Production of PV cells

Size: px
Start display at page:

Download "Production of PV cells"

Transcription

1 Production of PV cells MWp Average market growth : 32% 2004: 67% rest ribbon Si a-si mono c-si multi c-si Total Estimation money-market: /Wp ~5000x10 6

2 Primary challenge of PV Cost reduction of factor 5 to become competitive with conventional electricity Today PV module price: /W p (W p = Watt peak) Integral approach: Reducing module costs raw materials & labor, investments efficiency, lifetime Optimizing systems integration area and power related costs Note: overall optimum highest efficiency

3 Thin-film solar cells Advantages of thin film PV technologies: savings in material and energy consumption large area deposition monolithic integration energy pay back time implementation in building industry

4 Thin-film solar cells Requirements: long term stability (lifetime of years) reliability availability of source materials cost effective no environmental hazards

5 Thin-film solar cells Absorber materials less than a few µm thick: Silicon thin films (a-si:h, a-sige:h, µc-si:h, proto c-si, poly c-si:h) II-VI compounds (CdTe) II-IV-VI compounds (CuInSe 2, CuInGaSe 2 ) Thin film crystalline Si or GaAs (lift-off) Dye-sensitized nanocrystalline TiO 2 (nc-tio 2 ) Fully organic solar cells

6 Laboratory cell performance

7 Why thin-film solar cells? Solar cell c-si TF Si CuInSe 2 Efficiency 12 % 6 % 10 % Energy pay back time 2.1 years 1.4 years 1.25 years Palz and Zibetta Annual insolation 1800 kwh/(m 2 year) Energy pay back time: the time required for an energy conversion system or device to produce as much energy as is consumed for its production

8 Composition of the Earth Total : S: 520 Ge: 7 Fe Si As: 5 Ga:15 P: In: 0.1 Se: 0.09 Cu: 70 Te: Cd: 0.15

9 Material required for 1 MW p 7.5 t Fe + 15 t Cu + 27 t In + 57 t In + 64 t Ga + 56 t Cd t S 37 t Se 1800 t kristallines Silizium 15 t P 69 t As 64 t Te 16 t FeS 2 79 t CuInSe 2 72 t InP 133 t GaAs 120 t CdTe 11 t a-si 16 t FeS 2 79 t CuInSe t c-si 72 t InP 133 t GaAs 120 t CdTe 11 t a-si η(%) d(µm)

10 Thin-film Si solar cells Al Al SiO 2 n+ Glass superstrate Thin film Si (0.3-5 µm) TCO p-type p p-type sc Si Al p++ c-si ( µm) Material usage strongly reduced + - Intrinsic a-si:h Energy and cost strongly reduced n-type Metal electrode a-si:h ( µm)

11 Why thin-film solar cells? Solar cell Si raw material Present efficiency Future efficiency Peak Power Peak Power c-si g/m 2 14 % 16 % 160 W p /m W p /g TF Si 4-5 g/m 2 7 % 10 % 100 W p /m 2 20 W p /g

12 Why thin-film solar cells? Rigid c-si PV modules Flexible a-si:h PV modules

13 a-si:h solar cells Superstrate solar cell structure (Light enters through carrier) Substrate solar cell structure Glass superstrate TCO TCO p-type p-type Intrinsic a-si:h Intrinsic a-si:h n-type Metal electrode n-type Metal electrode Metal or polymer foil substrate

14 a-si:h solar cells + First thin-film material to go commercial + Laboratory cell efficiency 13%, module 10% + Multi-junction cell capability (tandem or triple pin junctions a-si/a-sige/µc-si) - Stabilized performance - Deposition rate (rf PECVD nm/s)

15 a-si:h solar cells Glass SnO 2 p-type a-sic:h intrinsic a-si:h E g = ev n-type a-si:h Al or Ag - + Active material: Amorphous silicon (a-si:h) direct semiconductor band-gap variation ( ev) thickness 0.3 microns

16 CIGS solar cells Copper Indium Gallium Diselenide Cu (In, Ga) Se 2 NiAl MgF 2 TCO (ZnO:Al) E g =3.2 ev TCO (intrinsic ZnO) CdS (n-type) E g =2.45 ev CuInSe 2 ( p-type) E g =1.0 ev Mo Glass Active material: alloy Cu(In,Ga)(Se,S) 2 direct semiconductor positive role of Na band-gap variation ( ev) thickness 1-3 microns

