Impact Analysis of Aluminum-Fiber Composite Lamina *

Size: px
Start display at page:

Download "Impact Analysis of Aluminum-Fiber Composite Lamina *"

Transcription

1 [ 溶接学会論文集第 33 巻第 2 号 p. 166s-170s (2015)] Impact Analysis of Aluminum-Fiber Composite Lamina * by Yehia Abdel-Nasser**, Ninshu Ma***, Hidekazu Murakawa*** and Islam El-Malah** Hybrid materials of fiber composite and aluminum alloys have a great potential in reducing the weight of transportation vehicles. It has been become an alternative solution to steel panels because they can provide high strength and improve energy absorbing capability under impact and collision loading. Developing a new composite material based on experiment by changing mechanical properties is quite expensive and takes long time. Therefore, numerical simulation with the aid of FEM is often performed, since its results have been proved to be close to the experimental ones. There are many different ways to combine the fiber into the resin. In this paper, the effect of lining arrangements of composite materials and the orientations of the layers on the strength was simulated using FEM in which the adhesive bond between fiber composite/metal is assumed as a tie constraint. Impact strength and failure modes of several plate panels with different lining arrangements were investigated. The results of analyses are presented and their trends are discussed. Key Words: FEM, Hybrid Plate Panels, Lining Arrangements, Impact Analysis, Penetrations 1. Introduction A composite material is fabricated by combining two or more distinct materials together but remaining uniquely identifiable in the mixture. The most common example is, a fiberglass composite material, in which glass fibers are mixed with a polymeric resin 1). Composite materials are becoming increasingly more attractive in a variety of structural engineering applications, such as airplane fuselages, turbine blades, patrol boats and car bodies. The challenge at hand is to use a composite material that is optimized to provide the same or better strength and stiffness as that of traditional isotropic materials. The amount of fracture load at which a piece of fiber glass breaks, depends on the size of the piece of fiberglass, its thickness, width, length, and also the loading direction 2). It also depends on what the fiberglass is made of such as layers orientations of fibers and amount of polymeric resins. The goal of this paper is to analyse the strength of hull structures made of composite materials as an alternative solution to replace the heavy steel structure. It is anticipated that the use of the composites will save on overall weight in order to maximize potential payload capacity. The optimal composite design is expected to be both lighter than the steel configuration, and exhibited resistance to more severe loading conditions such as impact loadings 3). It is possible to design a composite material such that it has the attributes desired for a specific application. * Received: ** Faculty of Engineering, Alexandria University *** Member, Joining and Welding Research Institute, Osaka University For example, fiber-metal Laminates (FMLs) are a hybrid of metal and composite laminates that are increasingly being used in aerospace structures 4). This is consisting of alternating layers of thin metallic sheets and fiber-reinforced epoxy. Two main types of FML are aramid fiber-reinforced epoxy /aluminum laminates (ARALL) and S2 glass fiber-reinforced epoxy/aluminum laminates (GLARE). The combination of mechanical properties of monolithic metal and fiber-reinforced composite provides FMLs with mechanical advantages such as low density, high strength, and high damage tolerance. Impact damage is a key concern for the safety of transportation vehicles 5). Therefore it is necessary to accurately predict internal impact damage to FMLs and other composite materials 6). Therefore, the goal of this project is to rearrange lay-up of aluminum-fiber composite lamina through changing mechanical properties and lining arrangements of the layers, and comparing results of the arrangements to obtain higher performance of the plate lamina against impact and blast loadings. These changes can be virtually done by numerical simulation using FEM-software such as ABAQUS 7). However, the numerical results required to be verified through laboratory experiments. 2. Failure criteria The failure of a composite panel will be resulted from either a critical strain or stress exceeded in the matrix or fiber. The composite behaves elastically and reaches to the point of failure, primarily because the glass fibers and the polymeric resin were both linear elastic solids with a brittle fracture mode, i.e., no

2 溶接学会論文集 第 33 巻 (2015) 第 2 号 167s plastic deformation. We would also note from the mechanical tests that the elastic modulus of the composite also varied with the amount of fiber added to the resin. Hashin s failure criteria 8) for Unidirectional Fiber Composites will be considered in this work. These are interacting failure criteria where more than one stress components have been used to evaluate the different failure modes. Usually Hashin criteria are implemented within two dimensional classical lamination approach for stress calculations with ply discounting as the material degradation model. After that, he extended the criteria to three dimensional problems where the maximum stress criteria are used for transverse normal stress component. 3. Description of FE models The paper addresses the numerical simulation of impacts on plate panels by applying FEM. The plate panels are composed from hybrid material (S2 glass fiber-reinforced epoxy/ aluminum laminates). The research work is aimed to optimize the arrangement of composite layers which sustained the maximum impact load. Other loads such as in-plane loads are not considered here. The FE simulation of the impact analysis encompasses a number of individual problems such as mesh size, element type and time increments, which should be given appropriate attention during the analysis. In the analysis, a fine mesh is generated especially at the contact areas (mesh size=3x3x0.5mm) to acquire accurate results and to represent real failure modes during impact. Whereas coarse mesh may be applied for areas located far from collision region to reduce CPU time. Also appropriate element type (8 node break element) is selected to achieve accurately FE analysis and increase the reliability of numerical models. The adhesive bond between the glass/epoxy plies and aluminum layers was modeled using the tie constraint module in Abaqus software to express the delaminating failure. Abaqus/Explicit can be applied to model nonlinear material behavior in a composite laminate. Other problem such as modeling of the material damage criteria is explained in Refs. 9). Abaqus/Explicit version is used to simulate the impact of plate panels with a striking object such as ball or cylinder at different velocity. The plate panels are modeled using solid elements (C3D8R). The impactor (ball or cylinder) is modeled using rigid elements (R3D4). This assumption is chosen because we are interested in comparing the effect of the impact on the different plate panels with no reference to the impactor. Different configurations of lining arrangement are investigated. The absorbed energy and contact force for each arrangement of the plate panel are calculated after damage. The following assumptions are considered in the models: Volumetric ratio of composite (fiber/resin) is 50%. The plies are symmetric laminated composites. Unidirectional fiber or Random fiber is assumed. Adhesive bond between Fiber/Metal is assumed as a tie constraint. Wu 10) 4. Validation of FE models conducted a series of low velocity impact tests to evaluate the deformation and damage responses of FMLs. A comparative study is conducted using these experimental impact results to validate a basic numerical model. The model consists of two layers of Al 2024-T3 Aluminum alloy sheets and one layer of [0/90/90/0] S2 glass/epoxy composite. Here, Al is referred to the material of aluminum and /0/90/90/0/ is referred to 4plys of the composite material as shown in Fig.1. A steel spherical impactor of 12.3 mm diameter and with a mass of 6.29 kg impacted the plate panel with different impact energies such as 12.7J, 16.3J and 24.3J respectively. The hybrid plate panel (Aluminum-Fiber composite) of (0.076x0.076m) with total plate thickness 1.56mm is analyzed using FEM. The plate panel is clamped at all edges. The mechanical properties of S2 glass/epoxy 4) are as shown in Table 1. The Aluminum 2024-T3 is assumed to be an elastic material and its characteristics are as follows: Young s Modulus E= MPa and Poisson s ratio ʋ=0.33. Hashin failure criteria are applied to trace the failure state of the composite material while the ductile failure criterion is applied for the aluminum. The tie constrained law is applied to express the adhesive bond between fiber composite and aluminum 7). The time of impact is taken about 6 x10-3 second. Table 1 Mechanical properties of S2 glass/epoxy. Material Parameter values (GPa) S2 E11 E22 E33 G12 G23 V12 V23 glass/ epoxy Parameter values (MPa) σl U,t σl U,c σt U,t σt U,c τlt u The mesh model of the plate panel and the impactor are shown in Fig.2. The impactor is moving with a constant velocity towards

