SHRI GURU GOBIND SINGHJI INSTITUTE OF ENGG & TECHNOLOGY DEPARTMENT OF PRODUCTION ENGINEERING SUBJECT:MECHANICAL WORKING OF METALS EXPERIMENT NO: 3

Size: px
Start display at page:

Download "SHRI GURU GOBIND SINGHJI INSTITUTE OF ENGG & TECHNOLOGY DEPARTMENT OF PRODUCTION ENGINEERING SUBJECT:MECHANICAL WORKING OF METALS EXPERIMENT NO: 3"

Transcription

1 SHRI GURU GOBIND SINGHJI INSTITUTE OF ENGG & TECHNOLOGY DEPARTMENT OF PRODUCTION ENGINEERING SUBJECT:MECHANICAL WORKING OF METALS EXPERIMENT NO: 3 AIM: STUDY OF FORGING EQUIPMENT AIM: Study of forging equipment. OBJECTIVES: Forging is the metalworking processes, in which the material is deformed to the various required shape and size. The various parts produced by this processes varies from automotive applications to the various structural parts in different structures like bridges, etc. After completing the experiment, the students will be able to: 1. Classify and understand different Forging Equipment s. THEORY: 1) FORGING EQUIPMENTS: a) FORGING: Forging is the Oldest of the metal forming operations. It is a Deformation process in which work is compressed between two dies. The basic metals industries use forging to establish basic shape of large parts that are subsequently machined to final geometry and size.forging is a manufacturing process involving the shaping of metal using localized compressive forces. Forging is often classified according to the temperature at which it is performed: "cold", "warm", or "hot" forging. Forged parts can range in weight from less than a kilogram to 580 metric tons. Forged parts usually require further processing to achieve a finished part.most forging operations are carried out hot, although certain metals may be cold-forged. Forging can produce a piece that is stronger than an equivalent cast or machined part. As the metal is shaped during the forging process, its internal grain deforms to follow the general shape of the part. As a result, the grain is continuous throughout the part, giving rise to a piece with improved strength characteristics. Other advantages include less noise, heat and vibration. It also produces a distinctly different flow pattern.the different Products of forging are engine crankshafts, connecting rods, gears, aircraft structural components, jet engine turbine parts, etc. Depending upon the application of the forging operation and the required temperature of the operation, the forging can be grouped into two categories: i) Hot Forging. ii) Cold Forging.

2 i) HOT FORGING: The hot-forging is the operation of forging product or components above the recrystallization temperature for that product. The hot forging results in a reduction in strength and increase in ductility of work metal, due to refining of the grains of the material. The main reason behind the use of hot-forging is the capability for substantial plastic deformation of the metal is far more than as possible with cold working. The other reasons that favours the application of hot-forging are: Strength coefficient is substantially less than at room temperature. Strain hardening exponent is zero (theoretically). Ductility is significantly increased. The various advantages of hot forging are as follows: 1. Lower forces and power requirement than cold working. 2. More intricate work geometries are possible to process. 3. Need for annealing may be reduced or eliminated. In spite of the various advantages, there are also some disadvantages associated with the hot forging, as follows: 1. Lower dimensional accuracy. 2. Higher total energy required (due to the thermal energy to heat the workpiece). 3. Work surface oxidation (scale), resulting in a poorer surface finish. 4. Shorter tool life. ii) COLD FORGING: The cold-forging is the operation of forging product or components at the room temperature or above the room temperature, but far below than the recrystallization temperature of the product. The cold forging results in an increase in strength and reduction in ductility of work metal.the various advantages of cold forging are as follows: 1. Higher dimensional accuracy 2. Lower total energy required. 3. There is no work surface oxidation or scale, resulting in high surface finish 4. There is a longer tool life. The various disadvantages of cold forging are as follows: 1. It requires larger forces and power than hot forging. 2. The cold forging cannot be used for complex and intricate shape work parts. 3. There is a need of annealing or any other stress relieving process after cold-forging, in order to relieve stresses in the component, which are induced due to cold-forging.

3 b) TYPES OF FORGING: i) OPEN-DIE FORGING: Open-die forging is carried out between flat dies or dies of very simple shape. The process is used for mostly large objects or when the number of parts produced is small. Open-die forging is often used to preform the work piece for closed-die forging.open die forging involves the shaping of heated metal parts between a top die attached to a ram and a bottom die attached to a hammer anvil or press bed. Metal parts are worked above their recrystallization temperatures-ranging from 1900 F to 2400 F for steel-and gradually shaped into the desired configuration through the skill-full hammering or pressing of the work piece. Although the open die forging process is often associated with larger, simpler-shaped parts such as bars, blanks, rings, hollows or spindles, in fact it can be considered the ultimate option in "custom-designed" metal components. High-strength, long-life parts optimized in terms of both mechanical properties and structural integrity are today produced in sizes that range from a few pounds to hundreds of tons in weight. In addition, advanced forge shops now offer shapes that were never before thought capable of being produced by the open die forging process. FIG.1. OPEN-DIE FORGING ii) CLOSED DIE FORGING: The work piece is deformed between two die halves which carry the impressions of the desired final shape. The work piece is deformed under high pressure in a closed cavity. The process provide precision forging with close dimensional tolerance. Impression or closed die forging confines the metal in dies, open die forging is distinguished by the fact that the metal is never completely confined or restrained in the dies. Most open die forgings are produced on flat dies. However, round swaging dies, V-dies, mandrels, pins and loose tools are also used depending on the desired part configuration and its size.closed die forging is expensive than open-die forging.

