere intersects a HOLZ reflection exactly.! In this condition this HOLZ reflection must give 2#B scattering angle. If we draw in rays for excess and deficient lines at +#B and #B relative to the planes making the! reflection we see excess line intersects HOLZ reflection and deficient exactly. If we plot full angular range of incident beam it is clear that deficient HOLZ line crosses disc. k I k D

14 Excess and Deficient lines Look at Ewald sphere construction!here Ewald sphere intersects a HOLZ reflection exactly.! In this condition this HOLZ reflection must give 2#B scattering angle. If we draw in rays for excess and deficient lines at +#B and #B relative to the planes making the! reflection we see excess line intersects HOLZ reflection and deficient exactly. If we plot full angular range of incident beam it is clear that deficient HOLZ line crosses disc. k I k D Note: Excess and deficient lines! are often called Kikuchi lines HOLZ lines in CBED If HOLZ CBED discs at have excess lines at Bragg condition these give corresponding deficient lines crossing disc Figures by Jean-Paul Morniroli 27

15 HOLZ lines in CBED Because HOLZ lines contain 3D information, they also show true symmetry! e.g. three-fold {111} symmetry for cubic Al - unlike apparent six-fold axis in SADP or from ZOLZ Kikuchi lines Deficient lines for inclined planes: hu + kv + lw =? Fringes from 2D interactions/dynamical scattering; more thickness gives more fringes JEMS simulation for 300 nm thick Al, 200 kev beam energy 28 Thickness measurement by CBED Within CBED discs also obtain patterns from dynamical scattering. These patterns show fringes that are somewhat analogous to thickness fringes in the TEM image. Can measure thickness e.g. by comparing experimental data to simulation Example: Blochwave simulations for Al on [0 0 1] zone axis: 29

16 Thickness measurement by CBED Easier to think about in 2-beam Bragg scattering condition Different rays in the scattered beam sample different excitation errors for the reflection g Effectively we make a map of intensity for different excitation errors s along a chord in the disc g As thickness increases nodes in sinc 2 function move to smaller s (reciprocal relationship with thickness) => more fringes in the disc Intensity vs s for 2-beam condition, different specimen thicknesses t t = 10 nm t = 25 nm t = 50 nm 30 Thickness measurement by CBED Therefore to obtain CBED discs with 1-D fringes for thickness measurement tilt to 2-beam condition Possible to calculate thickness analytically (e.g. see Williams & Carter) Example: Blochwave simulations for Al with (0 0 2) reflection excited: 31

17 Identifying polarity in CBED Patterns from dynamical scattering in direct and diffraction discs allow determination of polarity of non-centrosymmetric crystals because dynamical scattering patterns are sensitive to channeling down particular atomic column JEMS simulation: GaN [ ] zone axis Simulation vs experiment: t = 100 nm t = 150 nm t = 200 nm t = 250 nm A. Brian Aebersold et al. Acta Materialia, Volume 130, 2017, ! 32 Zone axis CBED Instead of spot pattern, obtain disc pattern Larger convergence semi-angle " => larger discs Parallel beam SADP Si [001] " = 1.6 mrad " = 3.9 mrad 33

18 Zone axis CBED Instead of spot pattern, obtain disc pattern Larger convergence semi-angle α => larger discs α = 3.9 mrad α = 8.6 mrad α = 19.3 mrad See fringes in discs, and symmetry 34 Convergent beam electron diffraction practical example ZnO thin-film sample; Conditions: convergent beam, large condenser aperture, diffraction mode 35

19 Convergent beam electron diffraction practical example ZnO thin-film sample; Conditions: convergent beam, large condenser aperture, diffraction mode [1 1 0] zone axis 36 Kikuchi diffraction 37

20 Kikuchi lines Formation of bright and dark lines ( excess and deficient lines) by combination of incoherent scattering followed by elastic scattering in parallel incident beam geometry (e.g. SADP) The incoherent scattering (no preferential scattering vectors) is generally in forwards direction Cones of incoherently-scattered electrons then scattered by coherent elastic scattering, creating arcs in the diffraction plane. Because angles are small the arcs look straight. Resultant lines are very similar to the excess and deficient lines of CBED. They are equally sensitive to specimen orientation, and we use them e.g. to set a 2-beam condition. However the specimen must be thick (for sufficient inelastic scattering) and flat (to have sharp lines) to see them well. 38 Kikuchi line formation Treat problem in real space "B "B "B Treat 2-beam Bragg scattering condition "B "B Yellow volume represents intensity distribution of incoherent scattering event; mainly forward scattered h k l 2"B "B h k l origin of incoherent scattering event: h k l h k l 39

