The Effects of Sapphire Substrates Processes to the LED Efficiency

Size: px
Start display at page:

Download "The Effects of Sapphire Substrates Processes to the LED Efficiency"

Transcription

1 The Effects of Sapphire Substrates Processes to the LED Efficiency Hua Yang*, Yu Chen, Libin Wang, Xiaoyan Yi, Jingmei Fan, Zhiqiang Liu, Fuhua Yang, Liangchen Wang, Guohong Wang, Yiping Zeng, Jinmin Li R&D Center for Semiconductor Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing , P. R. China ABSTRACT We investigate the relation between the thickness of substrates and the extraction efficiency of LED. The increasing about 5% was observed in the simulations and experiments when the thickness changed from 100um to 200um. But the output power increasing is inconspicuous when the thickness is more than 200um. The structure on bottom face of substrates can enhance the extraction efficiency of GaN-based LED, too. The difference of output power between the flip-chip LED with smooth bottom surface and the LED with roughness bottom surface is about 50%, where only a common grinding process is used. But for those LEDs grown on patterned substrate the difference is only about 10%. Another kind of periodic pattern on the bottom of is fabricated by the dry etch method, and the output of the back-etched LEDs is improved about 50% than a common case. Keywords: GaN-based LED, Grinding, Ray tracing. 1. INTRODUCTION Recently, GaN-based blue and near-uv LEDs are extensively studied in the emerging solid-state lighting industry as a key technology. The light extraction efficiency (LEE) is very important factor in fabricating high brightness, high efficiency GaN-based light-emitting diode (LED). As well known, the large difference in the refractive index between the GaN(2.40) and air(1) caused a narrow escape cone for the light in GaN crystal. One most used method is roughness or texture on interfaces, such as the patterned substrate (PSS) recently [1],[2],[3],[4], and the increasing efficiency of PSS LED is considered as a consequence of the light scattering by the PSS. Huang, etc developed the side wall shaping and truncated inverted pyramid (TIP) shaping technology to increase the external quantum efficiency (EQE) of GaN LED [5],[6]. The flip-chip technology is also wildly studied because of its excellent performance in thermal conductivity and EQE these years [7]. But the influence of substrate processes in the back-end process is few considered. In this work, the relation between extraction efficiency of GaN-based LED and several parameters of the substrate is studied, including thickness, roughness and package method. Firstly, the thickness of substrate in the back-end processes is studied. After choose a better thickness, we develop the roughness method using just a grinding process and the bottom face periodic pattern by dry etching technique to improve the external quantum efficiency. The different surface structure on the bottom surface of substrates are analyzed basis on geometry ray tracing simulation, and compared with experiments. * huayang@semi.ac.cn; phone ; fax ; Solid State Lighting and Solar Energy Technologies, edited by Jinmin Li, Yubo Fan, Ling Wu, Yong-Hang Zhang, Michael E. Coltrin, Yuwen Zhao, Nuofu Chen, Vladimir M. Andreev, Jai Singh, Proc. of SPIE Vol. 6841, 68410M, (2007) X/07/$18 doi: / Proc. of SPIE Vol M-1

2 LED Chip-on-wafer LED Chip-on-wafer Sapphire LED Chip Si Submount (1) Mask (2) (3) Sapphire LED Chip-on-wafer LED Chip-on-wafer LED Chip Si Submount (4) (5) (6) Fig1. the fabrication process of the GaN LED structure with textured bottom surface. (1)the chip-on-wafer; (2)grinding or polishing to different thickness; (3)scribe the grinded chips and flip-chip on the Si-submount; (4)PECVD SiO 2 as mask on the bottom of polished chips; (5)ICP on the bottom surface of substrate for the periodical pattern; (6)scribe the chip and flip-chip on Si-submount. 2. EXPERIMENTS The GaN samples used in this work were grown using metal organic chemical vapor deposition (MOCVD) onto the c-plane substrates. The common structure of GaN-based LED is used. It consists of a low-temperature GaN buffer layer about 200um, then a 1um undoped GaN layer, a 2um conductive n-type GaN layer, a InGaN/GaN multiple-quantum-well (MQW) active layer, and about 0.5um p-type GaN layer on the top. A schematic process of the device making is shown in Fig. 1. Firstly, we make the chip-on-wafer by the common method, which include common GaN LEDs fabricating steps. Photolithograph and dry etching was performed in an Oxford Plasmalab 100 inductively coupled plasma (ICP) reactor to expose the n-type GaN, then standard lift-off process for Ni-Au (5nm/5nm) as p-gan ohmic contact material, Ti/Al/Ti/Au as n-type ohmic contact by electron-beam evaporation. After annealing, the Ni-Ag is deposited and lift-off as the pads to finish the making process of chip-on-wafer. Secondly, we grind and polish those wafers to 100um, 200um and 400um separately. After study of the thickness influence, the 200um samples are selected to make bottom texture samples. Parts of the samples are to just grind the bottom and make an irregular roughness bottom surface. Other parts of the samples are to make SiO 2 mask on the bottom of wafer by the plasma enhanced chemical vapor deposition (PECVD). And then dry etching was performed in an Oxford Plasmalab 100 ICP reactor, in which the ICP source operated at power (1300W). At last the samples are scribed by laser scriber and flip-chip to the Si-submount to form the flip-chip LED. The luminance intensity is detected by the up-side photodetectors. 3. RESULTS AND DISCUSSIONS In the conventional LED processes, the will be grinding and polishing to less than 100um to minimize the thermal resistance between the device and environment. But for the flip-chip LED, a more thick is better to EQE than a thin one and no more thermal resistance set in. We simulate the relation between EQE and thickness of Proc. of SPIE Vol M-2