17 CIGS solar cells ± Just introduced to the market + Laboratory cell efficiency >19% module 13-15%, minimodule 17% + Single, graded-layer junction (low V oc ) - Improve control over 5 to 6 elements that are applied in varying concentrations (Scale up) - Increase production yield - In and Ga availability (< 1000 MWp/yr) Copper Indium Gallium Diselenide Cu (In, Ga) Se 2

18 CIGS solar cells Production methods: Vacuum methods: Co-evaporation (Global Solar, Solibro) Sequential layer deposition (sputtering) (Shell Solar, Showa Shell) Copper Indium Gallium Diselenide Cu (In, Ga) Se 2 Non-vacuum methods: Electrodeposition Nano powders, printing

19 CdTe solar cells Cadmium Telluride Glass TCO (ZnO:Al) CdS (n-type) CdTe ( p-type) Metal contact E g =3.2 ev E g =2.45 ev E g =1.45 ev Active material: CdTe band-gap 1.45 ev thickness 1-3 microns

20 CdTe solar cells Cadmium Telluride ± On the market (First Solar) + Laboratory cell efficiency 16%, module 11% + Atmospheric deposition possible - Single junction (low V oc ) - Avoid extrinsic contact degradation - Manufacturing involves cadmium

21 CdTe solar cells Cadmium Telluride Production methods: Close-space sublimation (Antec) Electro-deposition (BP Solar) Screen printing (Matsushita) Evaporation (Solar Cells Inc.) Spray deposition

Amorphous silicon thin film solar cells

Amorphous silicon thin film solar cells Amorphous silicon thin film solar cells c-si a-si large concentration of intrinsic defects N T >10 16 cm -3 ( dangling bonds D +, D -, D o ) doping more difficult, e.g. if we increase a number of free

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

Thin film solar cells

Thin film solar cells Thin film solar cells pn junction: a:si cells heterojunction cells: CIGS-based CdTe-based 1 Amorphous Si large concentration of defects N T >10 16 cm -3 ( dangling bonds D +, D -, D o ) passivation of

More information

Advanced Analytical Chemistry Lecture 9. Chem 4631

Advanced Analytical Chemistry Lecture 9. Chem 4631 Advanced Analytical Chemistry Lecture 9 Chem 4631 Solar Cell Research Solar Cell Research Solar Cell Research Solar Cell Research Thin film technologies Candidates for thin-film solar cells: Crystalline

More information

13.4 Chalcogenide solar cells Chalcopyrite solar cells

13.4 Chalcogenide solar cells Chalcopyrite solar cells 13. Thin-Film Solar Cells 201 Figure 13.19: The crystal structure of copper indium diselenide, a typical chalcopyrite. The colors indicate copper (red), selenium (yellow) and indium (blue). For copper

More information

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang Research on high efficiency and low cost thin film silicon solar cells Xiaodan Zhang 2013 China-America Frontiers of Engineering, May 15-17, Beijing, China Institute Institute of of photo-electronics

More information

Solar Photovoltaic Technologies

Solar Photovoltaic Technologies Solar Photovoltaic Technologies Lecture-33 Prof. C.S. Solanki Energy Systems Engineering IIT Bombay Contents Brief summary of the previous lecture Various Thin film solar cell technologies a-si CdTe, CIGS

More information

KGC SCIENTIFIC TYPES OF SOLAR CELL

KGC SCIENTIFIC  TYPES OF SOLAR CELL KGC SCIENTIFIC www.kgcscientific.com TYPES OF SOLAR CELL How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free

More information

The Potential of Photovoltaics

The Potential of Photovoltaics The Potential of Photovoltaics AIMCAL 2008 2008 Fall Conference Vacuum Web Coating Brent P. Nelson October 22, 2008 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency

More information

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator Thin film silicon technology Cosimo Gerardi 3SUN R&D Tech. Coordinator 1 Outline Why thin film Si? Advantages of Si thin film Si thin film vs. other thin film Hydrogenated amorphous silicon Energy gap

More information

Solar Cells Fabrication Technologies

Solar Cells Fabrication Technologies Solar Cells Fabrication Technologies Crystalline Si Cell Technologies Amorphous Si Cell Technologies Thin Film Cell Technologies For a comprehensive tutorial on solar cells in general, see www.udel.edu/igert/pvcdrom

More information

Thin film PV Technologies Thin film Silicon PV Technology

Thin film PV Technologies Thin film Silicon PV Technology Thin film PV Technologies Thin film Silicon PV Technology Week 5.2 Arno Smets Thin film Silicon solar cell Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O

More information

Winter College on Optics and Energy February Thin Film Technologies. D. Bagnall Southampton University U.K.