21 Treat problem in reciprocal space; Ewald sphere construction Forward scattering from incoherent scattering gives diffuse intensity at low scattering angles around Kikuchi line formation h k l "B "B ki Exact Bragg condition: Kikuchi lines coincide Deficient line: incoherent forwardscattered intensity removed from with Bragg spots Kikuchi line! dark line on brighter background kd ghkl h k l Excess line: incoherent forward-scattered intensity redistributed into Kikuchi line! bright line on low background 40 Kikuchi line formation Treat problem in real space Treat zone axis condition "B "B h k l "B "B h k l h k l h k l 41

22 Kikuchi line formation Treat problem in reciprocal space; Ewald sphere construction Remember Bragg spots only visible because of relrods and excitation error s Zone axis condition: (by geometry) Kikuchi lines halfway between Bragg spots ghkl h k l 2"B ki kd h k l Symmetrical relationship so both Kikuchi lines should have same intensity s ghkl 42 Kikuchi diffraction Figures by Jean-Paul Morniroli Position of the Kikuchi line pairs of (excess and deficient) very sensitive to specimen orientation Can use to identify excitation vector; in particular s = 0 when diffracted beam coincides! exactly with excess Kikuchi line (and direct beam with deficient Kikuchi line) Quiz: what happens to width of Kikuchi line pairs as (h k l) indices become bigger?! Answer: larger indices (h k l)! greater scattering angle "B! larger width of line pairs 43

23 Kikuchi lines road map to reciprocal space Kikuchi lines traverse reciprocal space, converging on zone axes - use them to navigate reciprocal space as you tilt the specimen! Examples: Si simulations using JEMS Si [1 1 0] Si [1 1 0] tilted off zone axis Si [2 2 3] Obviously Kikuchi lines can be useful, but can be hard to see (e.g. from insufficient thickness, diffuse lines from crystal bending, strain). Need an alternative method Mapping in nano-beam diffraction mode 45

24 Nano-beam set-up In nano-beam mode, use small C2 condenser aperture and excited 3rd condenser lens (e.g. condenser mini-lens) to make near-parallel beam of 2 3 nm diameter on specimen surface Typical convergence semi-angle alpha ~0.5 1 mrad; therefore obtain spot-like diffraction patterns from very small probe 46 Orientation image mapping in TEM The NanoMEGAS ASTAR system scans the nanobeam across sample while recording diffraction patterns to make a map with one diffraction pattern for every pixel positions x, y Template matching then used to identify phase and orientation; each pattern correlated with 100s-1000s of patterns simulated at different orientations and for different phases Much higher spatial resolution than EBSD in SEM, and angular resolution of 1 Can combine with precession for greater reliability of indexing [1] E.F. Rauch et al., Micros. Anal. Nanotech. Supplement, 22(6), S5-S8,

25 ASTAR example: nanocrystalline ZnO Plan-view sample of textured, nanocrystalline ZnO thin-film 750 x 750 pixel map, 2 3 nm probe size, 2 nm step size {10-10} Y Z X {0001} {2-1-10} A. Brian Aebersold, CIME 48 Imaging and diffraction examples summary Diffraction useful for measuring orientation relationships and polycrystalline crystal structures For correct dark-field imaging we tilt incident beam to do centred dark-field imaging free of aberrations from displacing the objective aperture Can use centred dark-field e.g. for analysing dislocations Parallel beam diffraction can also give excess and deficient lines via incoherent followed by coherent scattering: Kikuchi diffraction Automated crystal orientation and phase mapping is also now possible and can give high quality data on nanocrystalline materials nature Convergent beam electron diffraction is a powerful technique allowing to see excess and deficient lines which are very sensitive to specimen orientation, and dynamical scattering patterns that inform e.g. on sample thickness and polarity 49

26 Resources Transmission Electron Microscopy by Williams and Carter Large Angle Convervent Beam Electron Diffraction, Jean-Paul Morniroli JEMS Pierre Stadelmann s electron microscopy simulation software: Open access database of.cif files: 50

TEM imaging and diffraction examples

TEM imaging and diffraction examples TEM imaging and diffraction examples Duncan Alexander EPFL-CIME 1 Diffraction examples Kikuchi diffraction Epitaxial relationships Polycrystalline samples Amorphous materials Contents Convergent beam electron

More information

Diffraction Going further

Diffraction Going further Diffraction Going further Duncan Alexander! EPFL-CIME 1 Contents Higher order Laue zones (HOLZ)! Kikuchi diffraction! Convergent beam electron diffraction (CBED)! HOLZ lines in CBED! Thickness measurements!

More information

Electron Microscopy. Dynamical scattering

Electron Microscopy. Dynamical scattering Electron Microscopy 4. TEM Basics: interactions, basic modes, sample preparation, Diffraction: elastic scattering theory, reciprocal space, diffraction pattern, Laue zones Diffraction phenomena Image formation:

More information

Imaging with Diffraction Contrast

Imaging with Diffraction Contrast Imaging with Diffraction Contrast Duncan Alexander EPFL-CIME 1 Introduction When you study crystalline samples TEM image contrast is dominated by diffraction contrast. An objective aperture to select either

More information

Dynamical Scattering and Defect Imaging

Dynamical Scattering and Defect Imaging Dynamical Scatterin and Defect Imain Duncan Alexander! EPFL-CIME 1 Contents Dynamical scatterin! Thickness frines! Double diffraction! Defect imain! 2-beam (stron beam) set-up!.b dislocation analysis!