3 substrate by the geometry ray-tracing method. As the Fig.2 shown, when the thickness of substrate change from 0um(such as GaN-based LEDs by laser assistant lift-off technology) ~ 400um, the LED EQE is improved from 8.5% to the 13.4%, the improved part is more than 50%. When the thickness of substrate changes from 100um to 400um, we can observe that the top luminance intensity is improved about 6%, which is very fit for the simulation result 5.5%. The reason is show in Fig.3, when the light transmit in the chip, before the light extract form chip or be absorbed, the number of reflection in crystal is important for the attenuation process because of the low loss of blue light in material. If the is thick, this number will be much smaller than in a thin one. When the thickness of substrate is small, this effect is noticeable more. Considering the substrate strength needed in next steps, a 200um will be a good enough parameter Light Extraction % Luminance Intensity arb. units Thickness of Sapphire substrate Fig.2. Light extraction efficiency.vs. thickness of substrate Fig.3. the light trace schematic diagrams of different thickness substrate Proc. of SPIE Vol M-3

4 Sapphire Subumount Fig.4. the schematic diagrams of a bottom textured GaN LED structures Patterned substrate is wildly used to improve EQE in GaN LED, but for the flip-chip LED the bottom surface is few considered. The schematic diagram of flip-chip LED is shown in the Fig.4. The difference is the flat or grinded substrate bottom surface. The device with non-pss wafer and grinded bottom surface is simulated by the geometry ray-tracing method. As Fig.5 shown, the EQE of devices with or without bottom roughness is 10.5% and 18.4%. And after resin package process, that number is 19.8% and 23.5% separately. These simulations indicate that the roughness flip-chip LED can provide better EQE than a conventional flip-chip one. The LEDs with grinding bottom surface are fabricated and tested. Because all the GaN LED grown on will be grinding and polish, so this process do not change the electrical characters of LEDs. The results in Fig.6 show the luminance intensity versus injection current characteristics. The Fig. 6(a) shows the luminance intensity of grinded chips about 50% higher than those common chips. Those results suggest that the roughness bottom surface make the light in chips easily to escape, so it is help for the EQE. But we notice that this mechanism in PSS samples is not as good as in the conventional one. As the results shown in Fig. 6(b), the improvement is about 10% only. It seemly implies that there is some limit of the method of surface roughness. When the chips are packaged by resin, because of the small difference between the (1.7) and epoxy resin (1.5), as the simulations above, the improvement is decreased to less than 20%. Proc. of SPIE Vol M-4

5 (a) (b) (c) T (d) Fig.5. light trace diagrams of the textured and conventional LED. (a) before package- common flip-chip LED η 10.5%; (b) before package bottom roughness flip-chip LED roughnessη 18.4%; (c) after package- common flip-chip LED η 19.8%; (d) after package - bottom roughness flip-chip LEDη 23.5% Common Substrate Flip-chip Patterned Sapphire Substrate structure chip Luminance Intensity arb.unit Current(mA) conventional flip-chip bottomroughness flip-chip Luminance intensity arb. units current (ma) conventional flip-chip bottom roughness flip-chip Fig.6. Luminous intensity versus injection current characteristics of conventional flip-chip, bottom textured LED and bottom roughness LED. (a) common substrate chips, (b) patterned substrate chips. Furthermore, we fabricated a texture on the bottom of substrate by the ICP dry etch. The period is 12um, and the cell is 6um, as the Fig.7 shown. And before the package, the luminance intensity improve is about 50%, too. It maybe suggest that a random pattern may work as good as a periodical one. Proc. of SPIE Vol M-5

6 4. CONCLUSIONS Fig.7. The microscope photo of bottom textured substrate. The relation of substrate thickness and extraction efficiency of LED was studied, and the thickness of 200um was recommended to improve about 5% of LEE. We fabricated the bottom texture and bottom roughness flip-chip GaN LEDs with the ICP etch and grinding method separately. The EQE improvement about 50% was achieved by the surface changing on the bottom of the chip. But for PSS structure LED, the improvement from bottom roughness method is reducing to about 10%. REFERENCES [1] Tsung-Xian Lee, Chao-Ying Lin, Shih-Hsin Ma and Ching-Cherng Sun, Analysis of position-dependent light extraction of GaN based LEDs,Optics Express, Vol.13, No.11, 4175, May [2] Shyi-Ming Pan, Ru-Chin Tu, Yu-Mei Fan, Ruey-Chyn Yeh, and Jung-Tsung Hsu, Improvement of InGaN-GaN Light-Emitting Diodes With Surface-Textured Indium-Tin-Oxide Transparent Ohmic Contacts, Vol.15, No.5, IEEE Photonics Technology Letters, May [3] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Denbaars, and S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening, Vol.84, No.6, Applied Physics Letters, Feb [4] C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu, C.C. Lin, Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-gan rough surface, Materials Science & Engineer B 112, Oct, [5] Chih-Chiang Kao, Hao-Chung Kuo, etc, Light-output Enhancement in a Nitride-Based Light-Emitting Diode with 220 Undercut sidewalls, Vol.17, No.1, IEEE Photonics Technology Letters, Jan [6] Th.Gessmann, E.F. Schubert, High efficiency AlGaInP light-emitting diodes for solid-state lighting applications, Vol.95, No.5, Journal of Applied Physics, Mar [7] F.K. Yam, Z. Hassan, Innovative advances in LED technology, Microelectronics Journal 36, Proc. of SPIE Vol M-6