3 168s 研究論文 YEHIA et al.: Impact Analysis of Aluminum-Fiber Composite Lamina the plate panel. The numerical results show that the maximum deformation is observed at the center of the plate panel. Figure 3 shows relationships between contact force and time for different levels of energy. At low energy such as 12.7J the numerical results have the same value in the contact force curve when compared with the experimental results. However, for 16.3J and 22.3J energy, at the elastic state the same results are attained but the deviations are observed after damage. Here, the numerical results show higher contact forces than those attained by the experimental ones. This is because the debonding of the Aluminum layers and the composite layer was constrained using the tied constraint. During the impact analysis of the plate panel, failure modes such as plastic deformation of the metal layers (Aluminum) and matrix cracking and fiber failure of the composite layer are observed. Figure 4 shows relationship between deflection at the center of the plate panel and the time. The central deflection is reached to about 4.5mm and it is increased as the impact energy increases. The effect of fiber dimensions and orientations are not considered in this study 11). 5. The impact behavior In this section, the hybrid plate panel of 0.5x0.5m is modeled with solid elements. The cylinder is modeled with 3D rigid elements. The cylinder is moving towards the center of palate panel with a high energy of about 2000J. The dynamic explicit solver was used to account for the time-dependent loading and the complex interaction between the cylinder and the composite plate panel. The model with different arrangements of fiber glass and Aluminum laminated layers are investigated to determine the best arrangement that able to prevent cylinder penetration and absorb the high energy (2000J). These model arrangements are suggested as follows, (See Fig.5) 3GL (3 layers of Aluminum each layer has 4 mm thick and 2 layers of fiber glass/epoxy each layer has 3mm thick). 4GL (4 layers of Aluminum each layer has 3 mm thick and 3 layers of fiber glass/epoxy each layer has 2mm thick). 5GL (5 layers of Aluminum each layer has 2 mm thick and 4 layers of fiber glass/epoxy each layer has 2mm thick). Each layer of the composite material is consisted of 4 plies Rigid ball Fiber layers Fig. 1 The hybrid plate panel. Fig. 2 Mesh model of the hybrid plate panel. Fig. 3 Relationships between the impact force and time. Fig. 4 Relationships between the deflection and time.

4 溶 接 学 会 論 文 集 4 研究論文 第 33 巻 2015 第 2 号 他 169s with final zero velocity. For 5GL model, the cylinder could not penetrate the plate panel. It approaches zero velocity and totally 3GL 4GL Fiber Al 5GL Fig. 5 Different arrangements of hybrid plate panels. lost its ballistic energy. It is noticed that with increasing number of (Al) layers as in cases 4GL and 5GL arrangements; the velocity of the cylinder is drastically decelerated. Table 3 shows a comparative analysis for the previous arrangement using the specified material properties. with equal ply thickness and unidirectional of the stack sequences In this analysis, the weight parameter defined by the weight per (0/90/0/90). The local co-ordinate systems are defined to account area WP (kg/m2) of the plate panel is a little bit high. The weight for orientations of individual plies and to model the laminate and parameter WP (kg/m2) may be reduced by utilizing higher material behavior precisely. The material properties of the strength of composite materials to get less plate thickness13). It composite are given in Table 1. While properties for Aluminum can be safely assumed that at high loading rates, as normally are taken from Ref. The cylinder of mass 8g and length 39 mm observed in ballistics impact, the metal layers and glass fibers impacts the center of the plate panel in the axial direction with a undergo considerable hardening before failure thus providing constant velocity of 700m/s as shown in Table 213). Here, due to extended resistance. 12) the high energy, the time of impact is taken about 12x10-5 second. Table 2 Characteristics properties of the cylinder 13). Designation 7.62x39mm Weight Velocity Energy g m/s J The developed FE model is shown in Fig. 6. Fine mesh is generated at the center of the plate panel. Table 3 Characteristics of plate panel arrangements during analysis. Time of Model Plate Thick penetration Arrangement (mm) (s) End Weight Failure of Velocity (kg /m2) layers (m/s) 3GL 5.2x All 138 4GL 6.1x Not All 0 5GL Not 43 Not All 0 Rigid Cylinder Figure 7 shows the penetration of the cylinder into the plate panel. It is noticed that for 3GL and 4GL arrangements, after the plastic deformation spreads at the center of the face layer (Al) of the plate, failure starts at the face layer (Al) then the cylinder penetrates the face (Al) layer and reaches the composite layers causing brittle damages in its plys. Finally, the cylinder penetrates the second layer (Al) of the plate panel after causing large Fig. 6 Mesh model of the plate panel before and after penetration. deformation in this layer (Al). This process is repeated for remaining layers of the plate panel. Figure 8 shows the ductile fracture of aluminum layers and brittle fracture of the composite layers. Figure 9 shows relationships between moving velocity of the cylinder and time. At the beginning, the cylinder is moving with a velocity of 700m/s, then its velocity gradually decreases. For 3GL model, the cylinder penetrates the plate panel at time of 5.2x10-5 second and it still has a kinetic energy with a velocity of about 138m/s. At the end a complete penetration is occurred. Regarding 4GL model, the cylinder penetrates the plate panel at time 6.1x10-5 second and its kinetic energy is gradually dissipated Penetration Fig. 7 Penetration of the cylinder into plate panel arrangements.