Winter College on Optics and Energy February Thin Film Technologies. D. Bagnall Southampton University U.K. 2132-6 Winter College on Optics and Energy 8-19 February 2010 Thin Film Technologies D. Bagnall Southampton University U.K. Thin Film Technologies Professor Darren Bagnall Electronics and Computer Science,

More information

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence

Solar Photovoltaics. We are on the cusp of a new era of Energy Independence Solar Photovoltaics We are on the cusp of a new era of Energy Independence Broad Outline Physics of Photovoltaic Generation PV Technologies and Advancement Environmental Aspect Economic Aspect Turkish

More information

Introduction to Solar Cell Materials-I

Introduction to Solar Cell Materials-I Introduction to Solar Cell Materials-I 23 July 2012 P.Ravindran, Elective course on Solar Rnergy and its Applications Auguest 2012 Introduction to Solar Cell Materials-I Photovoltaic cell: short history

More information

High Purity Materials for. Photovoltaics

High Purity Materials for. Photovoltaics High Purity Materials for Photovoltaics A photovoltaic substance is a material used in the creation solar cells that convert sunlight directly into electricity. The long-term goal of photovoltaic (PV)

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

Photovoltaic Systems Engineering

Photovoltaic Systems Engineering Photovoltaic Systems Engineering Ali Karimpour Associate Professor Ferdowsi University of Mashhad Reference for this lecture Mrs. Golmakanion Thesis Feb 2010 Ferdowsi University of Mashhad lecture 2 Lecture

More information

Solar as an environmental product: Thin-film modules production processes and their environmental assessment

Solar as an environmental product: Thin-film modules production processes and their environmental assessment Solar as an environmental product: Thin-film modules production processes and their environmental assessment ECN and M+W Zander FE GmbH Thin Film Industry Forum, Berlin 2009, April 24th Mariska de Wild-Scholten

More information

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS Emmanuelle ROUVIERE CEA Grenoble (France) emmanuelle.rouviere@cea.fr Outline Introduction Photovoltaic technologies and market Applications Promising Thin

More information

1 Introduction 1.1 Solar energy worldwide

1 Introduction 1.1 Solar energy worldwide 1 Introduction 1.1 Solar energy worldwide Solar energy, the earth s source of life, has an enormous potential to also become earth s inexhaustible and clean energy/electricity source. Each year the earth

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

Numerical Modelling of Ultra Thin Cu(In,Ga)Se 2 Solar Cells

Numerical Modelling of Ultra Thin Cu(In,Ga)Se 2 Solar Cells Available online at www.sciencedirect.com Energy Procedia 15 (2012) 291 298 International Conference on Materials for Advanced Technologies 2011, Symposium O Numerical Modelling of Ultra Thin Cu(In,Ga)Se

More information

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839)

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Sample geometry used by Adams and Day (1876) for the investigation

More information

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS MATERIALS FOR SOLAR ENERGY: SOLAR CELLS ROBERTO MENDONÇA FARIA PRESIDENT OF Brazil-MRS (SBPMat) The concentration of CO 2 in Earth s atmosphere (2011) is approximately 392 ppm (parts per million) by volume,

More information

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates. ET3034TUx - 5.2.1 - Thin film silicon PV technology 1 Last week we have discussed the dominant PV technology in the current market, the PV technology based on c-si wafers. Now we will discuss a different

More information

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light Development of Highly Efficiency, Ultra-light light Weight, Radiation-Resistant, Resistant, High-Specific Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Neelkanth G. Dhere Florida Solar

More information

New generation of solar cell technologies

New generation of solar cell technologies New generation of solar cell technologies Emerging technologies and their impact on the society 9th March 2017 Dhayalan Velauthapillai Professor, Faculty of Engineering and Business Administration Campus

More information

PHOTOVOLTAIC CELLS

PHOTOVOLTAIC CELLS www.ljuhv.com PHOTOVOLTAIC CELLS How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free from their bond. Due to

More information

Photovoltaics & Solar Thermals. Thin-film equipment. Customized. FHR Anlagenbau GmbH I

Photovoltaics & Solar Thermals. Thin-film equipment. Customized. FHR Anlagenbau GmbH I Photovoltaics & Solar Thermals Thin-film equipment. Customized. FHR Anlagenbau GmbH I www.fhr.de FHR Anlagenbau GmbH is an innovative enterprise in the branch of vacuum processing and thin-film technologies.