More information

TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati

TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati Electron Microscopes: Electron microscopes, such as the scanning electron microscope (SEM) and transmission electron microscope (TEM)

More information

Principles & Practice of Electron Diffraction

Principles & Practice of Electron Diffraction Principles & Practice of Electron Diffraction Duncan Alexander EPFL-CIME 1 Contents Introduction to electron diffraction Elastic scattering theory Basic crystallography & symmetry Electron diffraction

More information

Signals from a thin sample

Signals from a thin sample Signals from a thin sample Auger electrons Backscattered electrons BSE Incident beam secondary electrons SE Characteristic X-rays visible light 1-100 nm absorbed electrons Specimen electron-hole pairs

More information

EMSE Weak-Beam Dark-Field Technique

EMSE Weak-Beam Dark-Field Technique Weak-Beam Dark-Field Technique 1 Weak-Beam Dark-Field Imaging Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 near the dislocation core, some planes curved

More information

11.3 The analysis of electron diffraction patterns

11.3 The analysis of electron diffraction patterns 11.3 The analysis of electron diffraction patterns 277 diameter) Ewald reflecting sphere, the extension of the reciprocal lattice nodes and the slight buckling of the thin foil specimens all of which serve

More information

Microstructural Characterization of Materials

Microstructural Characterization of Materials Microstructural Characterization of Materials 2nd Edition DAVID BRANDON AND WAYNE D. KAPLAN Technion, Israel Institute of Technology, Israel John Wiley & Sons, Ltd Contents Preface to the Second Edition

More information

Crystallographic Textures Measurement

Crystallographic Textures Measurement Crystallographic Textures Measurement D. V. Subramanya Sarma Department of Metallurgical and Materials Engineering Indian Institute of Technology Madras E-mail: vsarma@iitm.ac.in Macrotexture through pole

More information

CHEM-E5225 :Electron Microscopy Imaging II

CHEM-E5225 :Electron Microscopy Imaging II CHEM-E5225 :Electron Microscopy Imaging II D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer Science & Business Media, 2009. Z. Luo, A Practical Guide

More information

Kinematical theory of contrast

Kinematical theory of contrast Kinematical theory of contrast Image interpretation in the EM the known distribution of the direct and/or diffracted beam on the lower surface of the crystal The image on the screen of an EM = the enlarged

More information

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY Ayush Garg Department of Chemical and Materials Engineering, University of Auckland, Auckland,

More information

Practical 2P8 Transmission Electron Microscopy

Practical 2P8 Transmission Electron Microscopy Practical 2P8 Transmission Electron Microscopy Originators: Dr. M. L. Jenkins and Prof. J. M. Titchmarsh What you should learn from this practical Science This practical ties-in with the lecture course

More information

Practical 2P8 Transmission Electron Microscopy

Practical 2P8 Transmission Electron Microscopy Practical 2P8 Transmission Electron Microscopy Originators: Dr. N.P. Young and Prof. J. M. Titchmarsh What you should learn from this practical Science This practical ties-in with the lecture course on

More information

Fundamentals of X-ray diffraction and scattering

Fundamentals of X-ray diffraction and scattering Fundamentals of X-ray diffraction and scattering Don Savage dsavage@wisc.edu 1231 Engineering Research Building (608) 263-0831 X-ray diffraction and X-ray scattering Involves the elastic scattering of

More information

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE W.L. Sarney 1, L. Salamanca-Riba 1, V. Ramachandran 2, R.M Feenstra 2, D.W. Greve 3 1 Dept. of Materials & Nuclear Engineering,

More information

Electron microscopy II

Electron microscopy II Electron microscopy II Nanomaterials characterization I RNDr. Věra Vodičková, PhD. Interaction ction: electrons solid matter Signal types SE.secondary e - AE Auger s e - BSE back scattered e - X-ray photons,

More information

Dislocations Linear Defects

Dislocations Linear Defects Dislocations Linear Defects Dislocations are abrupt changes in the regular ordering of atoms, along a line (dislocation line) in the solid. They occur in high density and are very important in mechanical

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information

Transmission Kikuchi Diffraction in the Scanning Electron Microscope

Transmission Kikuchi Diffraction in the Scanning Electron Microscope Transmission Kikuchi Diffraction in the Scanning Electron Microscope Robert Keller, Roy Geiss, Katherine Rice National Institute of Standards and Technology Nanoscale Reliability Group Boulder, Colorado

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/8/eaat4712/dc1 Supplementary Materials for In situ manipulation and switching of dislocations in bilayer graphene Peter Schweizer, Christian Dolle, Erdmann Spiecker*