4 FIG.2. CLOSED DIE FORGING iii) IMPRESSION-DIE FORGING: In impression-die forging, the work piece acquires the shape of the die-cavities or impression, while being forged between two shaped dies. Also, there are some materials that flows outwards and forms a flash. The flash plays significant role in the flow of material in impression-die forging. The thin flash cools rapidly and because of its frictional resistance, it subjects the material in the die cavity to high pressures, thereby encouraging the filling of the die cavity. The blank to be forged is prepared by different means, such as, Cutting or cropping from an extruded or drawn bar stock, Powder metallurgy. Casting, Preform blank in a prior forging operation. FIG.3. IMPRESSION-DIE FORGING As shown in the figure, the blank is placed on the lower die and the upper die begins to descend, the blank s shape gradually changes, followed by the creation of the flash between the die cavities.one variation of impression-die forging is called flashless forging, or true closed-die forging. In this type of forging, the die cavities are completely closed, which keeps the workpiece from forming flash. The majoradvantage to this process is that less metal is lost to flash. Flash can account for 20 to 45% of the startingmaterial. The disadvantages of this process include additional cost due to a more complex die design and theneed for better lubrication and workpiece placement.

5 iv) UPSET FORGING: Forging of the ring and rod types with all kinds of heads and shoulders, such as bolts, nuts, washers, collars, pinion gear blanks, etc. can be conveniently produced by the upset forging. The upset forging increases the diameter of the work piece by compressing its length. Based on number of pieces produced, this is the most widely used forging process. A example of parts produced by using the upset forging process are engine valves, couplings, bolts, screws, and other fasteners.. FIG.4. UPSET FORGING Upset forging is usually done in special high-speed machines, i.e. crank presses, but upsetting can also be done in a vertical crank press or a hydraulic press. The machines are usually set up to work in horizontal plane, to facilitate quick exchange of work pieces from one station to the next. The standard upsetting machine employs split dies that contain multiple cavities. The dies open enough to allow the work piece to move from one cavity to the next, the dies then close and the heading tool or ram, then moves longitudinally against the bar, upsetting it into the cavity. If all of the cavities are utilized on every cycle, then a finished part will be produced with every cycle, which makes this process advantageous for mass production. The various rules that must be followed when designing parts to be upset forged are as follows: 1. The length of unsupported metal that can be upset in one blow without injurious buckling should belimited to three times the diameter of the bar. 2. Lengths of stock greater than three times the diameter may be upset successfully, provided that thediameter of the upset is not more than 1.5 times the diameter of the stock. 3. In an upset requiring stock length greater than three times the diameter of the stock, and where thediameter of the cavity is not more than 1.5 times the diameter of the stock, the length of unsupportedmetal beyond the face of the die must not exceed the diameter of the bar.

6 v) PRESS FORGING: Press forging works by slowly applying a continuous pressure or force, which differs from the nearinstantaneous impact of drop-hammer forging. The amount of time the dies are in contact with theworkpiece is measured in seconds (as compared to the milliseconds of drop-hammer forges). The press forging operation can be done either cold or hot.the main advantage of press forging, as compared to drop-hammer forging, is its ability to deform the completeworkpiece. Drop-hammer forging usually only deforms the surfaces of the workpiece in contact with thehammer and anvil; the interior of the workpiece will stay relatively undeformed. Another advantage to theprocess includes the knowledge of the new part's strain rate. We specifically know what kind of strain can beput on the part, because the compression rate of the press forging operation is controlled. FIG.5. PRESS FORGING There are a few disadvantages to this process, most stemming from the workpiece being in contact with the dies for such an extended period of time. The operation is a time-consuming process due to the amount and length ofsteps. The workpiece will cool faster because the dies are in contact with workpiece; the dies facilitatedrastically more heat transfer than the surrounding atmosphere. As the workpiece cools it becomes stronger andless ductile, which may induce cracking if deformation continues. Therefore heated dies are usually used toreduce heat loss, promote surface flow, and enable the production of finer details and closer tolerances. Thework piece may also need to be reheated. When done in high productivity, press forging is more economical than hammer forging. The operation alsocreates closer tolerances. In hammer forging a lot of the work is absorbed by the machinery, when in pressforging, the greater percentage of work is used in the work piece. Another advantage is that the operation can beused to create any size part because there is no limit to the size of the press forging machine. By the

7 constraint ofoxidation to the outer layers of the part, reduced levels of micro-cracking occur in the finished part.press forging can be used to perform all types of forging, including open-die and impression-die forging.impression-die press forging usually requires less draft than drop forging and has better dimensional accuracy. Also, press forgings can often be done in one closing of the dies, allowing for easy automation. c) FORGING EQUIPMENTS: The most common type of forging equipment is the hammer and anvil. The choice of forging equipment depends on a number of factors, including part size and complexity, material, and the quality of the parts to be produced. Hammers are often preferred for small to medium batches because of quicker tool. This forging equipment can be divided into two basic types: i. WORK-RESTRICTED MACHINES: In work-restricted machines the amount of deformation that can be achieved during each stroke or blow of the machine is limited by the energy or maximum force available. If the energy or force capacity is less than is required to deform the part, then more than one stroke or blow is needed. Machines that fall into this category are hammers, friction screw presses, and hydraulic presses. 1. HAMMERS: Hammers are the most common types of machine used. They are often preferred for small to medium batches because of quicker tool setups and lower overheads. They are also used for elongated and branch-type forgings because die areas can be provided for the larger number of preform dies required for such shapes. The various types of hammers used are as follows: a. GRAVITY DROP HAMMERS: Gravity drop hammers are the oldest type of forging equipment available. The principle of operation is that the moving die block is raised by a lifting mechanism and then released, so that it falls onto the fixed die attached to the anvil. The amount of deformation that can be carried out is determined by the potential energy of the moving die block at its maximum height. This potential energy is converted into kinetic energy as the die block falls and is then dissipated in deformation of the work piece. Various lifting mechanisms are used, including frictional means with boards, band brakes or belts, or a lifting cylinder employing steam, compressed air, or hydraulic fluid, as shown in figure These machines are available in a range of blow energies from 0.6kNm (60kg-m) to 400 kn-m (40,000 kg-m).