More information

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET)

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) The Greenhouse Effect 270 ppm carbon dioxide (CO 2 ) in the atmosphere absorbs outgoing

More information

PV System Components

PV System Components PV System Components PV modules each containing many PC cells. Connected in series or parallel arrays. Charge Controllers Optimally charges a storage battery for an off grid system, or Grid tie Inverters

More information

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool Lecture 8 : Solar cell technologies, world records and some new concepts Prof Ken Durose University of Liverpool Review papers on PV there are lots do read one or two! Materials Today 2007 NREL efficiency

More information

Solar energy for electricity production: Photovoltaics (PV)

Solar energy for electricity production: Photovoltaics (PV) Solar energy for electricity production: Photovoltaics (PV) Chiara Candelise Doctoral researcher Imperial Centre for Energy Policy and Technology (ICEPT) Page 1 Energy from the Sun HEAT (Solar thermal

More information

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Principles, technologies, systems, costs, markets Assessing PV output Global

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

Silicon thin film e coating per il fotovoltaico

Silicon thin film e coating per il fotovoltaico Silicon thin film e coating per il fotovoltaico Paola Delli Veneri UTTP-Unità Tecnica Tecnologie, Laboratorio Materiali e Dispositivi di Base M.Luisa Addonizio UTTP-Unità Tecnica Tecnologie, Unità Tecnica

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Topics Relevant to CdTe Thin Film Solar Cells

Topics Relevant to CdTe Thin Film Solar Cells Topics Relevant to CdTe Thin Film Solar Cells March 13, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology

Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology Photovoltaics: Where from Here? Miroslav M. Begovic Georgia Institute of Technology Atlanta, January 30, 2012 Introduction In the 1 st Quarter of 2011, renewable energy generated production has surpassed

More information

Impact of Materials Prices on Cost of PV Manufacture Part 2

Impact of Materials Prices on Cost of PV Manufacture Part 2 Impact of Materials Prices on Cost of PV Manufacture Part 2 Sustainable Materials for Emerging Energy (SMEET) II Conference The Institute of Materials, Minerals and Mining London 27 th February 2013 Dr

More information

Vacuum Coating Process Issues for Photovoltaic Devices

Vacuum Coating Process Issues for Photovoltaic Devices Vacuum Coating Process Issues for Photovoltaic Devices James R. Sheats Lost Arrow Consulting Palo Alto, CA sheats@lostarrowc.com * AIMCAL Fall Conference (Vacuum Web Coating), Charleston, S.C. 25 October

More information

THIN FILM SILICON PV TECHNOLOGY

THIN FILM SILICON PV TECHNOLOGY Journal of ELECTRICAL ENGINEERING, VOL. 61, NO. 5, 2010, 271 276 THIN FILM SILICON PV TECHNOLOGY Miroslav Zeman Thin-film silicon solar cell technology is one of the promising photovoltaic technologies

More information

Thin film CdS/CdTe solar cells: Research perspectives

Thin film CdS/CdTe solar cells: Research perspectives Solar Energy 80 (2006) 675 681 www.elsevier.com/locate/solener Thin film CdS/CdTe solar cells: Research perspectives Arturo Morales-Acevedo * CINVESTAV del IPN, Department of Electrical Engineering, Avenida

More information

Photovoltaic (PV) Technologies and Solar Electricity in Viet Nam

Photovoltaic (PV) Technologies and Solar Electricity in Viet Nam Photovoltaic (PV) Technologies and Solar Electricity in Viet Nam By Nang Tran Abstract Photovoltaic (PV) solar energy has reached an accumulated power of over 1 GWp and has become a profitable industry

More information

Nanoparticle Solar Cells

Nanoparticle Solar Cells Nanoparticle Solar Cells ECG653 Project Report submitted by Sandeep Sangaraju (sangaraj@unlv.nevada.edu), Fall 2008 1. Introduction: Solar cells are the most promising product in future. These can be of