More information

Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples

Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples Electron channelling contrast imaging (ECCI) an amazing tool for observations of crystal lattice defects in bulk samples Stefan Zaefferer with contributions of N. Elhami, (general & steels) Z. Li F. Ram,

More information

INTERPRETATION OF TRANSMISSION ELECTRON MICROGRAPHS

INTERPRETATION OF TRANSMISSION ELECTRON MICROGRAPHS 3 INTERPRETATION OF TRANSMISSION ELECTRON MICROGRAPHS Already published in this series 1. The Operation and Calibration of the Electron Microscope 2. Electron Diffraction in the Electron Microscope In

More information

Transmission Electron Microscopy. J.G. Wen, C.H. Lei, M. Marshall W. Swiech, J. Mabon, I. Petrov

Transmission Electron Microscopy. J.G. Wen, C.H. Lei, M. Marshall W. Swiech, J. Mabon, I. Petrov Advanced Materials Characterization Workshop Transmission Electron Microscopy J.G. Wen, C.H. Lei, M. Marshall W. Swiech, J. Mabon, I. Petrov Supported by the U.S. Department of Energy under grants DEFG02-07-ER46453

More information

The object of this experiment is to test the de Broglie relationship for matter waves,

The object of this experiment is to test the de Broglie relationship for matter waves, Experiment #58 Electron Diffraction References Most first year texts discuss optical diffraction from gratings, Bragg s law for x-rays and electrons and the de Broglie relation. There are many appropriate

More information

Defect and chemical analysis in the TEM

Defect and chemical analysis in the TEM THE UNIVERSITY Defect and chemical analysis in the TEM Defect and chemical analysis in the TEM I.P. Jones. Chemical analysis: EDX. Chemical analysis: PEELS Centre for Electron Microscopy OF BIRMINGHAM

More information

On-axis Transmission Kikuchi Diffraction in the SEM. Performances and Applications

On-axis Transmission Kikuchi Diffraction in the SEM. Performances and Applications On-axis Transmission Kikuchi Diffraction in the SEM. Performances and Applications Etienne Brodu, Emmanuel Bouzy, Jean-Jacques Fundenberger Séminaire «les microscopies électroniques à Metz et à Nancy»

More information

EBSD Basics EBSD. Marco Cantoni 021/ Centre Interdisciplinaire de Microscopie Electronique CIME. Phosphor Screen. Pole piece.

EBSD Basics EBSD. Marco Cantoni 021/ Centre Interdisciplinaire de Microscopie Electronique CIME. Phosphor Screen. Pole piece. EBSD Marco Cantoni 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME EBSD Basics Quantitative, general microstructural characterization in the SEM Orientation measurements, phase

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences Page 1 UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in MENA3100 Characterization of materials Day of exam: 12th. June 2015 Exam hours: 14:30 This examination paper consists of 5

More information

X-RAY DIFFRACTION IN SEMICONDUCTOR INDUSTRY AND RESEARCH

X-RAY DIFFRACTION IN SEMICONDUCTOR INDUSTRY AND RESEARCH X-RAY DIFFRACTION IN SEMICONDUCTOR INDUSTRY AND RESEARCH M. Leszczyński High Pressure Research Center UNIPRESS, Sokolowska 29/37, 01 142 Warsaw, Poland, e-mail: mike@unipress.waw.pl ABSTRACT The paper

More information

Conventional TEM. N o r t h w e s t e r n U n i v e r s i t y - M a t e r i a l s S c i e n c e

Conventional TEM. N o r t h w e s t e r n U n i v e r s i t y - M a t e r i a l s S c i e n c e Conventional TEM STEM N o r t h w e s t e r n U n i v e r s i t y - M a t e r i a l s S c i e n c e Reciprocity 1 1 C CCCCCCCC(2ππππππ. rr) CCCCCC(2ππππππ. rr) Reciprocity 2 1 C+D CC(gg)CCCCCC(2ππππππ.

More information

Thin Film Scattering: Epitaxial Layers

Thin Film Scattering: Epitaxial Layers Thin Film Scattering: Epitaxial Layers 6th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31, 2012 Thin films. Epitaxial

More information

Structural Features of = 3 and 9, [110] GaAs Tilt Grain Boundaries

Structural Features of = 3 and 9, [110] GaAs Tilt Grain Boundaries Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 4458 4465 Part 1, No. 7, July 2001 c 2001 The Japan Society of Applied Physics Structural Features of = 3 and 9, [110] GaAs Tilt Grain Boundaries Nam-Hee CHO and

More information

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma Chapter 3 Basic Crystallography and Electron Diffraction from Crystals Lecture 9 Outline The geometry of electron diffraction Crystallography Kinetic Theory of Electron diffraction Diffraction from crystals

More information

High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia

High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia Mat. Res. Soc. Symp. Proc. Vol. 654 2001 Materials Research Society High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia K. L. Merkle, L. J. Thompson, G.-R.