Light enhancement by the formation of an Al-oxide honeycomb nano-structure on the n-gan surface of thin-gan light-emitting diodes

Light enhancement by the formation of an Al-oxide honeycomb nano-structure on the n-gan surface of thin-gan light-emitting diodes Light enhancement by the formation of an Al-oxide honeycomb nano-structure on the n-gan surface of thin-gan light-emitting diodes C. L. Lin, P. H. Chen Department of Chemical and Materials Engineering,

More information

Research Article Thermal Characteristics of InGaN/GaN Flip-Chip Light Emitting Diodes with Diamond-Like Carbon Heat-Spreading Layers

Research Article Thermal Characteristics of InGaN/GaN Flip-Chip Light Emitting Diodes with Diamond-Like Carbon Heat-Spreading Layers International Photoenergy, Article ID 829284, 5 pages http://dx.doi.org/1.1155/214/829284 Research Article Thermal Characteristics of InGaN/GaN Flip-Chip Light Emitting Diodes with Diamond-Like Carbon

More information

High reflectivity and thermal-stability Cr-based Reflectors and. n-type Ohmic Contact for GaN-based flip-chip light-emitting.

High reflectivity and thermal-stability Cr-based Reflectors and. n-type Ohmic Contact for GaN-based flip-chip light-emitting. High reflectivity and thermal-stability Cr-based Reflectors and n-type Ohmic Contact for GaN-based flip-chip light-emitting diodes Kuang-Po Hsueh, a * Kuo-Chun Chiang, a Charles J. Wang, b and Yue-Ming

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013 ISSN: 2277-3754 Fabrication and Characterization of Flip-Chip Power Light Emitting Diode with Backside Reflector Ping-Yu Kuei, Wen-Yu Kuo, Liann-Be Chang, Tung-Wuu Huang, Ming-Jer Jeng, Chun-Te Wu, Sung-Cheng

More information

Investigation of GaN-Based Flip-Chip LEDs in Brightness and Reliability

Investigation of GaN-Based Flip-Chip LEDs in Brightness and Reliability Investigation of GaN-Based Flip-Chip LEDs in Brightness and Reliability Abstract In this dissertation, high performance nitride-based flip-chip (FC) light-emitting diodes (LEDs) were investigated and fabricated.

More information

OPTICAL MODE PATTERN STUDY OF GAN BASED LEDS WITH AND WITHOUT NANOSCALE TOP GRATING

OPTICAL MODE PATTERN STUDY OF GAN BASED LEDS WITH AND WITHOUT NANOSCALE TOP GRATING OPTICAL MODE PATTERN STUDY OF GAN BASED LEDS WITH AND WITHOUT NANOSCALE TOP GRATING by Greg Chavoor Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo

More information

High-efficiency GaN-based light-emitting diodes fabricated with identical Ag contact formed on both n- and p-layers

High-efficiency GaN-based light-emitting diodes fabricated with identical Ag contact formed on both n- and p-layers High-efficiency GaN-based light-emitting diodes fabricated with identical Ag contact formed on both n- and p-layers Munsik Oh and Hyunsoo Kim * School of Semiconductor and Chemical Engineering and Semiconductor

More information

INTEGRATION OF N- AND P-CONTACTS TO GaN-BASED LIGHT EMITTING DIODES

INTEGRATION OF N- AND P-CONTACTS TO GaN-BASED LIGHT EMITTING DIODES International Journal of High Speed Electronics and Systems Vol. 20, No. 3 (2011) 521 525 World Scientific Publishing Company DOI: 10.1142/S0129156411006817 INTEGRATION OF N- AND P-CONTACTS TO GaN-BASED

More information

Microelectronic Engineering

Microelectronic Engineering Microelectronic Engineering 105 (2013) 86 90 Contents lists available at SciVerse ScienceDirect Microelectronic Engineering journal homepage: www.elsevier.com/locate/mee High-efficiency InGaN-based LEDs

More information

The Effect of Heat Treatment on Ni/Au Ohmic Contacts to p-type GaN

The Effect of Heat Treatment on Ni/Au Ohmic Contacts to p-type GaN Li-Chien Chen et al.: The Effect of Heat Treatment on Ni/Au Ohmic Contacts 773 phys. stat. sol. (a) 176, 773 (1999) Subject classification: 73.40.Cg; S7.14 The Effect of Heat Treatment on Ni/Au Ohmic Contacts

More information

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED Y. H. Lin and C. Y. Liu Department of Chemical Engineering and Materials Engineering, National Central University, Jhongli,

More information

HIGH-PERFORMANCE blue and green light emitting

HIGH-PERFORMANCE blue and green light emitting IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 5, NO. 2, JUNE 2005 277 ESD Engineering of Nitride-Based LEDs Y. K. Su, S. J. Chang, S. C. Wei, Shi-Ming Chen, and Wen-Liang Li Abstract GaN-based

More information

Nano-imprint Technology on LED Applications

Nano-imprint Technology on LED Applications Nano-imprint Technology on LED Applications Dr. Sean Lin September 4, 2013 Outline Background Introduction Industry Updates on Nanoimprint Technology (NIT) Photonic Crystal (PhC) LEDs by NIT Other Work

More information

1. The Subject and Aims of Research Silicon nanowires-based solar cells: Si-based solar cells Pyramid Silicon nanowire (SiNW) SiNW/pyramid