5 170s 研究論文 YEHIA et al.: Impact Analysis of Aluminum-Fiber Composite Lamina attained. This may be reduced by utilizing higher strength composite materials to get less plate thickness and weight. Reference (a) Ductile damages in Aluminum layers Fiber (b) Brittle damages in composite layers Fig. 8 Failure damages in the plate panel. Fig. 9 Relationships between the impact velocity and time. 6. Conclusions Aluminum The paper refers to the simulation impact of aluminum-fiber composite plate lamina using FEM which provided close results compared with the experimental ones. It is found that by increasing number of (Al) layers in the lay-up arrangement of the hybrid plate lamina will drastically decelerate the velocity of the impacted cylinder and absorb higher impact energy (2000J). However, higher weight parameter WP (43kg/m 2 ) of the hybrid plate lamina is 1) D. Hull and T.W. Clyne: An Introduction to Composites Materials, Cambridge University Press (1996). 2) D. Roylance: Introduction to Composite Materials", Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (2000). 3) C. Akin and M. Senel : An Expermental Study of Low Velocity Impact Response for Composite Laminated Plates, Dumlupinar University, Tr. (2010). 4) M. Rathnasabapathy, A.P. Mouritz and A.C. Orifici : Numerical Investigation of Fiber-Metal Laminates, TH International Conf. on Composite Materials Subject to Impact damage, (2008), Edinburgh, UK. 5) R. Kalavalapally, R. Penmetsa and R. Grandhi : Multidisciplinary optimization of a lightweight torpedo structure subjected to an underwater explosion, Finite Elements in Analysis and Design 43 (2006), ) S. Hyoungseock, J. Hundley, H.T. Hahn and J.Yang : Numerical Simulation of Glass-Fibre-Reinforced Aluminium Laminates with Diverse Impact Damage, AIAA Journal, Vol. 48, No. 3 (2010), pp ) Abaqus : Damage and Failure Of Laminated Composite Plates, User manual Dassault System Rhode Island US. 8) Z. Hashin : Failure criteria for unidirectional fiber composites, Journal of Applied Mechanics Material Science and Technology, Vol. 47(1) (1980), pp ) P. CAMANHO AND C. ROSE : Failure Criteria for FRP Laminates, MS 240, NASA Langley Research Center Hampton, VA 23681, USA. 10) G. Wu :The Impact Properties and Damage Tolerance of Bidirectionally Reinforced Fibre Metal laminates, Journal of Material Science and Technology, Vol. 42, No. 3 (2005), pp ) P. Kumrungsie, K. Maneeratana and N. Chollacoop : Effects of Fiber Orientation on Ballistic Impact upon Polymer Composite Plate, The 21st Conference of Mechanical Engineering Network of Thailand (October 2007), Chonburi, Thailand. 12) M. Luo, Ductile Fracture Characterization of an Aluminum Alloy Sheet using Numerical Simulations and Tests, Term Project Report of 2.094, MIT, (2008). 13) V. Phadnis, K. Pandya, N. Naik, A Roy and V. Silberschmidt : Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments, Journal of Physics: Conference Series 451, (2013).

Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate

Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate International Journal of Computational Engineering Research Vol, 03 Issue, 10 Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate K.Vasantha

More information

Bearing and Delamination Failure Analysis of Pin Loaded Composite Laminates

Bearing and Delamination Failure Analysis of Pin Loaded Composite Laminates Volume 6, No. 2, February 217 1 Bearing and Delamination Failure Analysis of Pin Loaded Composite Laminates V. Dinesh Babu, Professor, Nehru Institute of Engineering and Technology, Coimbatore T. Sivagangai,

More information

MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES

MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES C. L. Bowman 1, G. D. Roberts 1, M. S. Braley 2, M. Xie 3 & M. J. Booker 4 1 NASA Glenn Research Center, Cleveland OH 44135 2 A&P Technology,

More information

Analysis of Composite Structure Using HM12.0/Radioss

Analysis of Composite Structure Using HM12.0/Radioss Analysis of Composite Structure Using HM12.0/Radioss Anil M.Sutar Design Engineer Citec Engineering India Pvt. Ltd. Yerwada, Pune 411 006 anil.sutar@citec.com Abbreviations: FE- Finite Element, GRP-Glass

More information

Flexural Behavior of Sandwich Composite Panels Under 4-Point Loading

Flexural Behavior of Sandwich Composite Panels Under 4-Point Loading International Journal of Materials Science ISSN 0973-4589 Volume 11, Number 1 (2016), pp. 47-55 Research India Publications http://www.ripublication.com Flexural Behavior of Sandwich Composite Panels Under

More information

ANALYSIS OF FRP COMPOSITE CYLINDERS

ANALYSIS OF FRP COMPOSITE CYLINDERS Int. J. Mech. Eng. & Rob. Res. 2012 D Gopichand and T N Charyulu, 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved ANALYSIS OF FRP COMPOSITE

More information

Impact Analysis of Density Graded E-Glass Composite Laminate

Impact Analysis of Density Graded E-Glass Composite Laminate Impact Analysis of Density Graded E-Glass Composite Laminate Sedulingam Kandaswamy 1, Deepthi K R 2 1PG Scholar, 2 Assistant Professor 1, 2 Dept. of Mechanical Engineering, New Horizon College of Engineering,