8 FIG.4. DIFFERENT TYPES OF DROP HAMMERS b. DOUBLE ACTING OR POWER HAMMERS: These machines are similar to gravity hammers in that a lifting cylinder raises the moving tup, but power is also applied to the downward-moving tup to increase the energy capacity. Energy ratings for similar tup weights are considerably more than for gravity hammers, and the die closing speeds are higher also. Power comes from double-acting steam, compressed air, or hydraulic cylinders. Double-acting hammers are manufactured in a range of energy ratings from 3 kn-m (300 kg-m) to 825 kn-m (82,500 kg-m). c. VERTICAL COUNTERBLOW HAMMERS: In these machines two tups with nearly equal masses are driven by double-acting cylinders toward each other and impact in the center of the machine. More energy is dissipated in the work piece than in the foundations and subsoil compared to single-acting hammers. Very high energy capacities are available in the largest machines, with ranges from 30 kn-m (3 0,000 kg-m) to 2000 kn-m (200,000 kg-m). d. HORIZONTAL COUNTERBLOW HAMMERS: These machines are also called impacters and two rams are actuated by double acting cylinders. Heated stock is positioned vertically between the dies by an automatic transfer mechanism. Energy ranges from 4 kn-m (400 kg-m) to 54 kn-m (5400 kg-m) are typical.

9 FIG.5. COUNTERBLOW HAMMERS 2. SCREW PRESSES: In screw presses, the upper ram and die are connected to a large vertical screw that can be rotated by a flywheel, so that the ram can move up and down relative to the fixed die in the bed of the machine. The ram has a limited amount of energy for each stroke, thus multiple blows are usually employed similar to hammers. Screw presses are available in ratings from 0.63 MN to 63 MN ( tons). FIG.6. SCREW PRESS

10 3. HYDRAULIC PRESSES: Hydraulic presses are available in a wide range of sizes up to the largest at 50,000 tons or more capacity. The moving die is attached to a ram actuated by a large hydraulic cylinder (Fig d). Various strokes, forces, and closing speeds can be obtained on hydraulic presses. In some cases hydraulic presses are fitted with auxiliary horizontally moving rams, and these enable side depressions to be forged into some parts, although this is not done to a great extent. FIG.7. HYDRAULIC PRESS ii. STROKE RESTRICTED MACHINES: In stroke-restricted machines the amount of deformation that can be done is fixed by the stroke of the machine. If sufficient force or energy to carry out the operation is not available, then the machine will stall and a larger machine should be used. Mechanical presses fall into this category, as a crank or eccentric determines the amount of ram movement. 1. MECHANICAL PRESSES: Mechanical presses belong to a class of machine tools that encompass a wide range of different machine types. Primarily, the mechanical press transforms the rotational force of a motor into a translational force vector that performs the pressing action. Therefore, the energy in a mechanical press comes from the motor. These types of presses are generally faster than hydraulic or screw presses, (actually the screw press may also be classified as a mechanical press). Unlike some presses, in a mechanical press, the application of force varies in both speed and magnitude throughout the distance of the stroke. When performing a manufacturing operation using a mechanical press, the correct range of the stroke is essential. In mechanical presses, a crank, knuckle joint, scotch yoke, or moving-wedge mechanism is used to apply a vertical squeezing motion between the upper moving die and a lower fixed die, as shown in fig.

11 FIG.8. CRANK PRESS FIG.9. KNUCKLE JOINT PRESS FIG.10. ECCENTRIC PRESS FIG.11. RACK & PINION PRESS vi) FORGING DEFECTS: The different types of defects, occurring in the forging operations are as follows: Incomplete die filling. Die misalignment. Forging laps. Incomplete forging penetration- should forge on the press. Microstructural differences resulting in pronounced property variation. Hot shortness, due to high sulphurconcentration in steel and nickel. Pitted surface, due to oxide scales occurringat high temperature stickon the dies. Buckling, in upsetting forging, due tohigh compressive stress. Surface cracking, due to temperaturedifferential between surface and center, or excessive working of the surfaceat too low temperature. Micro cracking, due to residual stress.

12 CONCLUSION: In this way, we have studied the different Forging equipment s. REVIEW QUESTIONS: 1. What is forging? 2. What are the different products produced by forging? Enlist. 3. What is the significance of hammer in forging? 4. What are the different types of Hammers? 5. What are the different Mechanical Press?

BMM3643 Manufacturing Processes Bulk Metal Forming Processes (Forging Operations)

BMM3643 Manufacturing Processes Bulk Metal Forming Processes (Forging Operations) BMM3643 Manufacturing Processes Bulk Metal Forming Processes (Forging Operations) by Dr Mas Ayu Bt Hassan Faculty of Mechanical Engineering masszee@ump.edu.my Chapter Synopsis This chapter will introduced

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working Forging & Rolling Mechanical Working of Metals In this method no machining process is carried out, but it is used to achieve optimum mechanical properties

More information

Chapter 14: Metal-Forging Processes and Equipments

Chapter 14: Metal-Forging Processes and Equipments Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 14: Metal-Forging Processes and Equipments Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various

More information

Manufacturing Process - I

Manufacturing Process - I Manufacturing Process - I UNIT II Metal Forming Processes Prepared By Prof. Shinde Vishal Vasant Assistant Professor Dept. of Mechanical Engg. NDMVP S Karmaveer Baburao Thakare College of Engg. Nashik