1. The Subject and Aims of Research Silicon nanowires-based solar cells: Si-based solar cells Pyramid Silicon nanowire (SiNW) SiNW/pyramid Optoelectronics and Semiconductor Group Professor Bohr-Ran Huang Ph.D., Michigan State University, U.S.A. Field of study: nanomaterials and devices, optoelectronic thin films devices, biophotonics and

More information

The low dislocation gallium nitride layer by AP-MOCVD. Abstract

The low dislocation gallium nitride layer by AP-MOCVD. Abstract The low dislocation gallium nitride layer by AP-MOCVD Fu-Chuan Chu, Sheng-Fu Yu, Chao-Hung Chen, Chou-Shuang Huang, Ray-Ming Lin* Dept. of Electronics Engineering, Chang Gung University, Taoyuan, Taiwan,

More information

InGaN quantum dot based LED for white light emitting

InGaN quantum dot based LED for white light emitting Emerging Photonics 2014 InGaN quantum dot based LED for white light emitting Luo Yi, Wang Lai, Hao Zhibiao, Han Yanjun, and Li Hongtao Tsinghua National Laboratory for Information Science and Technology,

More information

Heat Transfer Characteristics in High Power LED Packaging

Heat Transfer Characteristics in High Power LED Packaging Heat Transfer Characteristics in High Power LED Packaging Chi-Hung Chung 1, Kai-Shing Yang 2,*, Kuo-Hsiang Chien 2, Ming-Shan Jeng 2 and Ming-Tsang Lee 1, 1 Department of Mechanical Engineering, National

More information

InGaN/GaN Light Emitting Diodes With a p-down Structure

InGaN/GaN Light Emitting Diodes With a p-down Structure IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 49, NO. 8, AUGUST 2002 1361 InGaN/GaN Light Emitting Diodes With a p-down Structure Y. K. Su, Senior Member, IEEE, S. J. Chang, Chih-Hsin Ko, J. F. Chen, Member,

More information

Review of CMOS Processing Technology

Review of CMOS Processing Technology - Scaling and Integration Moore s Law Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from

More information

The Blue Laser Diode. Shuji Nakamura Stephen Pear ton Gerhard Fasol. The Complete Story. Springer

The Blue Laser Diode. Shuji Nakamura Stephen Pear ton Gerhard Fasol. The Complete Story. Springer Shuji Nakamura Stephen Pear ton Gerhard Fasol The Blue Laser Diode The Complete Story Second Updated and Extended Edition With 256 Figures and 61 Tables Springer Contents 1. Introduction 1 1.1 LEDs and

More information

Fang-I Lai 1,2* and Jui-Fu Yang 1

Fang-I Lai 1,2* and Jui-Fu Yang 1 Lai and Yang Nanoscale Research Letters 2013, 8:244 NANO EXPRESS Open Access Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-gan surface

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Lect. 2: Basics of Si Technology

Lect. 2: Basics of Si Technology Unit processes Thin Film Deposition Etching Ion Implantation Photolithography Chemical Mechanical Polishing 1. Thin Film Deposition Layer of materials ranging from fractions of nanometer to several micro-meters

More information

Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures

Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures Optoelectronic characterization of Au/Ni/n-AlGaN photodiodes after annealing at different temperatures PNM Ngoepe *, WE Meyer, M Diale, FD Auret, L van Schalkwyk Department of Physics, University of Pretoria,

More information

Patterned sapphire for nitride enhancements

Patterned sapphire for nitride enhancements 120Technology focus: Nitride substrates Patterned sapphire for nitride enhancements In the past few years, patterned sapphire substrates have been used to improve performance of nitride semiconductor light-emitting

More information

Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching

Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by mask-free chemical etching Chen and Tsai Nanoscale Research Letters 2013, 8:157 NANO EXPRESS Open Access Properties of GaN-based light-emitting diodes on patterned sapphire substrate coated with silver nanoparticles prepared by

More information

Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes

Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes C. H. Chiu, 1 Peichen Yu, 1, * C. H. Chang, 1 C. S. Yang, 1

More information

High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask

High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask High-efficiency light-emitting diode with air voids embedded in lateral epitaxially overgrown GaN using a metal mask Chu-Young Cho, 1 Min-Ki Kwon, 3 Il-Kyu Park, 4 Sang-Hyun Hong, 1 Jae-Joon Kim, 2 Seong-Eun

More information

r^a light-emitting diodes (LEDs) Nitride semiconductor Materials, technologies and applications JianJang Huang, Hao-Chung Kuo and Shyh-Chiang Shen

r^a light-emitting diodes (LEDs) Nitride semiconductor Materials, technologies and applications JianJang Huang, Hao-Chung Kuo and Shyh-Chiang Shen Woodhead Publishing Series in Electronic and Optical Materials: Number 54 Nitride semiconductor light-emitting diodes (LEDs) Materials, technologies and applications Edited by JianJang Huang, Hao-Chung

More information

Ultra-high-performance of Self-Powered

Ultra-high-performance of Self-Powered Ultra-high-performance of Self-Powered β-ga 2 Thin Film Solar-blind Photodetector Grown on Cost-Effective Si Substrate using High-Temperature Seed Layer Kanika Arora, Neeraj Goel #, Mahesh Kumar # and

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/336/6084/1007/dc1 Supplementary Materials for Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper Hsiang-Yao Hsiao, Chien-Min Liu, Han-wen Lin,

More information

Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes

Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes Edited by Shuji Nakamura and Shigefusa F. Chichibu London and New York Contents 1. Basics Physics and Materials Technology of

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Introduction Xu Sun Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH),