More information

MEASUREMENT OF THE MECHANICAL PROPERTIES OF A CARBON REINFORCED BISMALEIMIDE OVER A WIDE RANGE OF TEMPERATURES

MEASUREMENT OF THE MECHANICAL PROPERTIES OF A CARBON REINFORCED BISMALEIMIDE OVER A WIDE RANGE OF TEMPERATURES Revista da Associação Portuguesa de Análise Experimental de Tensões ISSN 66-778 MEASUREMENT OF THE MECHANICAL PROPERTIES OF A CARBON REINFORCED BISMALEIMIDE OVER A WIDE RANGE OF TEMPERATURES L. F. M. da

More information

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES Nabil F. Grace, Lawrence Technological University, Southfield, MI George Abdel-Sayed, University of Windsor, Windsor, ON Wael

More information

Investigation of influence of tab types on tensile strength of E-glass/epoxy fiber reinforced composite materials

Investigation of influence of tab types on tensile strength of E-glass/epoxy fiber reinforced composite materials Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 3279 3284 ICM11 Investigation of influence of tab types on tensile strength of E-glass/epoxy fiber reinforced composite materials

More information

Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams

Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams CELANESE ENGINEERED MATERIALS Michael Ruby October, 2013 1 Overview

More information

Mechanical Behaviour of Polymer Sandwich Composites under Compression

Mechanical Behaviour of Polymer Sandwich Composites under Compression American Journal of Materials Science 2015, 5(3C): 107-111 DOI: 10.5923/c.materials.201502.22 Mechanical Behaviour of Polymer Sandwich Composites under Compression Mohd. Zahid Ansari *, Sameer Rathi, Kewal

More information

Vibration Analysis of Propeller Shaft Using FEM.

Vibration Analysis of Propeller Shaft Using FEM. Vibration Analysis of Propeller Shaft Using FEM. 1 Akshay G. Khande, 2 Shreyash A. Sable, 3 Vaibhav R. Bidwai, 4 Chandrasekhar B. Aru, 5 Brahmanand S.Jadhav 12345 Mechanical Engineering Department, Babasahebh

More information

International Conference on Mechanics and Civil Engineering (ICMCE 2014)

International Conference on Mechanics and Civil Engineering (ICMCE 2014) International Conference on Mechanics and Civil Engineering (ICMCE 2014) Interface Fracture Models of Concrete Externally Reinforced by FRP Plates Lei ZHANG 1,a,*, Ping-Hu LIU 2,b, Xiao-Peng GUO 2,c, Yong

More information

Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, Korea,

Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, Korea, 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DEVELOPMENT OF CFRP PRECISION GANTRY BEAMS FOR 11 TH GENERATION LCD PANEL MANUFACTURING B. Bhandari 1, G.Y. Lee 1, D.S. Choi 2, J.H. Kim 2 and S.H.

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

Finite Element Analysis of Impact Damaged Honeycomb Sandwich

Finite Element Analysis of Impact Damaged Honeycomb Sandwich Finite Element Analysis of Impact Damaged Honeycomb Sandwich D.P.W. Horrigan and R.R Aitken Centre for Polymer and Composites Research, Department of Mechanical Engineering, The University of Auckland,

More information

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening 2016 International Conference on Electronic Information Technology and Intellectualization (ICEITI 2016) ISBN: 978-1-60595-364-9 Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

More information

Design of a Composite Vibration Fixture for Testing Fuel Tank for Combat Vehicle Application

Design of a Composite Vibration Fixture for Testing Fuel Tank for Combat Vehicle Application International NAFEMS Conference on Engineering Analysis, Modeling, Simulation and 3D-Printing (NAFEMS-3D) 2016 Design of a Composite Vibration Fixture for Testing Fuel Tank for Combat Vehicle Application

More information

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components T. Tryland SINTEF Raufoss Manufacturing, Raufoss, Norway 1 Background It is often useful to have a physical model

More information

Part 4 MECHANICAL PROPERTIES

Part 4 MECHANICAL PROPERTIES Part 4 MECHANICAL PROPERTIES Fiber Composite Materials M. S. Ahmadi 192 TENSILE PROPERTIES Tensile properties, such as tensile strength, tensile modulus, and Poisson s ratio of flat composite laminates,

More information

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS J. N. Reddy e-mail: jnreddy@tamu.edu Texas A&M University College Station, TX 77843-3123 USA * This document

More information

Design, Testing, Analysis, and Material Properties of Carbon Fiber Reinforced Polymers

Design, Testing, Analysis, and Material Properties of Carbon Fiber Reinforced Polymers Rose-Hulman Institute of Technology Rose-Hulman Scholar Rose-Hulman Undergraduate Research Publications 5-30-2016 Design, Testing, Analysis, and Material Properties of Carbon Fiber Reinforced Polymers

More information

Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car

Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car Structures Under Shock and Impact X 167 Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car S. Boria & G. Forasassi Department of Mechanical, Nuclear and Production

More information

Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS

Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS Dipartimento di Ingegneria Meccanica e Aerospaziale By. Prof. G. Belingardi, Alem.T.

More information

Stato dell'arte della Simulazione di Materiali Compositi

Stato dell'arte della Simulazione di Materiali Compositi Stato dell'arte della Simulazione di Materiali Compositi Composites Structures: Civil Airplanes Applications Boeing 787 Airbus A350 In black the composite parts Composites Structures: Automotive & Marine

More information

SHEAR BEHAVIOR OF REINFORCED HIGH-STRENGTH CONCRETE MEMBERS

SHEAR BEHAVIOR OF REINFORCED HIGH-STRENGTH CONCRETE MEMBERS SHEAR BEHAVIOR OF REINFORCED HIGH-STRENGTH CONCRETE MEMBERS Saitama University, Japan Perera, S.V.T.J. Saitama University, Japan JPCEA Member, Mutsuyoshi, H. Abstract: This paper describes the diagonal

More information

Analysis of Composite Materials with Abaqus. About this Course

Analysis of Composite Materials with Abaqus. About this Course Analysis of Composite Materials with Abaqus R 6.12 About this Course Course objectives Upon completion of this course you will be able to: Define anisotropic elasticity with Hookean models for combining

More information

THE DESIGN OF EXTERNALLY BONDED REINFORCEMENT (EBR) FOR REINFORCED CONCRETE STRUCTURES BY MEANS OF FIBRE REINFORCED POLYMERS (FRP)