More information

CHAPTER 14. Forging of Metals

CHAPTER 14. Forging of Metals CHAPTER 14 Forging of Metals 2 3 4 5 6 Forging (a) (b) (a) Schematic illustration of the steps involved in forging a bevel gear with a shaft. Source: Forging Industry Association. (b) Landing-gear components

More information

Manufacturing Process II. Forging

Manufacturing Process II. Forging Manufacturing Process II Forging Introduction Forging is a deformation process in which the work is compressed between two dies, using either impact or gradual pressure to form the part. It is the oldest

More information

Hail University College of Engineering Department of Mechanical Engineering. Metal-Forging Processes and Equipment. Ch 14

Hail University College of Engineering Department of Mechanical Engineering. Metal-Forging Processes and Equipment. Ch 14 Hail University College of Engineering Department of Mechanical Engineering Metal-Forging Processes and Equipment Ch 14 Metal-Forging Forging is a basic process in which the work piece is shaped by compressive

More information

UNIT III BULK DEFORMATION PROCESS

UNIT III BULK DEFORMATION PROCESS Hot Working of Metals UNIT III BULK DEFORMATION PROCESS Hot working is defined as the process of altering the shape or size of a metal by plastic deformation with the temperature above the recrystallisation

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing Materials & Processes in Manufacturing ME 151 Chapter 18 Hot Working Processes 1 Introduction Forming of materials their recrystallization temperature Higher temperatures weaken the metal making it more

More information

Bulk Deformation Processes

Bulk Deformation Processes Bulk Deformation Processes Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What is Bulk Deformation? Classification of Bulk Deformation Processes Types

More information

Chapter 14 Forging of Metals

Chapter 14 Forging of Metals Introduction Chapter 14 Forging of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and Schmid What is

More information

Hot Forming. Kalpakjian

Hot Forming. Kalpakjian Hot Forming Kalpakjian Hot Working: Forging Open Die Forging www.smeedwerkunica.nl Paul Berenson, www.paulb.com T.Green, WIT Forging: Heat Loss Metal near die surfaces are coolest, flow less www.freedomalloysusa.com

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 8: Forming Processes (Rolling, Extrusion, Forging, Drawing) DR. SOTIRIS L. OMIROU Forming Processes - Definition & Types - Forming processes are those in which

More information

CHAPTER 14. Forging of Metals. Kalpakjian Schmid Manufacturing Engineering and Technology Prentice-Hall Page 14-1

CHAPTER 14. Forging of Metals. Kalpakjian Schmid Manufacturing Engineering and Technology Prentice-Hall Page 14-1 CHAPTER 14 Forging of Metals 2001 Prentice-Hall Page 14-1 Forging (a) (b) Figure 14.1 (a) Schematic illustration of the steps involved in forging a bevel gear with a shaft. Source: Forging Industry Association.

More information

Compare with Rolling process which generally produces continuous plates, sheets, shapes

Compare with Rolling process which generally produces continuous plates, sheets, shapes 1 One of oldest and most important metal working processes 4000 BC First used to make jewelry, coins, implements by hammering metals with stone Now: Large rotors for turbines Gears Bolts and rivets Cutlery

More information

ME 333 Manufacturing Processes II

ME 333 Manufacturing Processes II ME 333 Manufacturing Processes II Chapter 5 Metal Working Processes Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana www.gantep.edu.tr/~bozdana Introduction Metal forming involves large

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working - Drawing & Extrusion Drawing Drawing is an operation in which the cross-section of solid rod, wire or tubing is reduced or changed in shape by pulling

More information

Forging. Types of Forging Dies. Open-Die Forging. Outline. Forging. Types of forging Forging analysis Examples

Forging. Types of Forging Dies. Open-Die Forging. Outline. Forging. Types of forging Forging analysis Examples Forging Outline Forging Types of forging Forging analysis Examples Oldest of te metal forming operations, dating from about 5000 B C Components: engine cranksafts, connecting rods, gears, aircraft structural

More information

Characteristics of Forging

Characteristics of Forging Forging of Metals Forged Components Figure 14.1 (a) Schematic illustration of the steps involved in forging a knife. (b) Landinggear components for the C5A and C5B transport aircraft, made by forging.

More information

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining. Traditional Manufacturing Processes Casting Forming Sheet metal processing Powder- and Ceramics Processing Plastics processing Cutting Joining Surface treatment FUNDAMENTALS OF METAL FORMING Overview of

More information

Forging. Types of forging process. 1. Open Die Forgings or Hand forgings. Lecture Notes on Manufacturing Process

Forging. Types of forging process. 1. Open Die Forgings or Hand forgings. Lecture Notes on Manufacturing Process Forging Forging is manufacturing process where metal is pressed, pounded or squeezed under great pressure into high strength parts known as forgings. Heated metal to be shaped is placed on a mold. Pressure

More information

Module 3 Selection of Manufacturing Processes. IIT Bombay

Module 3 Selection of Manufacturing Processes. IIT Bombay Module 3 Selection of Manufacturing Processes Lecture 3 Design for Bulk Deformation Processes Instructional objectives By the end of this lecture, the students are expected to learn the working principle

More information

Forging Dr. B Gharaibeh Production Processes 1

Forging Dr. B Gharaibeh Production Processes 1 Forging Dr. B Gharaibeh Production 1 Deformation Operations that induce shape changes on the workpiece by plastic deformation under forces applied by various tools and dies - Primary working processes

More information

Design for Forging. Forging processes. Typical characteristics and applications

Design for Forging. Forging processes. Typical characteristics and applications Design for Forging Forging processes Forging is a controlled plastic deformation process in which the work material is compressed between two dies using either impact or gradual pressure to form the part.