More information

ROLL TO ROLL FABRICATION PROCESS OF THIN FILM SILICON SOLAR CELLS ON STEEL FOIL

ROLL TO ROLL FABRICATION PROCESS OF THIN FILM SILICON SOLAR CELLS ON STEEL FOIL ROLL TO ROLL FABRICATION PROCESS OF THIN FILM SILICON SOLAR CELLS ON STEEL FOIL B.B. Van Aken, M. Dörenkämper, C. Devilee, M.C.R. Heijna, J. Löffler and W.J. Soppe ECN Solar Energy, P.O. Box 1, 1755 ZG

More information

Solar 101 for the Duke Energy Academy

Solar 101 for the Duke Energy Academy Solar 101 for the Duke Energy Academy June 23, 2014 Peter Bermel School of Electrical and Computer Engineering Outline The solar resource Approaches to harvesting solar power Solar photovoltaics technologies

More information

Inorganic Thin Films: Future Perspectives

Inorganic Thin Films: Future Perspectives Inorganic Thin Films: Future Perspectives Global Climate Energy Project Solar Energy Workshop: Thin-Film Photovoltaics October 19, 2004 John P. Benner Division Manager Electronic Materials and Devices

More information

Gerhard Rauter, COO. Q-CELLS SE Leading edge photovoltaic technologies for Europe

Gerhard Rauter, COO. Q-CELLS SE Leading edge photovoltaic technologies for Europe Gerhard Rauter, COO Q-CELLS SE Leading edge photovoltaic technologies for Europe Q-CELLS SE Foundation: November 1999 Core business: Si-Solar Cells Start of production: 2001 Production (2007): 389 MW Number

More information

Material Needs for Thin-Film and Concentrator Photovoltaic Modules

Material Needs for Thin-Film and Concentrator Photovoltaic Modules Material Needs for Thin-Film and Concentrator Photovoltaic Modules NREL Sarah Kurtz CDMA Conference: Opportunities for Chemicals and Materials in Wind and Solar Energy December 4, 2009 Philadelphia, PA

More information

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs STATO E PROSPETTIVE DEL FOTOVOLTAICO IN ITALIA 26 giugno 2014 ENEA Via Giulio Romano n. 41, Roma Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs Anna Battaglia,

More information

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF Solar Photovoltaic S stems Systems Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF A Focus on Energy Use Solar energy 1% Conventional 1.8x10 12 hydroelectric Watts (continuously) power 45% 6x10

More information

Development of Photovoltaic Power System toward Large Scale Application

Development of Photovoltaic Power System toward Large Scale Application Development of Photovoltaic Power System toward Large Scale Application 2010.10.21 Koichi YAMADA Center for Low Carbon Society Strategy Japan Science and Technology Agency(JST) Outline 1 Solar cell (PV)

More information

International Journal On Engineering Technology and Sciences IJETS ISSN (P): , ISSN (O): Volume 1 Issue 7, November 2014

International Journal On Engineering Technology and Sciences IJETS ISSN (P): , ISSN (O): Volume 1 Issue 7, November 2014 IJETS ISSN (P): 2349-3968, ISSN (O): 2349- COMPARISON THE DEVELOPMENT OF POLYCRYSTALLINE THIN-FILM CU(IN,GA)SE2 SOLAR CELLS AND CDTE SOLAR CELLS Stephen Raja John Britto Email ID: steprj76@gmail.com ABSTRACT:

More information

Solar and Wind Energy

Solar and Wind Energy Jerry Hudgins Solar and Wind Energy Department of Electrical Engineering 1 Average Irradiation Data (Annual) from Solarex. The units on the map are in kwh/m 2 /day and represent the minimum case values

More information

AN ABSTRACT OF THE THESIS OF. Benjamin E. Waters for the degree of Master of Science in

AN ABSTRACT OF THE THESIS OF. Benjamin E. Waters for the degree of Master of Science in AN ABSTRACT OF THE THESIS OF Benjamin E. Waters for the degree of Master of Science in Electrical and Computer Engineering presented on July 2, 2012. Title: Physical Vapor Deposition of Novel Thin-Film

More information

Materials Availability for TW Scale Photovoltaics

Materials Availability for TW Scale Photovoltaics Materials Availability for TW Scale Photovoltaics Eray S. Aydil University of Minnesota Department of Chemical Engineering & Materials Science aydil@umn.edu Survey of audience a) Current thin film technologies,