THE DESIGN OF EXTERNALLY BONDED REINFORCEMENT (EBR) FOR REINFORCED CONCRETE STRUCTURES BY MEANS OF FIBRE REINFORCED POLYMERS (FRP) THE DESIGN OF EXTERNALLY BONDED REINFORCEMENT (EBR) FOR REINFORCED CONCRETE STRUCTURES BY MEANS OF FIBRE REINFORCED POLYMERS (FRP) Introduction Dott. Ing. Giovanni Cerretini Studio Technica (studio@technica.net)

More information

ZANCO Journal of Pure and Applied Sciences

ZANCO Journal of Pure and Applied Sciences ZANCO Journal of Pure and Applied Sciences The official scientific journal of Salahaddin University-Erbil ZJPAS (2016), 28 (6); 65-56 http://doi.org/10.21271/zjpas.28.6.7 Punching Strength of GFRP Reinforced

More information

INTEGRATED FINITE ELEMENT ENVIRONMENT FOR COMPOSITE PROCESS SIMULATION

INTEGRATED FINITE ELEMENT ENVIRONMENT FOR COMPOSITE PROCESS SIMULATION INTEGRATED FINITE ELEMENT ENVIRONMENT FOR COMPOSITE PROCESS SIMULATION Tomasz Garstka, Garry Cole, David Irving, Paul Lyons Finite Element Analysis Limited, Forge House, 66 High Street, Kingston upon Thames,

More information

The Flexural Properties of Glass Fabric/Epoxy -Rigid Polyurethane Foam Core Sandwich Composites at Different Span to Depth Ratios and Densities

The Flexural Properties of Glass Fabric/Epoxy -Rigid Polyurethane Foam Core Sandwich Composites at Different Span to Depth Ratios and Densities Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-214 ISBN: 978-1-63248-28-6 doi: 1.15224/ 978-1-63248-28-6-3-87 The Flexural Properties of Glass Fabric/Epoxy -Rigid Polyurethane

More information

Flexural Behaviour of Sandwich Composite Panels Fabricated Through Different Vacuum Bagging Techniques

Flexural Behaviour of Sandwich Composite Panels Fabricated Through Different Vacuum Bagging Techniques Journal of Materials Science & Surface Engineering Vol. 3 (4), 2015, pp 293-297 Contents lists available at http://www.jmsse.org/ Journal of Materials Science & Surface Engineering Flexural Behaviour of

More information

SPECIALTY MATERIALS, INC.

SPECIALTY MATERIALS, INC. DETERMINATION OF CROSS-PLY LAMINATE STACKING SEQUENCE FOR THE COMPRESSION STRENGTH TESTING OF A UNIDIRECTIONAL BORON EPOXY MATERIAL Submitted to SAMPE Fall Technical Conference Dallas, November 6-9, 2006

More information

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING FE MODELING OF STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING H. R. C. S. Bandara (Email: chinthanasandun@yahoo.com) J. C. P. H. Gamage (Email: kgamage@uom.lk)

More information

Damage Assessment in Aerospace Grade Carbon Fiber Composites subjected to Drop Weight Mechanical Impact

Damage Assessment in Aerospace Grade Carbon Fiber Composites subjected to Drop Weight Mechanical Impact Journal of Engineering (JOE) ISSN: 2325-0224 162 Vol. 3, No. 1, 2014, Pages: 162-167 Copyright World Science Publisher, United States www.worldsciencepublisher.org Damage Assessment in Aerospace Grade

More information

Development of a Novel Compact Tension Specimen for Fibre Hybrid Composites

Development of a Novel Compact Tension Specimen for Fibre Hybrid Composites Development of a Novel Compact Tension Specimen for Fibre Hybrid Composites Tomas Katafiasz: 3 rd Year PhD Candidate 6 th April 2017, CompTest2017, KU Leuven L. Iannucci, E. Greenhalgh 1 Industrial Partners

More information

Testing and analysis of masonry arches subjected to impact loads

Testing and analysis of masonry arches subjected to impact loads Testing and analysis of masonry arches subjected to impact loads Paulo B. Lourenço, Tibebu Hunegn and Pedro Medeiros Department of Civil Engineering, ISISE, University of Minho, Guimarães, Portugal Nuno

More information

Download a free 30 day trial version online from:

Download a free 30 day trial version online from: DESIGN SOFWARE & DAABASE FOR COMPOSIE MAERIALS & LAMINAES Download a free 30 day trial version online from: www.etamax.com.au/composite_star.html COMPOSIE SAR is an all-embracing laminate design and materials

More information

SCHOOL OF ENGINEERING BENG (HONS) MECHANICAL ENGINEERING SEMESTER /2016 STRUCTURES AND MATERIALS MODULE NO: AME6002

SCHOOL OF ENGINEERING BENG (HONS) MECHANICAL ENGINEERING SEMESTER /2016 STRUCTURES AND MATERIALS MODULE NO: AME6002 SCHOOL OF ENGINEERING TW52 BENG (HONS) MECHANICAL ENGINEERING SEMESTER 1-2015/2016 STRUCTURES AND MATERIALS MODULE NO: AME6002 Date: Monday 11 January 2016 Time: 10.00 1.00pm INSTRUCTIONS TO CANDIDATES:

More information

Structural Vacuum Insulation Panels

Structural Vacuum Insulation Panels Structural Vacuum Insulation Panels Dwight S. Musgrave Thermal Visions, Inc. 83 Stonehenge Dr., Granville, Ohio 43023, USA dwight.musgrave@thermalvisions.com 1 Introduction Some VIP applications are a

More information

Introduction to Simulation Composite Software

Introduction to Simulation Composite Software Brady Adams Autodesk SM5133 In this class we will discuss the new capability to map fiber orientations and material properties from Simulation Moldflow software to structural finite element analysis (FEA).