More information

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth?

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? Part II: Worked Examples H. K. D. H. Bhadeshia Question 14 Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? The surface of a metal can be nitrided to form

More information

Searching for new API Polymorphs Crystal Structure Determination of Pharmaceutical crystals using Electron Diffraction Tomography

Searching for new API Polymorphs Crystal Structure Determination of Pharmaceutical crystals using Electron Diffraction Tomography Searching for new API Polymorphs Crystal Structure Determination of Pharmaceutical crystals using Electron Diffraction Tomography Dr. Partha Pratim Das Application Specialist NanoMEGAS SPRL, Belgium This

More information

Carnegie Mellon MRSEC

Carnegie Mellon MRSEC Carnegie Mellon MRSEC Texture, Microstructure & Anisotropy, Fall 2009 A.D. Rollett, P. Kalu 1 ELECTRONS SEM-based TEM-based Koseel ECP EBSD SADP Kikuchi Different types of microtexture techniques for obtaining

More information

Supplementary Material

Supplementary Material Supplementary Material Self-patterning Gd nano-fibers in Mg-Gd alloys Yangxin Li 1,2, Jian Wang 3, Kaiguo Chen 4, Meiyue Shao 2, Yao Shen 1 *, Li Jin 2 *, Guozhen Zhu 1 * 1 State Key Laboratory of Metal

More information

Structure factors and crystal stacking

Structure factors and crystal stacking Structure factors and crystal stacking Duncan Alexander EPFL-CIME 1 Contents Atomic scattering theory Crystal structure factors Close packed structures Systematic absences Twinning and stacking faults

More information

This lecture is part of the Basic XRD Course.

This lecture is part of the Basic XRD Course. This lecture is part of the Basic XRD Course. Basic XRD Course 1 A perfect polycrystalline sample should contain a large number of crystallites. Ideally, we should always be able to find a set of crystallites

More information

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning

More information

Strain. Two types of stresses: Usually:

Strain. Two types of stresses: Usually: Stress and Texture Strain Two types of stresses: microstresses vary from one grain to another on a microscopic scale. macrostresses stress is uniform over large distances. Usually: macrostrain is uniform

More information

Diffraction Basics. The qualitative basics:

Diffraction Basics. The qualitative basics: The qualitative basics: Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure, x-rays scattered in

More information

High Resolution X-ray Diffraction

High Resolution X-ray Diffraction High Resolution X-ray Diffraction Nina Heinig with data from Dr. Zhihao Donovan Chen, Panalytical and slides from Colorado State University Outline Watlab s new tool: Panalytical MRD system Techniques:

More information

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES NATURAL SCIENCES TRIPOS Part IA Friday 4 June 1999 1.30 to 4.30 MATERIALS AND MINERAL SCIENCES Answer five questions; two from each of sections A and B and one from section C. Begin each answer at the

More information

EBSD Electron BackScatter Diffraction Principle and Applications

EBSD Electron BackScatter Diffraction Principle and Applications EBSD Electron BackScatter Diffraction Principle and Applications Dr. Emmanuelle Boehm-Courjault EPFL STI IMX Laboratoire de Simulation des Matériaux LSMX emmanuelle.boehm@epfl.ch 1 Outline! Introduction!

More information

3. Anisotropic blurring by dislocations

3. Anisotropic blurring by dislocations Dynamical Simulation of EBSD Patterns of Imperfect Crystals 1 G. Nolze 1, A. Winkelmann 2 1 Federal Institute for Materials Research and Testing (BAM), Berlin, Germany 2 Max-Planck- Institute of Microstructure

More information

Observation in the GB (Gentle Beam) Capabilities

Observation in the GB (Gentle Beam) Capabilities A field-emission cathode in the electron gun of a scanning electron microscope provides narrower probing beams at low as well as high electron energy, resulting in both improved spatial resolution and

More information

JECP/HOLZ, an Interactive Computer Program for Simulation of HOLZ Pattern

JECP/HOLZ, an Interactive Computer Program for Simulation of HOLZ Pattern JECP/HOLZ, an Interactive Computer Program for Simulation of HOLZ Pattern (Version 2t) X.Z. Li, Ph. D Copyright(C) 2002-2017 LANDYNE All Rights Reserved. Contents: 1. Purpose of the program 2. Graphic

More information

LECTURE 7. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 7. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 7 Dr. Teresa D. Golden University of North Texas Department of Chemistry Diffraction Methods Powder Method For powders, the crystal is reduced to a very fine powder or microscopic grains. The sample,

More information

CRYSTAL STRUCTURE DETERMINATION OF PHARMACEUTICALS WITH ELECTRON DIFFRACTION

CRYSTAL STRUCTURE DETERMINATION OF PHARMACEUTICALS WITH ELECTRON DIFFRACTION CRYSTAL STRUCTURE DETERMINATION OF PHARMACEUTICALS WITH ELECTRON DIFFRACTION Dr. Partha Pratim Das Application Specialist, NanoMEGAS SPRL, Belgium pharma@nanomegas.com www.nanomegas.com This document was