More information

Chapter 15 Extrusion and Drawing of Metals

Chapter 15 Extrusion and Drawing of Metals Introduction Chapter 15 Extrusion and Drawing of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and

More information

A given material (shapeless or a simple geometry) Rolling, extrusion, forging, bending, drawing (plastic deformation)

A given material (shapeless or a simple geometry) Rolling, extrusion, forging, bending, drawing (plastic deformation) A given material (shapeless or a simple geometry) Primary shaping processes Metal forming processes Metal cutting processes Metal treatment processes A complex geometry (shape, size, accuracy, tolerances,

More information

QForm. Form3D. Advanced software for forging simulation

QForm. Form3D. Advanced software for forging simulation QForm Form3D Advanced software for forging simulation The goals of forging technology : Make the parts of the required shape Provide required properties Do it in time and at the lowest cost Forging process

More information

Fundamentals of Metal Forming

Fundamentals of Metal Forming Fundamentals of Metal Forming Chapter 15 15.1 Introduction Deformation processes have been designed to exploit the plasticity of engineering materials Plasticity is the ability of a material to flow as

More information

Lecture 7. Chapter 13. Rolling of Metals. The process of reducing thickness of changing the cross-section 90% of all metals produced by metalworking

Lecture 7. Chapter 13. Rolling of Metals. The process of reducing thickness of changing the cross-section 90% of all metals produced by metalworking Lecture 7 Chapter 13 Rolling Rolling of Metals The process of reducing thickness of changing the cross-section 90% of all metals produced by metalworking Changes microstructure Larger grains small grains

More information

Surface finish or precision. Relationship between the two types of variables is established through: Experience Experiments Modeling

Surface finish or precision. Relationship between the two types of variables is established through: Experience Experiments Modeling METAL FORMING Hot & Cold Forming: Process based on the metal ability (Plasticity) to flow plastically while remaining in solid state, without deterioration of its properties Advantages: No material waste

More information

Chapter 16 Bulk Forming Processes. Materials Processing. Types of Deformation (Chapter 16) MET Manufacturing Processes

Chapter 16 Bulk Forming Processes. Materials Processing. Types of Deformation (Chapter 16) MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 16 Bulk Forming Processes Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing Chapters 11-13

More information

MULTI-STAGE COLD FORGING

MULTI-STAGE COLD FORGING MULTI-STAGE COLD FORGING June 2018 For more information about our products and services, please contact your nearest Unisteel representative. Alternatively, visit our website now at www.unisteeltech.com

More information

Bulk Forming Processes

Bulk Forming Processes Bulk Forming Processes Chapter 16 16.1 Introduction Metal has been shaped by deformation processes for several thousand years Forging, rolling, and wire drawing were performed in the Middle Ages The Industrial

More information

Process Modeling in Impression-Die Forging Using Finite-Element Analysis

Process Modeling in Impression-Die Forging Using Finite-Element Analysis CHAPTER 16 Process Modeling in Impression-Die Forging Using Finite-Element Analysis Manas Shirgaokar Gracious Ngaile Gangshu Shen 16.1 Introduction Development of finite-element (FE) process simulation

More information

FUNDAMENTAL MANUFACTURING PROCESSES. Forging

FUNDAMENTAL MANUFACTURING PROCESSES. Forging FUNDAMENTAL MANUFACTURING PROCESSES Forging SCENE 1. CG: FBI warning white text centered on black to blue gradient SCENE 2. CG: disclaimer white text centered on black to blue gradient WARNING federal

More information

FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY

FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY FINITE VOLUME ANALYSIS OF TWO-STAGE FORGING PROCESS FOR ALUMINIUM 7075 ALLOY M. Vidya Sagar a and A. Chennakesava Reddy b a Associate Professor, Department of Mechanical Engineering, JNTUH College of Engineering,

More information

The entire world of forging

The entire world of forging The entire world of forging Forming the Future Put it into motion. Forging with Schuler. For over 150 years, the name Schuler has been synonymous with innovative technologies, quality and customer-oriented

More information

PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS

PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS PLATE FORGING FOR CONTROLLING WALL THICKNESS DISTRIBUTION OF PRODUCTS Ken-ichiro Mori Department of Mechanical Engineering, Toyohashi University of Technology, Japan Summary Plate forging processes for

More information

Forming - Bulk Forming

Forming - Bulk Forming Forming - Bulk Forming Manufacturing Technology II Lecture 4 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technologies Prof. Dr.-Ing. Dr.-Ing. E. h. F. Klocke Outline

More information

Optimizing a Hammer Forging Progression for a Large Hand Tool

Optimizing a Hammer Forging Progression for a Large Hand Tool Marquette University e-publications@marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Optimizing a Hammer Forging Progression for a Large Hand Tool Edgar Espinoza Marquette

More information

CHAPTER FOUR Forming Processes

CHAPTER FOUR Forming Processes CHAPTER FOUR Forming Processes Forming, shown in Fig. 4.1, is the process of changing the shape of the product without chip formation. The volume of the metal of the product remains constant before and

More information

Extrusion of complex shapes

Extrusion of complex shapes Extrusion of complex shapes 1 Hot extrusion Hot extrusion is the process of forcing a heated billet to flow through a shaped die opening It is used to produce long, strait metal products of constant cross

More information

Manufacturing process I Course Supervisor Walid Khraisat

Manufacturing process I Course Supervisor Walid Khraisat Manufacturing process I Course Supervisor Walid Khraisat . Course Objectives The following basic course objectives are expected to be achieved during the course Be able to discuss/explain the importance

More information

Bulk Deformation Rolling Processes Forging Processes Extrusion Processes Wire and Bar Drawing Sheet Metal Forming Bending Operations Deep or Cup