More information

Investigation of metal contacts via thermal treatment at Interfaces between low temperature Ag pastes and TCO layer for HIT solar cell

Investigation of metal contacts via thermal treatment at Interfaces between low temperature Ag pastes and TCO layer for HIT solar cell Investigation of metal contacts via thermal treatment at Interfaces between low temperature Ag pastes and TCO layer for HIT solar cell Ming-Shiou Lin, Kuang-Yang Kuo, Yong-Han Lin, Yueh-Lin Lee, Liang-Pin

More information

Improving performance of InGaN LEDs on sapphire substrates

Improving performance of InGaN LEDs on sapphire substrates 80 Improving performance of InGaN LEDs on sapphire substrates Mike Cooke reports on research into semipolar growth, quantum well barrier composition and zinc oxide enhancements. Commercial indium gallium

More information

Nitride Semiconductor Light-Emitting Diodes (LEDs). Woodhead Publishing Series in Electronic and Optical Materials

Nitride Semiconductor Light-Emitting Diodes (LEDs). Woodhead Publishing Series in Electronic and Optical Materials Brochure More information from http://www.researchandmarkets.com/reports/2736251/ Nitride Semiconductor Light-Emitting Diodes (LEDs). Woodhead Publishing Series in Electronic and Optical Materials Description:

More information

Available online at ScienceDirect. Energy Procedia 44 (2014 )

Available online at  ScienceDirect. Energy Procedia 44 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 44 (2014 ) 132 137 E-MRS Spring Meeting 2013 Symposium D - Advanced Inorganic Materials and Structures for Photovoltaics, 27-31 May

More information

9 rue Alfred Kastler - BP Nantes Cedex 3 - France Phone : +33 (0) website :

9 rue Alfred Kastler - BP Nantes Cedex 3 - France Phone : +33 (0) website : 9 rue Alfred Kastler - BP 10748-44307 Nantes Cedex 3 - France Phone : +33 (0) 240 180 916 - email : info@systemplus.fr - website : www.systemplus.fr November 2010 - Version 2 Written by: Sylvain HALLEREAU

More information

Enhancement-mode AlGaN/GaN high electronic mobility transistors with thin barrier

Enhancement-mode AlGaN/GaN high electronic mobility transistors with thin barrier Enhancement-mode AlGaN/GaN high electronic mobility transistors with thin barrier Ma Xiao-Hua( ) a)b), Yu Hui-You( ) a), Quan Si( ) b), Yang Li-Yuan( ) b), Pan Cai-Yuan( ) a), Yang Ling( ) b), Wang Hao(

More information

ZnO-based Transparent Conductive Oxide Thin Films

ZnO-based Transparent Conductive Oxide Thin Films IEEE EDS Mini-colloquium WIMNACT 32 ZnO-based Transparent Conductive Oxide Thin Films Weijie SONG Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China

More information

Fabrication of Nanorod Light Emitting Diode by Ni Nano-cluster and Enhanced Extraction Efficiency

Fabrication of Nanorod Light Emitting Diode by Ni Nano-cluster and Enhanced Extraction Efficiency IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 4 Ver. I (Jul Aug. 2014), PP 18-22 Fabrication of Nanorod Light Emitting Diode by

More information

EXPERIMENTAL STUDIES Of NEW GaAs METAL=INSULATOR=p-n þ SWITCHES USING LOW TEMPERATURE OXIDE

EXPERIMENTAL STUDIES Of NEW GaAs METAL=INSULATOR=p-n þ SWITCHES USING LOW TEMPERATURE OXIDE Active and Passive Elec. Comp., 2002, Vol. 25, pp. 233 237 EXPERIMENTAL STUDIES Of NEW GaAs METAL=INSULATOR=p-n þ SWITCHES USING LOW TEMPERATURE OXIDE K. F. YARN* Far East College, Department of Electrical

More information

Fabrication of high power GaN transistors F. Medjdoub CNRS - IEMN

Fabrication of high power GaN transistors F. Medjdoub CNRS - IEMN Fabrication of high power GaN transistors F. Medjdoub CNRS - IEMN E. Dogmus, A. Linge, T. Defais, R. Kabouche, R. Pecheux, M. Zegaoui Lille city centre Where are we? National Network of Large Technological

More information

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON Maxim Fadel and Edgar Voges University of Dortmund, High Frequency Institute, Friedrich-Woehler Weg 4, 44227 Dortmund, Germany ABSTRACT

More information

MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT. Pingtung, Taiwan.

MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT. Pingtung, Taiwan. Stresa, Italy, 5-7 April 007 MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT Chia-Yen Lee 1, Rong-Hua Ma, Yu-Hsiang Wang 1, Po-Cheng Chou 3, Lung-Ming Fu 4

More information

Band offset engineering in ZnSnN 2 -based heterojunction for low-cost solar cells

Band offset engineering in ZnSnN 2 -based heterojunction for low-cost solar cells Band offset engineering in ZnSnN 2 -based heterojunction for low-cost solar cells Kashif Javaid 1,2,3, Weihua Wu 1, Jun Wang 4, Junfeng Fang 1, Hongliang Zhang 1, Junhua Gao 1, Fei Zhuge 1, Lingyan Liang*,1,5

More information

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry Red luminescence from Si quantum dots embedded in films grown with controlled stoichiometry Zhitao Kang, Brannon Arnold, Christopher Summers, Brent Wagner Georgia Institute of Technology, Atlanta, GA 30332