More information

Solar electricity from and for buildings

Solar electricity from and for buildings Solar electricity from and for buildings Solar electricity from and for buildings The silent revolution of photovoltaic technology Wim C. Sinke ECN Solar Energy, Utrecht University & European Photovoltaic

More information

Technical Talk on HK s Largest Solar Power System at Lamma Power Station

Technical Talk on HK s Largest Solar Power System at Lamma Power Station 15 June 2011 Technical Talk on HK s Largest Solar Power System at Lamma Power Station for HKIE EV Division by C.K. Lau Agenda Fundamentals of PV Project Background Feasibility Study and Site Selection

More information

PHOTOVOLTAIC INDUSTRY STRUCTURE... 9 LEADING PHOTOVOLTAIC MANUFACTURERS... 9

PHOTOVOLTAIC INDUSTRY STRUCTURE... 9 LEADING PHOTOVOLTAIC MANUFACTURERS... 9 INTRODUCTION... XVII STUDY GOALS AND OBJECTIVES... XVII REASONS FOR DOING THIS STUDY... XVII CONTRIBUTIONS TO THE STUDY AND FOR WHOM... XVII SCOPE AND FORMAT... XVIII METHODOLOGY... XVIII INFORMATION SOURCES...

More information

Introduction. 1.1 Solar energy

Introduction. 1.1 Solar energy 1 Introduction This chapter provides a general background on solar cells. In particular, the necessity of developing thin-film silicon tandem solar cells is discussed. The working principles of two different

More information

Solar Electricity: Progress and Challenges

Solar Electricity: Progress and Challenges Solar Electricity: Progress and Challenges Thomas Surek National Renewable Energy Laboratory Golden, Colorado, U.S.A. tom_surek@nrel.gov National Center for Photovoltaics Photovoltaics is Solar Electricity

More information

An Introduction to Solar Cell Technology *

An Introduction to Solar Cell Technology * OpenStax-CNX module: m41217 1 An Introduction to Solar Cell Technology * Brittany L. Oliva-Chatelain Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Simulation of Cadmium Telluride Solar Cells Structure

Simulation of Cadmium Telluride Solar Cells Structure Proceedings of 21 IEEE Student Conference on Research and Development (SCOReD 21), 13-14 Dec 21, Putrajaya, Malaysia Simulation of Cadmium Telluride Solar Cells Structure I F Fauzi 1,*, M Mohamad Shahimin

More information

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann Efficiency improvement in solar cells MSc_TI Winter Term 2015 Klaus Naumann Agenda Introduction Physical Basics Function of Solar Cells Cell Technologies Efficiency Improvement Outlook 2 Agenda Introduction

More information

NUMERICAL MODELING OF TIN-BASED ABSORBER DEVICES FOR COST-EFFECTIVE SOLAR PHOTOVOLTAICS

NUMERICAL MODELING OF TIN-BASED ABSORBER DEVICES FOR COST-EFFECTIVE SOLAR PHOTOVOLTAICS The Pennsylvania State University The Graduate School John and Willie Leone Family Department of Energy and Mineral Engineering NUMERICAL MODELING OF TIN-BASED ABSORBER DEVICES FOR COST-EFFECTIVE SOLAR

More information

An Evaluation of Solar Photovoltaic Technologies

An Evaluation of Solar Photovoltaic Technologies An Evaluation of Solar Photovoltaic Technologies 15.965 Technology Strategy Paper 1, February 23, 2009 Introduction: Green thinking is the in topic these days. Companies are all claiming to be going green.

More information

Crystalline Silicon Solar Cells

Crystalline Silicon Solar Cells 12 Crystalline Silicon Solar Cells As we already discussed in Chapter 6, most semiconductor materials have a crystalline lattice structure. As a starting point for our discussion on crystalline silicon

More information

The comments and opinions in this presentation do not necessarily represent or reflect those of SPFA.