Bulk Deformation Rolling Processes Forging Processes Extrusion Processes Wire and Bar Drawing Sheet Metal Forming Bending Operations Deep or Cup Metal Forming Bulk Deformation Rolling Processes Forging Processes Extrusion Processes Wire and Bar Drawing Sheet Metal Forming Bending Operations Deep or Cup Drawing Shearing Processes Miscellaneous Processes

More information

The entire world of forging

The entire world of forging The entire world of forging Forming the Future Forming the Future Put it into motion. Forging with Schuler. For over 170 years, the name Schuler has been synonymous with innovative technologies, quality

More information

Methods of manufacture

Methods of manufacture 1 Methods of manufacture For Ceramics (see (b)) Crush raw materials Shape the crushed raw materials (various means) Dry & fire Apply finishing operations, as needed; to achieve required dimensional tolerances

More information

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS Dr.S.Shamasundar ProSIM, 21/B. 9 th main Shankara Nagara, Mahalakshmipuram Bangalore-560096 Email: shama@pro-sim.com Web: www.pro-sim.com

More information

2

2 1 2 3 4 5 6 7 Direct -Straightforward steady forward force by hydraulic ram Indirect -Has the advantage that there is no friction between billet and chamber (no movement) -Note dummy block at face of ram

More information

Bulk Deformation Forming - Rolling

Bulk Deformation Forming - Rolling 1 Bulk Deformation Forming - Rolling Overview - Shaping and Forming Powders Pressing SLS Special Injection Molding Firing/ Sintering 2 Raw Material Molten Material Continuous Casting/Rolling Ingot casting

More information

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes

Chapter 15 Fundamentals of Metal Forming. Materials Processing. Deformation Processes. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 15 Fundamentals of Metal Forming Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing Chapters

More information

DESIGN, ANALYSIS AND FABRICATION OF A HYDRAULIC DIE EJECTOR FOR A POWDER METALLURGY COMPONENT

DESIGN, ANALYSIS AND FABRICATION OF A HYDRAULIC DIE EJECTOR FOR A POWDER METALLURGY COMPONENT Int. J. Mech. Eng. & Rob. Res. 2015 J Abhilash et al., 2015 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 4, No. 1, January 2015 2015 IJMERR. All Rights Reserved DESIGN, ANALYSIS AND FABRICATION OF

More information

MARTIN AUER GFM Steyr, Austria

MARTIN AUER GFM Steyr, Austria MARTIN AUER GFM Steyr, Austria Precision Bar and Tube Radial Forging of Special Steel GFM GmbH, Austria - www.gfm.at V1.2 GFM GmbH all rights reserved BASIC COMPANY DATA (fiscal year 2013) ESTABLISHED:

More information

Hail University College of Engineering Department of Mechanical Engineering. Metal Extrusion and Drawing Processes and Equipment.

Hail University College of Engineering Department of Mechanical Engineering. Metal Extrusion and Drawing Processes and Equipment. Hail University College of Engineering Department of Mechanical Engineering Metal Extrusion and Drawing Processes and Equipment Ch 15 Metal Extrusion and Drawing Extrusion and drawing involve, respectively,

More information

TALAT Lecture Forging Process. 17 pages, 20 figures. Basic Level

TALAT Lecture Forging Process. 17 pages, 20 figures. Basic Level TALAT Lecture 3402 Forging Process 17 pages, 20 figures Basic Level prepared by K. Siegert, R. Malek and R. Neher, Institut für Umformtechnik, Universität Stuttgart Objectives: to understand the basic

More information

Forging Solutions. Open Die and Rolled Ring Forging the Processes, Applications and Benefits

Forging Solutions. Open Die and Rolled Ring Forging the Processes, Applications and Benefits Forging Solutions Open Die and Rolled Ring Forging the Processes, Applications and Benefits The Open Die Forging Process Steps to produce a typical spindle-shaped part: 1. Starting stock cut to size by

More information

Upset forging of a circular disc in open die forging. Analysis involves cylindrical coordinates

Upset forging of a circular disc in open die forging. Analysis involves cylindrical coordinates 12 Upset forging of a circular disc in open die forging Analysis involves cylindrical coordinates The stresses acting on an elemental volume in a disc are: σ r = radial stress responsible for increase

More information

Unit III. Open Die Forging The work piece is compressed between two flat dies facilitating lateral flow of material without constraint,

Unit III. Open Die Forging The work piece is compressed between two flat dies facilitating lateral flow of material without constraint, Unit III What is Bulk Deformation? Metal forming operations which cause significant shape change by plastic deformation in metallic parts are referred to bulk deformation processes. In most of the cases

More information

1. Definitions and classification of Metal forming processes

1. Definitions and classification of Metal forming processes 1. Definitions and classification of Metal forming processes 1.1 Introduction: Metal forming is a very important manufacturing operation. It enjoys industrial importance among various production operations

More information

Metal extrusion. Metal stamping

Metal extrusion. Metal stamping Metal extrusion Answer the following questions 1. In which of the following extrusion operation is friction a factor in determining the extrusion force (one best answer): (a) direct extrusion or (b) indirect

More information

Chapter 4. Power Estimation in Strip Rolling Process 9/21/ Chapter 4: Rolling -IE252

Chapter 4. Power Estimation in Strip Rolling Process 9/21/ Chapter 4: Rolling -IE252 1Chapter 4: Rolling -IE252 Chapter 4 Power Estimation in Strip Rolling Process 4.1 Work and energy principle for estimating power on metal forming processes. The work and energy method is an approximate

More information

The die failure prediction and prevention of the orbital forging process

The die failure prediction and prevention of the orbital forging process journal of materials processing technology 201 (2008) 9 13 journal homepage: www.elsevier.com/locate/jmatprotec The die failure prediction and prevention of the orbital forging process J.J. Sheu, C.H.