More information

Chemical analysis of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures

Chemical analysis of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures Optica Applicata, Vol. XLIII, No. 1, 213 DOI: 1.277/oa1319 Chemical analysis of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures WOJCIECH MACHERZYŃSKI *, KORNELIA INDYKIEWICZ, BOGDAN PASZKIEWICZ

More information

ENS 06 Paris, France, December 2006

ENS 06 Paris, France, December 2006 CARBON NANOTUBE ARRAY VIAS FOR INTERCONNECT APPLICATIONS Jyh-Hua ng 1, Ching-Chieh Chiu 2, Fuang-Yuan Huang 2 1 National Nano Device Laboratories, No.26, Prosperity Road I, Science-Based Industrial Park,

More information

SiGeC Cantilever Micro Cooler

SiGeC Cantilever Micro Cooler Mat. Res. Soc. Symp. Proc. Vol. 793 2004 Materials Research Society S11.3.1 SiGeC Cantilever Micro Cooler Gehong Zeng, Ali Shakouri 1 *, Edward Croke 2, Yan Zhang 1, James Christofferson 1 and John E.

More information

OUTLINE. Preparation of III Nitride thin 6/10/2010

OUTLINE. Preparation of III Nitride thin 6/10/2010 Preparation of III Nitride thin films for LEDs Huaxiang Shen Supervisor: Dr. Adrian Kitai 1 2 Two kinds of EL devices Light emitting diodes Powder EL and thin film EL http://en.wikipedia.org/wiki/file:pnjunction

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

Published in: Proceedings of the 19th Annual Symposium of the IEEE Photonics Benelux Chapter, 3-4 November 2014, Enschede, The Netherlands

Published in: Proceedings of the 19th Annual Symposium of the IEEE Photonics Benelux Chapter, 3-4 November 2014, Enschede, The Netherlands Characterization of Ge/Ag ohmic contacts for InP based nanophotonic devices Shen, L.; Wullems, C.W.H.A.; Veldhoven, van, P.J.; Dolores Calzadilla, V.M.; Heiss, D.; van der Tol, J.J.G.M.; Smit, M.K.; Ambrosius,

More information

2014 NOBEL LECTURE IN PHYSICS

2014 NOBEL LECTURE IN PHYSICS Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes SHUJI NAKAMURA SOLID STATE LIGHTING AND ENERGY ELECTRONICS CENTER MATERIALS AND ECE DEPARTMENTS UNIVERSITY OF CALIFORNIA,

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Comparison Study of Structural and Optical Properties of In x Ga 1-x N/GaN Quantum Wells with Different In Compositions

Comparison Study of Structural and Optical Properties of In x Ga 1-x N/GaN Quantum Wells with Different In Compositions Comparison Study of Structural and Optical Properties of In x Ga 1-x N/GaN Quantum Wells with Different In Compositions Yong-Hwan Kwon, G. H. Gainer, S. Bidnyk, Y. H. Cho, J. J. Song, M. Hansen 1, and

More information

Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm

Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm Deep-etched fused silica grating as a (de)multiplexer for DWDM application at the wavelength of 1.55µm Yanyan Zhang*, Changhe Zhou, Huayi Ru, Shunquan Wang Shanghai Institute of Optics and Fine Mechanics,

More information

MOCVD Technology for LED

MOCVD Technology for LED MOCVD Technology for LED Prof. Dr.-Ing. Michael Heuken Vice President Corporate Research and Development AIXTRON AG, Fon: +49 (241) 8909-154, Fax: +49 (241) 8909-149, Email: M.Heuken@AIXTRON.com RWTH Aachen,

More information

Nanotechnology makes brighter LED s. Michael P.C. Watts

Nanotechnology makes brighter LED s. Michael P.C. Watts Nanotechnology makes brighter LED s Michael P.C. Watts www.impattern.com Outline Why are LED s such a big deal? Brightness; lumens per watt & lumens per dollar Applications How does nanotechnology help?

More information

Supplementary Information

Supplementary Information Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode Supplementary Information He Tian, 1,2 Hong-Yu Chen, 3 Bin Gao, 3,4 Shimeng Yu, 3 Jiale

More information

Supplementary Information (SI)

Supplementary Information (SI) Supplementary Information (SI) Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly Hoo Keun Park a, Seong Woong Yoon a, Yun

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry

In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry 18 Annual Report 1999, Dept. of Optoelectronics, University of Ulm In-Situ Characterization During MOVPE Growth of III-Nitrides using Reflectrometry Christoph Kirchner and Matthias Seyboth The suitability

More information

White Paper: Pixelligent Internal Light Extraction Layer for OLED Lighting

White Paper: Pixelligent Internal Light Extraction Layer for OLED Lighting White Paper: Pixelligent Internal Light Zhiyun (Gene) Chen, Ph.D., Vice President of Engineering Jian Wang, Ph.D., Manager, Application Engineering Pixelligent Technologies LLC, 6411 Beckley Street, Baltimore,

More information

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING Lynne Michaelson 1, Anh Viet Nguyen 2, Krystal Munoz 1, Jonathan C. Wang

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

Crystalline silicon surface passivation with SiON:H films deposited by medium frequency magnetron sputtering

Crystalline silicon surface passivation with SiON:H films deposited by medium frequency magnetron sputtering Available online at www.sciencedirect.com Physics Procedia 18 (2011) 56 60 The Fourth International Conference on Surface and Interface Science and Engineering Crystalline silicon surface passivation with

More information

High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates

High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates Journal of Crystal Growth 298 (2007) 725 730 www.elsevier.com/locate/jcrysgro High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates Baoshun Zhang, Hu Liang, Yong Wang,