More information

IMPACT RESISTANCE AND TOLERANCE OF INTERLEAVED RTM LAMINATES

IMPACT RESISTANCE AND TOLERANCE OF INTERLEAVED RTM LAMINATES IMPACT RESISTANCE AND TOLERANCE OF INTERLEAVED RTM LAMINATES Andre Duarte 1, Israel Herszberg 2 and Rowan Paton 3 1 Sir Lawrence Wackett Centre for Aerospace Design Technology, Royal Melbourne Institute

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT M. A. Musmar 1, M. I. Rjoub 2 and M. A. Abdel Hadi 1 1 Department of Civil Engineering, Al-Ahliyya Amman University,

More information

Finite Element Modelling of RC Beams Retrofitted with CFRP Fabrics

Finite Element Modelling of RC Beams Retrofitted with CFRP Fabrics SP-230 29 Finite Element Modelling of RC Beams Retrofitted with CFRP Fabrics by H.B. Pham and R. Al-Mahaidi Synopsis: In this paper, non-linear finite element modelling of debonding failure of rectangular

More information

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION Renato Parretti, Co-Force America, Inc., Rolla, MO Antonio Nanni, University of Missouri-Rolla, Rolla, MO Abstract

More information

ON MINIMISING THE OBTRUSIVITY OF AN OPTICAL FIBRE SENSOR WITH RESPECT TO MATRIX CRACKING

ON MINIMISING THE OBTRUSIVITY OF AN OPTICAL FIBRE SENSOR WITH RESPECT TO MATRIX CRACKING ON MINIMISING THE OBTRUSIVITY OF AN OPTICAL FIBRE SENSOR WITH RESPECT TO MATRIX CRACKING E.N. Barton 1, S.L. Ogin 1, A.M.Thorne 2 and G.T. Reed 3 1 School of Mechanical and Material Engineering 2 School

More information

Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials NASA Technical Paper 3663 Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials Alan T. Nettles and Emily J. Biss November 1996 NASA Technical Paper 3663 Low Temperature Mechanical

More information

DEVELOPMENT OF GEODESIC COMPOSITE AIRCRAFT STRUCTURES

DEVELOPMENT OF GEODESIC COMPOSITE AIRCRAFT STRUCTURES 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES DEVELOPMENT OF GEODESIC COMPOSITE AIRCRAFT STRUCTURES V.V. Vasiliev, A.F. Razin Central Research Institute of Special Machinery vvvas@dol.ru Keywords:

More information

Numerical Analysis of Torsional Behavior of Ultra-High Performance Fiber Reinforced Concrete

Numerical Analysis of Torsional Behavior of Ultra-High Performance Fiber Reinforced Concrete Numerical Analysis of Torsional Behavior of Ultra-High Performance Fiber Reinforced Concrete Jongbum Park, Sung-Yong Park, Keunhee Cho, Sung-Tae Kim, Kihyon Kwon, Changbin Joh Researcher, Structural Engineering

More information

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method American Journal of Materials Science 2015, 5(3C): 7-11 DOI: 10.5923/c.materials.201502.02 Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

More information

Axial Tensile Testing of Single Fibres

Axial Tensile Testing of Single Fibres Modern Mechanical Engineering, 2012, 2, 151-156 doi:10.4236/mme.2012.24020 Published Online November 2012 (http://www.scirp.org/journal/mme) Axial Tensile Testing of Single Fibres Prasanna Kumar Ilankeeran,

More information

INNOVATIVE DESIGN OF THE COMPOSITE LATTICE FRAME OF A SPACECRAFT SOLAR ARRAY

INNOVATIVE DESIGN OF THE COMPOSITE LATTICE FRAME OF A SPACECRAFT SOLAR ARRAY INNOVATIVE DESIGN OF THE COMPOSITE LATTICE FRAME OF A SPACECRAFT SOLAR ARRAY E. V. Morozov 1 and A.V. Lopatin 2 1 School of Aerospace, Civil & Mechanical Engineering, University of New South Wales, University

More information

Effects of Cover Plate Stiffness on Load Distribution of Bearing-Type Multi-Row Bolted Connections for FRP Composite Structures

Effects of Cover Plate Stiffness on Load Distribution of Bearing-Type Multi-Row Bolted Connections for FRP Composite Structures (Journal of the Society of Materials Science, Japan), Vol. 64, No. 7, pp. 585-590, July 2015 Original Papers Effects of Cover Plate Stiffness on Load Distribution of Bearing-Type Multi-Row Bolted Connections

More information

Progressive Failure Analysis of Laminated Composite Plates with Elliptical or Circular Cutout Using Finite Element Method

Progressive Failure Analysis of Laminated Composite Plates with Elliptical or Circular Cutout Using Finite Element Method IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Progressive Failure Analysis of Laminated Composite Plates with Elliptical or Circular Cutout Using Finite Element Method To cite

More information

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE ECF EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE Masato Ono, Ki-Woo Nam*, Koji Takahashi, Kotoji Ando Department of Safety & Energy Engineering, Yokohama National University 79-

More information

Application of the modified split-cantilever beam for mode-iii toughness measurement

Application of the modified split-cantilever beam for mode-iii toughness measurement Fourth International Conference on FRP Composites in Civil Engineering (CICE008) -4July 008, Zurich, Switzerland Application of the modified split-cantilever beam for mode-iii toughness measurement A.

More information

Comparative Study of Automotive Bumper with Different Materials for Passenger and Pedestrian Safety

Comparative Study of Automotive Bumper with Different Materials for Passenger and Pedestrian Safety IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 4 Ver. III (Jul- Aug. 2014), PP 60-64 Comparative Study of Automotive Bumper with Different

More information

PENETRATION RESISTANCE OF HYBRID FIBRE REINFORCED CONCRETE UNDER LOW VELOCITY IMPACT LOADING

PENETRATION RESISTANCE OF HYBRID FIBRE REINFORCED CONCRETE UNDER LOW VELOCITY IMPACT LOADING Congrès annuel de la Société canadienne de génie civil Annual Conference of the Canadian Society for Civil Engineering Montréal, Québec, Canada 5-8 juin 2002 / June 5-8, 2002 PENETRATION RESISTANCE OF

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Nonlinear Seismic Behavior

More information

THE CFRP SAILPLANE WING SEGMENTS MANUFACTURED BY FILAMENT PLACEMENT

THE CFRP SAILPLANE WING SEGMENTS MANUFACTURED BY FILAMENT PLACEMENT 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES THE CFRP SAILPLANE WING SEGMENTS MANUFACTURED BY FILAMENT PLACEMENT Michal Mališ*, Tomáš Urík*, Ondřej Uher** * Brno University of Technology,