More information

The Convenience Stores For Metal

The Convenience Stores For Metal STEEL BARS Data and Specifications C1018 Cold Finished Bar A low carbon steel with medium manganese content. Applications: Cold forming and bending operations (for severe bends stress relieving may be

More information

Quality of Simulation Packages for Flashless Hot Forging Operations

Quality of Simulation Packages for Flashless Hot Forging Operations 363 Simulation of Materials Processing: Theory, Methods and Applications, Mori (ed.) 2001 Swets & Zeitlinger; Lisse, ISBN 90 2651 822 6 Quality of Simulation Packages for Flashless Hot Forging Operations

More information

18 FUNDAMENTALS OF METAL FORMING. Metal Forming and Sheet Metalworking 18.1 OVERVIEW OF METAL FORMING. Chapter Contents

18 FUNDAMENTALS OF METAL FORMING. Metal Forming and Sheet Metalworking 18.1 OVERVIEW OF METAL FORMING. Chapter Contents Part V Metal Forming and Sheet Metalworking 18 FUNDAMENTALS OF METAL FORMING Chapter Contents 18.1 Overview of Metal Forming 18.2 Material Behavior in Metal Forming 18.3 Temperature in Metal Forming 18.4

More information

Forming Hub Cold Forming Hot Forging

Forming Hub Cold Forming Hot Forging S O F T WA R E F O R F O R M I N G S I M U L AT I O N well formed Simufact.forming addresses companies from the manufacturing industries which are specialized in the area of metal forming and joining processes.

More information

Rolling processes. Fig. (5-1)

Rolling processes. Fig. (5-1) Page1 Rolling processes 5-1 introduction: Rolling is the process of reducing the thickness or changing the cross section of a long workpiece by compressive forces applied through a set of rolls, as shown

More information

CHAPTER 2: LITERATURE SURVEY

CHAPTER 2: LITERATURE SURVEY 7 CHAPTER 2: LITERATURE SURVEY 2.1. Introduction The powder metallurgy processing is one of the oldest and economic routes for producing critical and complex shaped products [1-3]. P/M is one of the most

More information

Metal Forming Process. Prof.A.Chandrashekhar

Metal Forming Process. Prof.A.Chandrashekhar Metal Forming Process Prof.A.Chandrashekhar Introduction Shaping of a component by the application of external forces is known as the metal forming. Metal forming can be described as a process in which

More information

Unit-III Rolling Process. Introduction

Unit-III Rolling Process. Introduction Introduction Unit-III Rolling Process Rolling is one of the most important industrial metal forming operations. Hot Rolling is employed for breaking the ingots down into wrought products such as into blooms

More information

COURSE CODE : 3023 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

COURSE CODE : 3023 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : MANUFATURING PROCESS COURSE CODE : 3023 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS Measuring instruments, gauges & comparators

More information

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

Forming Hub Cold Forming Rolling Hot Forging

Forming Hub Cold Forming Rolling Hot Forging S O F T WA R E F O R F O R M I N G S I M U L AT I O N well formed PART OF Simufact addresses companies from the manufacturing industries which are specialized in the area of metal forming and joining processes.

More information

where n is known as strain hardening exponent.

where n is known as strain hardening exponent. 5.1 Flow stress: Flow stress is the stress required to sustain a certain plastic strain on the material. Flow stress can be determined form simple uniaxial tensile test, homogeneous compression test, plane

More information

Process of Extrusion of Aluminum: Process Overview Billet Dies and Tooling Direct Extrusion Operation Stretching Cutting Aging Packaging

Process of Extrusion of Aluminum: Process Overview Billet Dies and Tooling Direct Extrusion Operation Stretching Cutting Aging Packaging Process of Extrusion of Aluminum: Process Overview Billet Dies and Tooling Direct Extrusion Operation Stretching Cutting Aging Packaging Process Overview The aluminum extrusion process really begins with

More information

Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b

Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016) Research on the Near-net Forging Processes for the Shell Body Made by High-strength Steel Taibin Wu1, a, b 1 Research

More information

136. Roller spinning forming regularity

136. Roller spinning forming regularity 136. Roller spinning forming regularity Yang Pan 1, Li Xueguang 2, Chen Zhe 3, Yu Yang 4 College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, 130022,

More information

Material flow analysis for hot-forming of 20MnCr5 gear wheel blanks

Material flow analysis for hot-forming of 20MnCr5 gear wheel blanks IDE 2008, Bremen, Germany, September 17 th 19 th, 2008 77 Material flow analysis for hot-forming of 20MnCr5 gear wheel blanks Rüdiger Rentsch Foundation Institute of Materials Science (IWT), Badgasteinerstr.

More information

CHAPTER-5 CONNECTING ROD- A FORGING COMPONENT

CHAPTER-5 CONNECTING ROD- A FORGING COMPONENT CHAPTER-5 CONNECTING ROD- A FORGING COMPONENT Chapter-5. Connecting Rod-A Forging Component 73 CHAPTER-5 CONNECTING ROD- A FORGING COMPONENT 5.1 SCOPE Metal working is one of the three major technologies

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME 6302 MANUFACTURING TECHNOLOGY 1 (QUESTION BANK) I-METAL CASTING PROCESSES PART-A (2 MARKS) 1.Name any four types of commonly used

More information

Lecture 9 - Manufacturing in Engineering

Lecture 9 - Manufacturing in Engineering Introduction Dr. Carolyn Skurla Speaking Slide 2 Process Selection Choice depends on: The material from which the component is to be made. The size, shape, and dimension tolerances for the component. The

More information

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels These steels contain a high percentage of chromium and sometimes other alloys and have been designed to prevent different types of corrosion. There are two kinds of corrosion: dry corrosion (often named

More information

Unit4 (Class10) Rolling

Unit4 (Class10) Rolling Unit4 (Class10) Rolling What we learnt in the last class Effect of Hydrostatic Stress on Mechanical Working Process, Workability of Metals, Workability Limit Diagram(WLD), Residual Stress in Wrought Products.