More information

Interfacial Reactions between the Sn-9Zn Solder and Au/Ni/SUS304 Multi-layer Substrate

Interfacial Reactions between the Sn-9Zn Solder and Au/Ni/SUS304 Multi-layer Substrate , July 6-8, 2011, London, U.K. Interfacial Reactions between the Sn-9Zn Solder and Au/Ni/SUS304 Multi-layer Substrate *Yee-Wen Yen 1, Chien-Chung Jao 2, Kuo-Sing Chao 1, Shu-Mei Fu Abstract Sn-9Zn lead-free

More information

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing ELEC 3908, Physical Electronics, Lecture 4 Basic Integrated Circuit Processing Lecture Outline Details of the physical structure of devices will be very important in developing models for electrical behavior

More information

Law, T.K., Lim, F., Li, Y., Teo, J.W. R. and Wei, S. (2017) Effects of Humidity on the Electro-Optical-Thermal Characteristics of High-Power LEDs. In: 2016 IEEE 18th Electronics Packaging Technology Conference

More information

Highly efficient deep-uv light-emitting diodes using AlN-based, deep-uv transparent glass electrodes

Highly efficient deep-uv light-emitting diodes using AlN-based, deep-uv transparent glass electrodes Supporting Information Highly efficient deep-uv light-emitting diodes using AlN-based, deep-uv transparent glass electrodes Tae Ho Lee, Byeong Ryong Lee, Kyung Rock Son, Hee Woong Shin,, and Tae Geun Kim

More information

2014 the Nobel Prize in Physics Awarded to Isamu Akasaki

2014 the Nobel Prize in Physics Awarded to Isamu Akasaki Awarded Awarded to Isamu Akasaki Isamu Akasaki ( 赤崎勇 ) was born in Kagoshima, Japan. Dr. Akasaki graduated from Kyoto University in 1952, and obtained a Ph.D degree in Electronics from Nagoya University

More information

Voltage Reduction of Organic Light-Emitting Device (OLED) with an n-type Organic Material and a Silver Cathode

Voltage Reduction of Organic Light-Emitting Device (OLED) with an n-type Organic Material and a Silver Cathode Voltage Reduction of Organic Light-Emitting Device (OLED) with an n-type Organic Material and a Silver Cathode Meng-Hsiu Wu *a, Jiun-Haw Lee a, Man-Kit Leung b, and Yu-Nu Hsu c a Graduate Institute of

More information

DISORDERING OF InGaN/GaN SUPERLATTICES AFTER HIGH-PRESSURE ANNEALING

DISORDERING OF InGaN/GaN SUPERLATTICES AFTER HIGH-PRESSURE ANNEALING DISORDERING OF InGaN/GaN SUPERLATTICES AFTER HIGH-PRESSURE ANNEALING M.D. McCluskey*, L.T. Romano**, B.S. Krusor**, D. Hofstetter**, D.P. Bour**, M. Kneissl**, N.M. Johnson**, T. Suski***, J. Jun*** ABSTRACT

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT. Pingtung, Taiwan.

MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT. Pingtung, Taiwan. Stresa, Italy, 5-7 April 007 MICROCANTILEVER-BASED WEATHER STATION FOR TEMPERATURE, HUMIDITY AND WIND VELOCITY MEASUREMENT Chia-Yen Lee 1, Rong-Hua Ma, Yu-Hsiang Wang 1, Po-Cheng Chou 3, Lung-Ming Fu 4

More information

(12) United States Patent (10) Patent No.: US 6,670,279 B1

(12) United States Patent (10) Patent No.: US 6,670,279 B1 USOO6670279B1 (12) United States Patent (10) Patent No.: US 6,670,279 B1 Pai et al. (45) Date of Patent: Dec. 30, 2003 (54) METHOD OF FORMING SHALLOW 6,228,727 B1 5/2001 Lim et al.... 438/296 TRENCH ISOLATION

More information

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Crystalline Silicon Solar Cells With Two Different Metals Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588,

More information

Heterostructures of Oxides and Semiconductors - Growth and Structural Studies

Heterostructures of Oxides and Semiconductors - Growth and Structural Studies Heterostructures of Oxides and Semiconductors - Growth and Structural Studies Beamline 17B1 W20 X-ray Scattering beamline Authors M. Hong and J. R. Kwo National Tsing Hua University, Hsinchu, Taiwan H.

More information

Design of Integrated Light Guiding Plates Using Silicon-based Micro-Features

Design of Integrated Light Guiding Plates Using Silicon-based Micro-Features Design of Integrated Light Guiding Plates Using Silicon-based Micro-Features Jyh-Cheng Yu*, Shao-Tang Zhangjian, and Zong-Nan Chen Abstract-- This study addresses the design of an integrated light guide

More information

Growth of ultra small self-assembled InGaN nanotips

Growth of ultra small self-assembled InGaN nanotips Journal of Crystal Growth 263 (2004) 63 67 Growth of ultra small self-assembled InGaN nanotips L.W. Ji a, *, Y.K. Su a, S.J. Chang a, T.H. Fang b, T.C. Wen a, S.C. Hung a a Institute of Microelectronics

More information

LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION

LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION Journal of Optoelectronics and Advanced Materials Vol. 4, No. 1, March 2002, p. 21-25 LOW TEMPERATURE GROWTH OF SMOOTH INDIUM TIN OXIDE FILMS BY ULTRAVIOLET ASSISTED PULSED LASER DEPOSITION V. Craciun,