More information

Dynamics of Composite Beam with Transverse Non-Propagating Open Crack

Dynamics of Composite Beam with Transverse Non-Propagating Open Crack Dynamics of Composite Beam with Transverse Non-Propagating Open Crack Arjun S. Menon 1 and Glory Joseph 2 1 M. Tech Student, Cochin University Of Science And Technology, Cochin,India arjunsmenon44@gmail.com

More information

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Journal of Asian Scientific Research journal homepage: http://www.aessweb.com/journals/5003 EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS Kamyar Bagherinejad 1 ---- Emad Hosseinpour

More information

Numerical Analysis of the Influence of Geometry of Ceramic Units (Blocks) on Structural Walls

Numerical Analysis of the Influence of Geometry of Ceramic Units (Blocks) on Structural Walls Journal of Civil Engineering and Architecture 1 (216) 44-52 doi: 1.17265/1934-7359/216.1.5 D DAVID PUBLISHING Numerical Analysis of the Influence of Geometry of Ceramic Units (Blocks) on Structural Walls

More information

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 Composites in Construction 2005 Third International Conference Lyon, France, July 11 13, 2005 MECHANICAL CHARACTERIZATION OF SANDWICH STRCTRE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 S.V. Rocca

More information

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES Benjamin Raison R; Freeda Christy C PG student, School of Civil Engineering, Karunya University. Associate Professor, School of Civil Engineering, Karunya

More information

Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading. Amir Fam, Bart Flisak and Sami Rizkalla

Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading. Amir Fam, Bart Flisak and Sami Rizkalla Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading Amir Fam, Bart Flisak and Sami Rizkalla ABSTRACT Innovative hybrid systems such as the concrete-filled fiber reinforced

More information

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals Materials Engineering 272-C Fall 2001, Lectures 9 & 10 Introduction to Mechanical Properties of Metals From an applications standpoint, one of the most important topics within Materials Science & Engineering

More information

TECHNOLOGY FOR CONCRETE SHELLS FABRICATION REINFORCED BY GLASS FIBERS

TECHNOLOGY FOR CONCRETE SHELLS FABRICATION REINFORCED BY GLASS FIBERS TECHNOLOGY FOR CONCRETE SHELLS FABRICATION REINFORCED BY GLASS FIBERS ABSTRACT Vitalijs Lusis * * Riga Technical University Concrete mechanics laboratory E-mail: Vitalijs.Lusis@rtu.lv The use of fiberconcrete,

More information

Explicit finite element modelling of bridge girder bearing pedestals

Explicit finite element modelling of bridge girder bearing pedestals Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 214 Explicit finite element modelling of bridge girder bearing pedestals N A. Yahya

More information

INNOVATIVE HYBRID WEARING SURFACES FOR FRP BRIDGE DECKS

INNOVATIVE HYBRID WEARING SURFACES FOR FRP BRIDGE DECKS 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INNOVATIVE HYBRID WEARING SURFACES FOR FRP BRIDGE DECKS Riyad S. Aboutaha Syracuse University Keywords: FRP decks, bridge decks, wearing surfaces Abstract

More information

Ultimate Strength Analysis of Stiffened Panels Subjected to Biaxial Thrust Using JTP and JBP Methods

Ultimate Strength Analysis of Stiffened Panels Subjected to Biaxial Thrust Using JTP and JBP Methods Ultimate Strength Analysis of Stiffened Panels Subjected to Biaxial Thrust Using JTP and JBP Methods. Introduction A series of ultimate strength analyses of stiffened panels subjected to biaxial thrust

More information

Buckling Analysis of Woven Glass Epoxy Laminated Composite Plate

Buckling Analysis of Woven Glass Epoxy Laminated Composite Plate American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-07, pp-33-40 www.ajer.org Research Paper Open Access Buckling Analysis of Woven Glass Epoxy Laminated

More information

Study of Roll Forming Bending in Different Temperature

Study of Roll Forming Bending in Different Temperature International Journal of Materials Science and Applications 2016; 5(3): 129-135 http://www.sciencepublishinggroup.com/j/ijmsa doi: 10.11648/j.ijmsa.20160503.13 ISSN: 2327-2635 (Print); ISSN: 2327-2643

More information

Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis

Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis M. V. Dalvi 1, Mrs.

More information

Compressive strength of double-bottom under alternate hold loading condition

Compressive strength of double-bottom under alternate hold loading condition Compressive strength of double-bottom under alternate hold loading condition J.M. Gordo CENTEC, IST, University of Lisbon, Portugal ABSTRACT: The alternate bending of the bottom structure of a ship as

More information

ANT COLONY ALGORITHM APPLIED TO FUNDAMENTAL FREQUENCY MAXIMIZATION OF LAMINATED COMPOSITE CYLINDRICAL SHELLS

ANT COLONY ALGORITHM APPLIED TO FUNDAMENTAL FREQUENCY MAXIMIZATION OF LAMINATED COMPOSITE CYLINDRICAL SHELLS ANT COLONY ALGORITHM APPLIED TO FUNDAMENTAL FREQUENCY MAXIMIZATION OF LAMINATED COMPOSITE CYLINDRICAL SHELLS Rubem M. Koide 1 *, Marco A. Luersen 1 ** 1 Laboratório de Mecânica Estrutural (LaMEs), Universidade

More information

Nonlinear Analysis of Reinforced Concrete Column with ANSYS

Nonlinear Analysis of Reinforced Concrete Column with ANSYS Nonlinear Analysis of Reinforced Concrete Column with ANSYS V. S. Pawar 1, P. M. Pawar 2 1P.G. Student, Dept. Of civil Engineering, SVERI s College of Engineering Pandharpur, Maharashtra, India 2Professor,

More information

Stress Analysis of Underground GRP Pipe Subjected to Internal and External Loading Conditions

Stress Analysis of Underground GRP Pipe Subjected to Internal and External Loading Conditions International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 4 (2014), pp. 435-440 Research India Publications http://www.ripublication.com/ijame.htm Stress Analysis of Underground

More information

Repair of Carbon Fiber Reinforced Polypropylene. for Mass Production Automobile

Repair of Carbon Fiber Reinforced Polypropylene. for Mass Production Automobile Repair of Carbon Fiber Reinforced Polypropylene for Mass Production Automobile Masatomo Tamaru* 1, Tadayuki Kin 2, Isamu Ohsawa 1, Tsuyoshi Matsuo 1, Kiyoshi Uzawa 1 and Jun Takahashi 1 1 The University