The comments and opinions in this presentation do not necessarily represent or reflect those of SPFA. VEGETATIVE ROOFS, PHOTOVOLTAIC ROOFS AND SPF JAMES R. KIRBY, AIA, GRP ASSOCIATE EXECUTIVE DIRECTOR, TECHNICAL COMMUNICATIONS NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA) The comments and opinions in

More information

Solar testing in climate chambers. Stefan Roest Technical director

Solar testing in climate chambers. Stefan Roest Technical director Solar testing in climate chambers Stefan Roest Technical director Costs are not the issue anymore... improving reliability is key. Gujarat, India 2 Testing PV modules IEC 61215 & 61646 Performance testing

More information

Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS

Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIX METAL/METAL-SELENIDE PRECURSORS Rui Kamada, William N. Shafarman, and Robert W. Birkmire Institute of Energy Conversion University of Delaware, Newark,

More information

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC Markets for Indium-Based Materials in Photovoltaics Nano-405 Published September 2011 NanoMarkets, LC NanoMarkets, LC PO Box 3840 Glen Allen, VA 23058 Tel: 804-360-2967 Web: Chapter One: Introduction 1.1

More information

DEPOSITION OF CuInAlSe 2 FILMS USING CO-SPUTTERED PRECURSORS AND SELENIZATION

DEPOSITION OF CuInAlSe 2 FILMS USING CO-SPUTTERED PRECURSORS AND SELENIZATION DEPOSITION OF CuInAlSe 2 FILMS USING CO-SPUTTERED PRECURSORS AND SELENIZATION Daniel Dwyer 1, Ingrid Repins 2, Harry Efstathiadis 1, Pradeep Haldar 1 1 College of Nanoscale Science and Engineering, University

More information

Amorphous silicon / crystalline silicon heterojunction solar cell

Amorphous silicon / crystalline silicon heterojunction solar cell Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-9 "Amorphous Silicon / Cyrstalline Silicon Heterojunction Solar Cell" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy Amorphous

More information

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF

Solar Photovoltaic. Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF Solar Photovoltaic S stems Systems Neal M. Abrams,, Ph.D. Department of Chemistry SUNY ESF A Focus on Energy Use Solar energy 1% Conventional 1.8x10 12 hydroelectric Watts (continuously) power 45% 6x10

More information

JUNE 2016 SOLIBRO GMBH COMPANY PRESENTATION

JUNE 2016 SOLIBRO GMBH COMPANY PRESENTATION JUNE 2016 SOLIBRO GMBH COMPANY PRESENTATION CONTENT COMPANY FACTS OUR PRODUCTS REFERENCES QUALITY PRODUCTION PROCESS SERVICE SOLIBRO COMPANY PRESENTATION REV06 JUNE 2016 2 SOLIBRO FACTS Part of the Hanergy

More information

Summary and Scope for further study

Summary and Scope for further study Chapter 6 Summary and Scope for further study 6.1 Summary of the present study Transparent electronics is an emerging science and technology field concentrated on fabricating invisible electronic circuits

More information

Polycrystalline CdS/CdTe solar cells

Polycrystalline CdS/CdTe solar cells Polycrystalline CdS/CdTe solar cells Al Compaan Distinguished University Professor of Physics, Emeritus (Lecture for Heben/Ellingson solar cells class) March 3, 2011 1 Absorption spectra of various semiconductors

More information

Photovoltaics: Energy for the New Millennium

Photovoltaics: Energy for the New Millennium Photovoltaics: Energy for the New Millennium Thomas Surek National Renewable Energy Laboratory Golden, Colorado, U.S.A. tom_surek@nrel.gov http://www.nrel.gov/ncpv 02679666 Photovoltaics (PV) Direct conversion

More information

Manufacturing Challenges for PV in the 21 st Century

Manufacturing Challenges for PV in the 21 st Century Manufacturing Challenges for PV in the 21 st Century NSF Workshop Arlington, VA, March 24-5, 2009 3/24/2009 Contact: Juris Kalejs, Tel: 781-492-1122; email: jpkalejs1@aol.com 1 Topics Introduction to PV

More information

CIGS PV Technology: Challenges, Opportunities, and Potential

CIGS PV Technology: Challenges, Opportunities, and Potential CIGS PV Technology: Challenges, Opportunities, and Potential Rommel Noufi NCPV, NREL Date: 2/22/2013 CIGS: A High Content Technology NREL is a national laboratory of the U.S. Department of Energy, Office

More information

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12:33 38 (DOI: /pip.525)

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12:33 38 (DOI: /pip.525) PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2004; 12:33 38 (DOI: 10.1002/pip.525) Research SHORT COMMUNICATION: ACCELERATED PUBLICATION CdTe Solar Cell in a Novel Configuration

More information

Improvement the Efficiency CIGS Thin Film Solar Cells by Changing the. Thickness Layers