More information

X-RAY DIFFRACTIO N B. E. WARREN

X-RAY DIFFRACTIO N B. E. WARREN X-RAY DIFFRACTIO N B. E. WARREN Chapter 1 X-Ray Scattering by Atom s 1.1 Classical scattering by a free electron 1 1.2 Polarization by scattering 4 1.3 Scattering from several centers, complex representation

More information

Single crystal X-ray diffraction. Zsolt Kovács

Single crystal X-ray diffraction. Zsolt Kovács Single crystal X-ray diffraction Zsolt Kovács based on the Hungarian version of the Laue lab description which was written by Levente Balogh, Jenő Gubicza and Lehel Zsoldos INTRODUCTION X-ray diffraction

More information

Supporting Information

Supporting Information Supporting Information Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs; Towards Design Rules for Oriented Attachment Justin C. Ondry,, Matthew R. Hauwiller,,

More information

Thin Film Scattering: Epitaxial Layers

Thin Film Scattering: Epitaxial Layers Thin Film Scattering: Epitaxial Layers Arturas Vailionis First Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application Tuesday, May

More information

Introduction to Electron Backscattered Diffraction. TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016

Introduction to Electron Backscattered Diffraction. TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016 Introduction to Electron Backscattered Diffraction 1 TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016 SE vs BSE 2 Ranges and interaction volumes 3 (1-2 m) http://www4.nau.edu/microanalysis/microprobe/interact-effects.html

More information

Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed.

Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed. Supplementary Figures Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed. Supplementary Figure 2: The original

More information

Precision Without Compromise

Precision Without Compromise D1 EVOLUTION Precision Without Compromise Versatile and user-friendly high resolution and multipurpose X-ray diffractometer for the characterization of advanced materials www.jvsemi.com D1 Overview Introduction

More information

Materials Characterization for Stress Management

Materials Characterization for Stress Management Materials Characterization for Stress Management Ehrenfried Zschech, Fraunhofer IZFP Dresden, Germany Workshop on Stress Management for 3D ICs using TSVs San Francisco/CA, July 13, 2010 Outline Stress

More information

Application of Scanning Electron Microscope to Dislocation Imaging in Steel

Application of Scanning Electron Microscope to Dislocation Imaging in Steel Application of Scanning Electron Microscope to Dislocation Imaging in Steel Masaaki Sugiyama and Masateru Shibata Advanced Technology Research Laboratories, Nippon Steel Corporation SM Business Unit, JEOL

More information

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p.

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. Preface p. xvii Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. 6 Content of the unit cell p. 7 Asymmetric

More information

Application of ASTAR/precession electron diffraction technique to quantitatively study defects in nanocrystalline metallic materials

Application of ASTAR/precession electron diffraction technique to quantitatively study defects in nanocrystalline metallic materials Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2017 Application of ASTAR/precession electron diffraction technique to quantitatively study defects in nanocrystalline

More information

Relation between Microstructure and 2DEG Properties of AlGaN/GaN Structures

Relation between Microstructure and 2DEG Properties of AlGaN/GaN Structures 2. Experimental The AlGaN/GaN structures have been grown by low-pressure metalorganic vapor phase epitaxy (LP-MOVPE) on c-plane sapphire substrates [2], using ammonia, TMGa and TMAl as precursors. After

More information

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity

Supporting Information. Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S. Exhibiting Low Resistivity and High Infrared Responsivity Supporting Information Solution-Processed 2D PbS Nanoplates with Residual Cu 2 S Exhibiting Low Resistivity and High Infrared Responsivity Wen-Ya Wu, Sabyasachi Chakrabortty, Asim Guchhait, Gloria Yan

More information

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p.

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. 7 Crystallographic Planes, Directions, and Indices p. 8 Crystallographic

More information

JSM-7800F Field Emission Scanning Electron Microscope

JSM-7800F Field Emission Scanning Electron Microscope JSM-7800F catalogue JSM-7800F Field Emission Scanning Electron Microscope We provide high performance The Ultimate Research Tool for Multi-Disciplinary Research Institutions Extreme resolution The super

More information

COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD *

COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * 201 J. Müller 1, D. Balzar 1,2, R.H. Geiss 1, D.T. Read 1, and R.R. Keller 1 1 Materials Reliability Division, National

More information

The principles and practice of electron microscopy

The principles and practice of electron microscopy The principles and practice of electron microscopy Second Edition Ian M. Watt CAMBRIDGE UNIVERSITY PRESS Contents Preface tofirstedition page ix Preface to second edition xi 1 Microscopy with light and

More information

The application of scanning electron beam anomalous transmission patterns in mineralogy

The application of scanning electron beam anomalous transmission patterns in mineralogy MINERALOGICAL MAGAZINE, JUNE 1969, VOL. 37, NO. 286 The application of scanning electron beam anomalous transmission patterns in mineralogy M. P. JONES, B.SC., D.I.C., A.M.I.M.M., AND J. GAVRILOVIC, PH.D.,

More information

SI GUIDE. File Name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References.