More information

FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT

FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT Ryohei Maruyama*, Tomohiro Yokozeki **, Toshio Ogasawara***,

More information

Experimental Behavior of Concrete Cylinders Confined with CFRP Composites

Experimental Behavior of Concrete Cylinders Confined with CFRP Composites Experimental Behavior of Concrete Cylinders Confined with CFRP Composites A.R. Rahai 1, P. Sadeghian 2 and M.R. Ehsani 3 1 Professor, Dept. of Civil and Environmental Engineering, Amirkabir University

More information

Bio-Inspired Composite Sandwich Beam Model Subjected to Low Velocity Impact Koh Wee Kiam, Ahmad Kueh Beng Hong

Bio-Inspired Composite Sandwich Beam Model Subjected to Low Velocity Impact Koh Wee Kiam, Ahmad Kueh Beng Hong Bio-Inspired Composite Sandwich Beam Model Subjected to Low Velocity Impact Koh Wee Kiam, Ahmad Kueh Beng Hong Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia kbhahmad@utm.my Keywords:

More information

Mechanics of Materials and Structures

Mechanics of Materials and Structures Journal of Mechanics of Materials and Structures METAL SANDWICH PLATES WITH POLYMER FOAM-FILLED CORES A. Vaziri, Z. Xue and J. W. Hutchinson Volume 1, Nº 1 January 2006 mathematical sciences publishers

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 DAMAGE DETECTION OF UHP-FRC PLATES USING RANDOM DECREMENT TECHNIQUE Azita Pourrastegar MASc Student, Ryerson University, azita2.pourrastegar@ryerson.ca, Canada Hesham

More information

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING By Benjamin M. Schlick University of Massachusetts Amherst Department of Civil and Environmental Engineering

More information

GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION

GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION D. Polyzois, S. Ibrahim, V. Burachynsky, and S. K. Hassan Department of Civil and Geological

More information

STRUCTURAL DESIGN ON WING OF A SMALL SCALE WIG VEHICLE WITH CARBON/EPOXY AND FOAM SANDWICH COMPOSITE STRUCTURE

STRUCTURAL DESIGN ON WING OF A SMALL SCALE WIG VEHICLE WITH CARBON/EPOXY AND FOAM SANDWICH COMPOSITE STRUCTURE 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STRUCTURAL DESIGN ON WING OF A SMALL SCALE WIG VEHICLE WITH CARBON/EPOXY AND FOAM SANDWICH COMPOSITE STRUCTURE C. Kong*, H. Park*, Y. Kim* and K. Kang**

More information

Mechanical Characterization of PU Based Sandwich Composites with Variation in Core Density

Mechanical Characterization of PU Based Sandwich Composites with Variation in Core Density International Journal of Materials Science and Applications 2015; 4(4): 277-282 Published online July 17, 2015 (http://www.sciencepublishinggroup.com/j/ijmsa) doi: 10.11648/j.ijmsa.20150404.19 ISSN: 2327-2635

More information

Ricerca e Sviluppo Produzione resine Servizio clienti Servizio tecnico

Ricerca e Sviluppo Produzione resine Servizio clienti Servizio tecnico Structure Delta-Tech Spa Ricerca e Sviluppo Produzione resine Servizio clienti Servizio tecnico Delta-Preg Spa Uninominale (25% dell energia di processo fornita dall impianto fotovoltaico) Vendite e Marketing

More information

Simulation of Residual Deformation from a Forming and Welding Process using LS-DYNA

Simulation of Residual Deformation from a Forming and Welding Process using LS-DYNA 13 th International LS-DYNA Users Conference Session: Simulation Simulation of Residual Deformation from a Forming and Welding Process using LS-DYNA Mikael Schill 1, Eva-Lis Odenberger 2 1 DYNAmore Nordic

More information

FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS WORKBENCH. N. Sinan Köksal, Arif Kayapunar and Mehmet Çevik

FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS WORKBENCH. N. Sinan Köksal, Arif Kayapunar and Mehmet Çevik Proceedings of the Fourth International Conference on Mathematical and Computational Applications June 11-13, 2013. Manisa, Turkey, pp.111-118 FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS

More information

Effect of FRP strengthening on the behavior of shear walls with opening

Effect of FRP strengthening on the behavior of shear walls with opening CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of FRP strengthening on the behavior of shear walls with opening M. Asfa

More information

DESIGN AND ANALYSIS OF COMPOSITE LEAF SPRING IN LIGHT VEHICLE

DESIGN AND ANALYSIS OF COMPOSITE LEAF SPRING IN LIGHT VEHICLE DESIGN AND ANALYSIS OF COMPOSITE LEAF SPRING IN LIGHT VEHICLE M.VENKATESAN 1, D.HELMEN DEVARAJ 2, * Assistant Professor, Department of Mechanical Engineering, Sona College of Technology, Salem-5, India.

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Penetration resistance of laminated plates from steel and flbreglass-reinforced polyester A.M. Eleiche*, M.S. Abdel-Kader\ A. Almohandes' "Mechanical Engineering Department, UAE University, United Arab

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP)

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP) Asia-Pacific Conference on FRP in Structures (APFIS 7) S.T. Smith (ed) 7 International Institute for FRP in Construction SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED

More information

A design methodology using bi-angle ply laminates made from NCF carbon fiber materials

A design methodology using bi-angle ply laminates made from NCF carbon fiber materials 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A design methodology using bi-angle ply laminates made from NCF carbon fiber materials 1 - General vision of NCF Th. Massard *1, R. Harry 2, Ph. Sanial

More information

Study of Fatigue Behavior of Composite Materials with the Basis of Polyphenylene Sulfide (PPS) Reinforced with Glass Fiber and Carbon

Study of Fatigue Behavior of Composite Materials with the Basis of Polyphenylene Sulfide (PPS) Reinforced with Glass Fiber and Carbon International Journal of Engineering and Technology Volume 3 No. 4, April, 213 Study of Fatigue Behavior of Composite Materials with the Basis of Polyphenylene Sulfide (PPS) Reinforced with Glass Fiber

More information