More information

Resource Guide. Section 3: Ductile Iron

Resource Guide. Section 3: Ductile Iron Resource Guide Section 3: Ductile Iron Section 3 Ductile Iron Description of Grades... 3-3 65-45-12 Ferritic... 3-4 80-55-06 Partially Pearlitic... 3-6 100-70-02 Pearlitic... 3-8 4512 HRDS Heat Resistant...

More information

ME 4563 ME 4563 ME Introduction to Manufacturing Processes. College of Engineering Arkansas State University.

ME 4563 ME 4563 ME Introduction to Manufacturing Processes. College of Engineering Arkansas State University. Introduction to Manufacturing Processes College of Engineering Arkansas State University 1 Bulk Deformation 2 1 Rolling 3 What is Rolling? A process of reducing the thickness (or changing the cross-section

More information

Forging die design and Forging defects

Forging die design and Forging defects Forging die design and Forging defects 1.1 Forging die-design aspects: Die design is more empirical and requires experience. Design of die depends on the processing steps, nature of work piece material,

More information

Connecting Rod Evaluation

Connecting Rod Evaluation January 2005 Connecting Rod Evaluation James R. Dale Vice President, Member and Industry Relations Metal Powder Industries Federation 105 College Road East Princeton, NJ 08540-6692 Introduction Since 1986,

More information

J.I.C. HYDRAULIC TUBING Seamless & Welded Hydraulic Fluid Line 23 Seamless Burst Pressures & Working Pressures 24 Welded Burst Pressures 25

J.I.C. HYDRAULIC TUBING Seamless & Welded Hydraulic Fluid Line 23 Seamless Burst Pressures & Working Pressures 24 Welded Burst Pressures 25 TABLE OF CONTENTS STEEL & ALLOY ROUND MECHANICAL TUBING Drawn Over Mandrel (DOM) 3-15 Cold Drawn Seamless (CDS) 3-15 Hot Rolled Seamless (HRS) 3-15 Electric Resistance Welded (ERW) 3-15 Seamless 4130/4140

More information

Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability

Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability Theoretical study on Cold Open Die Forging Process Optimization for Multipass Workability Ajitkumar Gaikwad 1-a, Shreyas Kirwai 1, Provat Koley 2, Dr. G. Balachandran 3 and Dr. Rajkumar Singh 1 1 Kalyani

More information

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 4: ADVANCED WELDING PROCESSES

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 4: ADVANCED WELDING PROCESSES COURSE: ADVANCED MANUFACTURING PROCESSES Module No. 4: ADVANCED WELDING PROCESSES Lecture No.4: Friction Welding Process Principles: Friction Welding (FRW) is a solid state welding process which produces

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Available online at   ScienceDirect. Procedia Engineering 81 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 1445 1450 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

A29/A29M-16 Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought

A29/A29M-16 Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought ASTM Volume 01.05, January 2018 Steel Bars, Forgings, Bearing, Chain, Tool A29/A29M-16 Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought A108-13 Standard Specification

More information

Forging simulation of Rocker arm using AFDEX software

Forging simulation of Rocker arm using AFDEX software Forging simulation of Rocker arm using AFDEX software Basavasagar 1, Prof. Bharat S Kodli 2 1M.TECH Scholar, Production Engineering, Department of Mechanical Engineering, PDA College of Engineering Gulbarga-585102,

More information

Conventional Paper II (a) Draw a crank rocker mechanism and identify all instantaneous centers.

Conventional Paper II (a) Draw a crank rocker mechanism and identify all instantaneous centers. Conventional Paper II-2014 1. Answer of the following (Each part carries 4 marks): (a) Draw a crank rocker mechanism and identify all instantaneous centers. (b) A steel tube 2.5 cm external diameter and

More information

Forging Simulation of Flywheel using AFDEX software

Forging Simulation of Flywheel using AFDEX software ABSTRACT The purpose of this paper is to simulate the closed die forging process, prediction of defect and eliminating it to increase the product life. The task is to simulate the flywheel using AFDEX

More information

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH POWDER METALLURGY Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH 1- INTRODUCTION Powder metallurgy is the name given to the process by which fine powdered materials

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

Fundamentals of Casting

Fundamentals of Casting Fundamentals of Casting Chapter 11 11.1 Introduction Products go through a series of processes before they are produced Design Material selection Process selection Manufacture Inspection and evaluation

More information

IN SUPERALLOY FORGING PROCESS DESIGN. T. E. Howson and H. E. Delgado. Wyman-Gordon Company North Grafton, Massachusetts

IN SUPERALLOY FORGING PROCESS DESIGN. T. E. Howson and H. E. Delgado. Wyman-Gordon Company North Grafton, Massachusetts UTILIZATION OF COMPUTER MODELING IN SUPERALLOY FORGING PROCESS DESIGN T. E. Howson and H. E. Delgado Wyman-Gordon Company North Grafton, Massachusetts 01536 Summary The forging of a superalloy high pressure

More information

Section I 20 marks (pages 2 9) Attempt Questions 1 20 Allow about 30 minutes for this section

Section I 20 marks (pages 2 9) Attempt Questions 1 20 Allow about 30 minutes for this section 2017 HIGHER SCHOOL CERTIFICATE EXAMINATION Engineering Studies General Instructions Reading time 5 minutes Working time 3 hours Write using black pen Draw diagrams using pencil NESA approved calculators

More information