SI GUIDE. File Name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References. SI GUIDE File Name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References. File Name: Supplementary Movie 1 Description: (the movie from which Figs.

More information

TRANSMISSION ELECTRON MICROSCOPY OF OPTOELECTRONIC MATERIALS BASICS AND ADVANCED TECHNIQUES

TRANSMISSION ELECTRON MICROSCOPY OF OPTOELECTRONIC MATERIALS BASICS AND ADVANCED TECHNIQUES TRANSMISSION ELECTRON MICROSCOPY OF OPTOELECTRONIC MATERIALS BASICS AND ADVANCED TECHNIQUES Fritz Phillipp Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany ABSTRACT

More information

Contents 1. of a higher level of mathematics, physics, or crystallography.

Contents 1. of a higher level of mathematics, physics, or crystallography. Contents 1 1 Diffraction and the X-Ray Powder Diffractometer... 1 1.1 Diffraction... 1 1.1.1 Introduction to Diffraction... 1 1.1.2 Bragg s Law... 3 1.1.3 StrainEffects... 6 1.1.4 SizeEffects... 6 1.1.5

More information

FePd (216 Å) grown on (001) MgO. 2θ(deg)

FePd (216 Å) grown on (001) MgO. 2θ(deg) Major Findings 1. FePd thin films The structural characterization of the films grown at various substrate temperatures (RT- 700 o C) was performed ex-situ using X-Ray Diffraction (XRD). The optimum substrate

More information

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10. Code No: 09A1BS02 Set No. 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. I Mid Examinations, November 2009 ENGINEERING PHYSICS Objective Exam Name: Hall Ticket No. A Answer All Questions.

More information

A Quantitative Evaluation of Microstructure by Electron Back-Scattered Diffraction Pattern Quality Variations

A Quantitative Evaluation of Microstructure by Electron Back-Scattered Diffraction Pattern Quality Variations Microsc. Microanal. 19, S5, 83 88, 2013 doi:10.1017/s1431927613012397 A Quantitative Evaluation of Microstructure by Electron Back-Scattered Diffraction Pattern Quality Variations SukHoonKang, 1 Hyung-Ha

More information

Electron microscopy s multi-tool: the Scanning Transmission Electron Microscope. Advanced Technology Institute, University of Surrey, Guildford, UK.

Electron microscopy s multi-tool: the Scanning Transmission Electron Microscope. Advanced Technology Institute, University of Surrey, Guildford, UK. Electron microscopy s multi-tool: the Scanning Transmission Electron Microscope Vlad Stolojan Advanced Technology Institute, University of Surrey, Guildford, UK. Biography: Vlad Stolojan obtained his BSc

More information

Structures of AlN/VN superlattices with different AlN layer thicknesses

Structures of AlN/VN superlattices with different AlN layer thicknesses Structures of AlN/VN superlattices with different AlN layer thicknesses Quan Li a) Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong I.W. Kim, S.A. Barnett, and

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

Building An Ultrafast Photon-Induced Near-field Transmission Electron Microscope

Building An Ultrafast Photon-Induced Near-field Transmission Electron Microscope Building An Ultrafast Photon-Induced Near-field Transmission Electron Microscope Dr. Tom T.A. Lummen École Polytechnique Fédérale de Lausanne -- LUMES Photonic Instruments 2013 September 11, 2013 Zürich,

More information

ECCI of AlGaN/GaN HEMT structures grown on Si

ECCI of AlGaN/GaN HEMT structures grown on Si ECCI of AlGaN/GaN HEMT structures grown on Si D. Thomson 1, G. Naresh-Kumar 1, B. Hourahine 1, C. Trager-Cowan 1, P. Wright 2 and T. Martin 2 1 Dept. Of Physics, SUPA, University of Strathclyde, Glasgow

More information

Heterostructures of Oxides and Semiconductors - Growth and Structural Studies

Heterostructures of Oxides and Semiconductors - Growth and Structural Studies Heterostructures of Oxides and Semiconductors - Growth and Structural Studies Beamline 17B1 W20 X-ray Scattering beamline Authors M. Hong and J. R. Kwo National Tsing Hua University, Hsinchu, Taiwan H.

More information

Workshop RIETVELD REFINEMENT OF DIFFRACTION PATTERNS Program Monday June 1st, Introduction to Rietveld refinement S.