More information

Scribing-Cleaving-Passivation for High Energy Physics Silicon Sensors

Scribing-Cleaving-Passivation for High Energy Physics Silicon Sensors Scribing-Cleaving-Passivation for High Energy Physics Silicon Sensors Marc Christophersen 1, Bernard F. Phlips 1, Vitaliy Fadeyev 2, Scott Ely 2, Hartmut F.-W. Sadrozinski 2 (1) Code 7654, U.S. Naval Research

More information

Isolation Technology. Dr. Lynn Fuller

Isolation Technology. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Isolation Technology Dr. Lynn Fuller Motorola Professor 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

More information

Superlattices and Microstructures

Superlattices and Microstructures Superlattices and Microstructures 52 (2012) 299 305 Contents lists available at SciVerse ScienceDirect Superlattices and Microstructures journal homepage: www.elsevier.com/locate/superlattices Improved

More information

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima Proceedings of 6th Thin Film Materials & Devices Meeting November 2-3, 2009, Kyoto, Japan http://www.tfmd.jp/ Characterization of SiO x /Si Interface Properties by Photo Induced Carrier Microwave Absorption

More information

5.8 Diaphragm Uniaxial Optical Accelerometer

5.8 Diaphragm Uniaxial Optical Accelerometer 5.8 Diaphragm Uniaxial Optical Accelerometer Optical accelerometers are based on the BESOI (Bond and Etch back Silicon On Insulator) wafers, supplied by Shin-Etsu with (100) orientation, 4 diameter and

More information

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy Ž. Surface and Coatings Technology 131 000 465 469 Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy Ha Jin Kim, Ho-Sun Paek, Ji-Beom Yoo Department

More information

Influence of Oxygen Flow Rate on the Variation of Surface Roughness of Fused Silica during Plasma Polishing Process

Influence of Oxygen Flow Rate on the Variation of Surface Roughness of Fused Silica during Plasma Polishing Process Available online at www.sciencedirect.com Physics Procedia 18 (2011) 107 111 The Fourth International Conference on Surface and Interface Science and Engineering Influence of Oxygen Flow Rate on the Variation

More information

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials

Introduction to Micro/Nano Fabrication Techniques. Date: 2015/05/22 Dr. Yi-Chung Tung. Fabrication of Nanomaterials Introduction to Micro/Nano Fabrication Techniques Date: 2015/05/22 Dr. Yi-Chung Tung Fabrication of Nanomaterials Top-Down Approach Begin with bulk materials that are reduced into nanoscale materials Ex:

More information

1 HRL Laboratories, LLC, Malibu, California, Baskin School of Engineering, University of California, Santa Cruz, CA *

1 HRL Laboratories, LLC, Malibu, California, Baskin School of Engineering, University of California, Santa Cruz, CA * High Cooling Power Density of SiGe/Si Superlattice Microcoolers Gehong Zeng, Xiaofeng Fan, Chris LaBounty, John E. Bowers, Edward Croke, James Christofferson, Daryoosh Vashaee, Yan Zhang, and Ali Shakouri

More information

High Performance AlGaN Heterostructure Field-Effect Transistors

High Performance AlGaN Heterostructure Field-Effect Transistors Kyma Inc. Contract ABR DTD 1/8/07; Prime: FA8650-06-C-5413 1 High Performance AlGaN Heterostructure Field-Effect Transistors Program Objectives The primary objectives of this program were to develop materials

More information

Grundlagen der LED Technik

Grundlagen der LED Technik www.osram-os.com Grundlagen der LED Technik Dr. Berthold Hahn 8.3.14 Ilmenau 1 Dateienname ORG CODE Initiale Titel/Veranstaltung TT/MM/JJJJ Grundlagen der LED Technik 1. Einführung 2. Lichterzeugung im

More information

Effect of annealing temperature on the electrical properties of HfAlO thin films. Chun Lia, Zhiwei Heb*

Effect of annealing temperature on the electrical properties of HfAlO thin films. Chun Lia, Zhiwei Heb* International Forum on Energy, Environment and Sustainable Development (IFEESD 2016) Effect of annealing temperature on the electrical properties of HfAlO thin films Chun Lia, Zhiwei Heb* Department of

More information

SUPPLEMENTARY INFORMATIONS

SUPPLEMENTARY INFORMATIONS SUPPLEMENTARY INFORMATIONS Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories Jui-Yuan Chen, Cheng-Lun Hsin,,, Chun-Wei Huang, Chung-Hua Chiu, Yu-Ting Huang, Su-Jien Lin, Wen-Wei

More information

Chapter 6. AlGaAs/GaAs/GaAs Wafer-fused HBTs

Chapter 6. AlGaAs/GaAs/GaAs Wafer-fused HBTs Chapter 6. AlGaAs/GaAs/GaAs Wafer-fused HBTs 6.1. Overview Previous chapters described an AlGaAs-GaAs-GaN HBT, in which an epitaxially grown AlGaAs-GaAs emitter-base was wafer-fused to a GaN collector.

More information

Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells

Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells Photoenergy Volume 2012, Article ID 971093, 5 pages doi:10.1155/2012/971093 Research Article Silicon Nitride Film by Inline PECVD for Black Silicon Solar Cells Bangwu Liu, Sihua Zhong, Jinhu Liu, Yang

More information

Mostafa Soliman, Ph.D. May 5 th 2014

Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. May 5 th 2014 Mostafa Soliman, Ph.D. 1 Basic MEMS Processes Front-End Processes Back-End Processes 2 Mostafa Soliman, Ph.D. Wafers Deposition Lithography Etch Chips 1- Si Substrate

More information