Improvement the Efficiency CIGS Thin Film Solar Cells by Changing the. Thickness Layers www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 6 Issue 7 July 2017, Page No. 22055-22061 Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i7.27 Improvement

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.9, No.01 pp , 2016

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.9, No.01 pp , 2016 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.01 pp 185-191, 2016 Study and Optimization Optical and Electrical properties of the p, i and n- Layers of Single

More information

Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium

Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium M. Despeisse, on behalf of CSEM and EPFL/pvlab research teams pictures 6 cm high at 11 cm vertical Swiss

More information

Institute for Sustainable Energy, University of Malta

Institute for Sustainable Energy, University of Malta Institute for Sustainable Energy, University of Malta SUSTAINABLE ENERGY 2016: THE ISE ANNUAL CONFERENCE Tuesday 4 th October 2016, The Auditorium, University of Malta, Valletta Campus, Malta ISBN 978-99957-853-1-4

More information

PROSPECTS OF INDIUM SULPHIDE AS AN ALTERNATIVE TO CADMIUM SULPHIDE BUFFER LAYER IN CIS BASED SOLAR CELLS FROM NUMERICAL ANALYSIS

PROSPECTS OF INDIUM SULPHIDE AS AN ALTERNATIVE TO CADMIUM SULPHIDE BUFFER LAYER IN CIS BASED SOLAR CELLS FROM NUMERICAL ANALYSIS Chalcogenide Letters Vol. 8, No. 5, May 2011, p. 315-324 PROSPECTS OF INDIUM SULPHIDE AS AN ALTERNATIVE TO CADMIUM SULPHIDE BUFFER LAYER IN CIS BASED SOLAR CELLS FROM NUMERICAL ANALYSIS MOHAMMAD ISTIAQUE

More information

A Dissertation. entitled. Stability Issues in Sputtered CdS/CdTe Solar Cells. Naba Raj Paudel

A Dissertation. entitled. Stability Issues in Sputtered CdS/CdTe Solar Cells. Naba Raj Paudel A Dissertation entitled Stability Issues in Sputtered CdS/CdTe Solar Cells by Naba Raj Paudel Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree

More information

AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY CRYSTALLINE SOLAR CELLS

AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY CRYSTALLINE SOLAR CELLS International Journal of Nanotechnology and Application (IJNA) ISSN(P): 2277-4777; ISSN(E): 2278-9391 Vol. 6, Issue 5, Dec 2016, 1-6 TJPRC Pvt. Ltd. AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY

More information

Advanced characterization of solar energy materials and novel solar cell concepts

Advanced characterization of solar energy materials and novel solar cell concepts Advanced characterization of solar energy materials and novel solar cell concepts Klaus Magnus Johansen Head of the Micro - and Nanofabrication lab at University of Oslo Norwegian Micro and Nanofabrication

More information

Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells

Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells Francesca Menchini Photovoltaic Technologies Laboratory, ENEA Casaccia LIMS 2018 17-18 maggio 2018 Outline

More information

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation Thin-Film Silicon Technology and Manufacturing Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight Xunlight products and installations

More information

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture Poster FVS Workshop 2002 Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture Texture etching of sputtered ZnO:Al films has opened up a variety of possibilities

More information

Review of Photovoltaic Solar Cells. Op5cs for Energy Course 11/5/13 Liz Lund

Review of Photovoltaic Solar Cells. Op5cs for Energy Course 11/5/13 Liz Lund Review of Photovoltaic Solar Cells Op5cs for Energy Course 11/5/13 Liz Lund Outline Solar electricity produc5on How Photovoltaics (PV) work Types of PV Emerging technologies Solar Electricity Produc5on

More information

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Erten Eser, Steven S. Hegedus and Wayne A. Buchanan Institute of Energy Conversion University of Delaware, Newark,

More information

AQUEOUS CRITICAL CLEANING: A WHITE PAPER THE SIGNIFICANCE IN SOLAR MODULE MANUFACTURING

AQUEOUS CRITICAL CLEANING: A WHITE PAPER THE SIGNIFICANCE IN SOLAR MODULE MANUFACTURING AQUEOUS CRITICAL CLEANING: A WHITE PAPER THE SIGNIFICANCE IN SOLAR MODULE MANUFACTURING Alconox, Inc. Critical Cleaning Experts 30 Glenn St., Suite 309, White Plains NY 10603 USA Tel.914.948.4040 Fax.914.948.4088

More information