Workshop RIETVELD REFINEMENT OF DIFFRACTION PATTERNS Program Monday June 1st, Introduction to Rietveld refinement S. Workshop RIETVELD REFINEMENT OF DIFFRACTION PATTERNS Program Monday June 1st, 2009 9.00 13.00 Introduction to Rietveld refinement S.Enzo Università di Sassari X-ray diffraction for bulk samples and thin

More information

Rietveld analysis of policrystalline materials using precession of electron diffraction

Rietveld analysis of policrystalline materials using precession of electron diffraction Romanian Biotechnological Letters Copyright 2010 University of Bucharest Vol. 15, No.3, 2010, Supplement Printed in Romania. All rights reserved ORIGINAL PAPER Rietveld analysis of policrystalline materials

More information

X-Ray Diffraction. Nicola Pinna

X-Ray Diffraction. Nicola Pinna X-Ray Diffraction Nicola Pinna Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal. School of Chemical and Biological Engineering, College of Engineering, Seoul National University

More information

Index. Cambridge University Press Introduction to Elasticity Theory for Crystal Defects R. W. Balluffi. Index.

Index. Cambridge University Press Introduction to Elasticity Theory for Crystal Defects R. W. Balluffi. Index. Airy stress functions formulation of 60 1 table of 426 alternator operator 419 Brown s formula 255 Burgers equation 264 5 Christoffel stiffness tensor 34 corresponding elastic fields 25 7 curvature tensor,

More information

Introduction to XRD analysis of modern functional thin films using a 2-dimensional detector (2) Analysis of epitaxial films

Introduction to XRD analysis of modern functional thin films using a 2-dimensional detector (2) Analysis of epitaxial films Technical articles Introduction to XRD analysis of modern functional thin films using a 2-dimensional detector (2) Analysis of epitaxial films Katsuhiko Inaba* 1. Introduction Epitaxial thin films are

More information

In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal

In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal Supplementary Information for In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal Sang Ho Oh*, Marc Legros, Daniel Kiener and Gerhard Dehm *To whom correspondence

More information

What if your diffractometer aligned itself?

What if your diffractometer aligned itself? Ultima IV Perhaps the greatest challenge facing X-ray diffractometer users today is how to minimize time and effort spent on reconfiguring of the system for different applications. Wade Adams, Ph.D., Director,

More information

SiC crystal growth from vapor

SiC crystal growth from vapor SiC crystal growth from vapor Because SiC dissolves in Si and other metals can be grown from melt-solutions: Liquid phase epitaxy (LPE) Solubility of C in liquid Si is 0.029% at 1700oC high T process;

More information

Advances in EBSD Analysis Using Novel Dynamical Pattern Simulation Software

Advances in EBSD Analysis Using Novel Dynamical Pattern Simulation Software Advances in EBSD Analysis Using Novel Dynamical Pattern Simulation Software Bruker Nano GmbH, Berlin Webinar, November 5 th, 2014 Innovation with Integrity Presenters Dr. Daniel Goran Product Manager EBSD,

More information

Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates

Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates SUPPORTING INFORMATION Chemically Tunable Full Spectrum Optical Properties of 2D Silicon Telluride Nanoplates Mengjing Wang,, Gabriella Lahti, David Williams, and Kristie J. Koski * Department of Chemistry,

More information

Structure Analysis of -phase in Sb-Te Alloys by HRTEM* 1

Structure Analysis of -phase in Sb-Te Alloys by HRTEM* 1 Materials Transactions, Vol. 45, No. 8 (2004) pp. 2673 to 2677 #2004 The Japan Institute of Metals Structure Analysis of -phase in Sb-Te Alloys by HRTEM* 1 Yoshiyuki Nakata 1, Takehito Suenaga 1; * 2,

More information

The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole

The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole University of Groningen The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

CURVATURE MEASUREMENTS OF STRESSED SURFACE-ACOUSTIC- WAVE FILTERS USING BRAGG ANGLE CONTOUR MAPPING

CURVATURE MEASUREMENTS OF STRESSED SURFACE-ACOUSTIC- WAVE FILTERS USING BRAGG ANGLE CONTOUR MAPPING 86 CURVATURE MEASUREMENTS OF STRESSED SURFACE-ACOUSTIC- WAVE FILTERS USING BRAGG ANGLE CONTOUR MAPPING ABSTRACT Paul M. Adams The Aerospace Corporation Los Angeles, CA 90009 Surface-acoustic-wave (SAW)

More information

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 4 Microscopy (III): Transmission Electron Microscopy (TEM)

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 4 Microscopy (III): Transmission Electron Microscopy (TEM) 1 AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 4 Microscopy (III): Transmission Electron Microscopy (TEM) Prof YU Kin Man E-mail: kinmanyu@cityu.edu.hk Tel: 3442-7813 Office: P6422

More information

Philips Analytical, Lelyweg 1, 7602 EA Almelo, The Netherlands

Philips Analytical, Lelyweg 1, 7602 EA Almelo, The Netherlands Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 284 MICRO-DIFFRACTION WITH MONO-CAPILLARIES M.J. Fransen, J.H.A. Vasterink and J. te Nijenhuis Philips

More information