Etching Mask Properties of Diamond-Like Carbon Films

Size: px
Start display at page:

Download "Etching Mask Properties of Diamond-Like Carbon Films"

Transcription

1 N. New Nawachi Diamond et al. and Frontier Carbon Technology 13 Vol. 15, No MYU Tokyo NDFCT 470 Etching Mask Properties of Diamond-Like Carbon Films Norio Nawachi *, Akira Yamamoto, Takahiro Tsutsumoto and Osamu Shimakawa 1 Western Hiroshima Prefecture Industrial Research Institute Agaminami, Kure, Hiroshima , Japan 1 Kawase Machine Tech Co., Ltd Ukaicho, Fuchu, Hiroshima , Japan (Received 22 July 2004; accepted 5 November 2004) Key words: diamond-like carbon, etching, mask, MEMS The etching mask properties of diamond-like carbon (DLC) films immersed in KOH solution were investigated. In micro-electromechanical systems (MEMS) technology, anisotropic silicon etching has been used for the fabrication of microdevices. The protection (etching mask) of the silicon surface is required in the etching process. Silicon dioxide and silicon nitride have been commonly used as etching mask materials. DLC films are more chemically stable and more applicable as etching mask materials than previously used materials. In this study, DLC films were deposited on silicon substrates by three different methods, and etching experiments were carried out. DLC films deposited by radiofrequency plasma-enhanced chemical vapour deposition (RF PECVD) and ionized evaporation (IE) had a high corrosion resistance against KOH solution. DC PECVD, films, in which a lot of pinholes were observed, peeled off easily just after dipping in KOH solution. The dielectric breakdown voltages of DLC films decreased with increasing measurement temperature and became conductive over 200 C. Substrate heating over 100 C effectively prevented formation of the pinholes. 1. Introduction DLC possesses some unique properties such as high hardness and low friction. Because of these properties, there have been a lot of applications of DLC films in the tribological field. (1 3) Also, DLC films are suitable as an etching mask in semiconductor fabrication due to their chemical inertness and smooth surface. MEMS devices, such as pressure sensors and * Corresponding author: nawachi@seibu-kg.pref.hiroshima.jp 13

2 14 New Diamond and Frontier Carbon Technology, Vol. 15, No. 1 (2005) acceleration sensors, were developed in the past. (4) Recently, the miniaturization of chemical or biochemical devices, which are called micro-total analysis systems (µtas), has been realized. (5) Wet chemical etching is a key technology for the fabrication of various MEMS. (6,7) Thus an excellent etching mask for the silicon surface is required in this process. Silicon dioxide and silicon nitride have been commonly used as etching mask materials. In this paper, we investigated the etching mask properties of DLC films deposited by three different methods. Furthermore, the influences of substrate temperature on the surface morphology and electric property of the DLC films were studied. 2. Materials and Methods The DLC films were deposited on silicon substrates by three different methods, RF PECVD, DC PECVD and IE, as shown in Fig. 1. Before loading into the chamber, the substrates were cleaned in an ultrasonic bath of acetone to remove residual organic contaminants and washed in deionised water. Prior to deposition, the chamber was evacuated, and Ar was then introduced for sputter cleaning in order to eliminate any impurities on the surfaces of the substrates. In order to examine the influences of substrate temperature on the film surfaces, DLC was deposited on a high-speed steel (SKH-51) substrate by DC PECVD. In this case, in order to improve film adhesion, an interlayer was deposited between the substrate and DLC film using tetramethylsilane (TMS). The deposition conditions are shown in Table 1. Fig. 1. Schematic diagrams of apparatuses for DLC coating, (a) RF PECVD, (b) DC PECVD and (c) ionized evaporation (IE).

3 N. Nawachi et al. 15 Table 1 Conditions for depositing DLC films Deposition method RF DC IE Substrate Si Si Si High-speed steel (SKH-51) * Gas C 6 H 6 C 6 H 6 C 6 H 6 Pressure (Pa) RF power (W) Substrate voltage (V) Substrate current (ma) Substrate temperature ( C) R.T. R.T., 100, 200, 300 R.T. Deposition time (min) Film thickness (nm) * Interlayer was formed between substrate and DLC film with tetramethylsilane (TMS). The etching experiments on DLC samples were carried out in KOH solution at 70 C. Those of SiO 2 film prepared by thermal oxidation of silicon were also carried out under the same conditions for comparison. The KOH solution has been commonly used for etching silicon wafers in the manufacture of MEMS devices. Film thickness and step height after etching were measured as shown in Fig. 2, and the etching rates of the films were estimated from these data. The surfaces of the DLC films were observed by scanning electron microscopy (SEM). In order to evaluate the effect of temperature on the electric properties of the films, dielectric breakdown voltage was measured by applying voltage between the substrate and conductive glue on the film surface at various temperatures up to 200 C as shown in Fig Results and Discussion 3.1 Etching test The surfaces of the DLC films are shown in Fig. 4. A lot of pinholes are present in the DLC films deposited by DC PECVD. These must have been formed by abnormal electric discharge during deposition. On the other hand, the surfaces of the films deposited by RF PECVD and IE were much smoother than those of the films deposited by DC PECVD. Figure 5 shows the samples after the etching test. The film deposited by DC PECVD totally peeled off just after dipping in KOH solution, as a result of its low adhesive property and it having a lot of pinholes. The gas pressure used in DC PECVD is higher than that used in the other two methods. Therefore, the amount of impurity gases such as oxygen and nitrogen must be larger, and the surface contamination of the substrate just before deposition should lower the film s adhesive property. The films deposited by RF PECVD and IE showed excellent adhesion after etching with KOH solution. However, small exfoliations are observed in the films deposited by IE and RF PECVD. The size and degree of the exfoliation are smaller for RF PECVD than for IE. It was considered that these exfoliations were formed by the formation of small pinholes,

4 16 New Diamond and Frontier Carbon Technology, Vol. 15, No. 1 (2005) Fig. 2. Procedure of etching rate measurement using surface roughness tester. *Reference surface was obtained by oxygen plasma etching of DLC which was partially covered with aluminum adhesive tape. Fig. 3. Schematic diagram of measurement of dielectric breakdown voltage. Fig. 4. SEM images of DLC film surfaces deposited by three different methods.

5 N. Nawachi et al. 17 Fig. 5. Results of etching in KOH solution. which we failed to observe in the SEM observation, and extended the peeling of films from these pinholes to the region of low film adhesion. These pinhole formations must be caused by abnormal electric discharge during deposition. RF PECVD has an advantage over IE in preventing abnormal electric discharge because the alternative current of RF PECVD neutralizes the electric charge of the DLC film surface. It is important to inhibit the abnormal discharge in order to obtain surfaces with no pinholes, which results in high durability against KOH solution. Film thicknesses and etching rates are shown in Table 2. These data were obtained using the films deposited by RF PECVD, because the number of surface defects of the films deposited by RF PECVD were less than those of the films deposited by the other two methods. The etching rate was calculated on the basis of the difference in thickness of the films between before and after etching. From no detective change in film thickness, it is obvious that the film was not etched. Hence, DLC films have a high corrosion resistance against KOH solution. SiO 2 films have been used as the etching mask for short-term etching process in KOH solution. For example, when SiO 2 films of 500 nm thickness are etched in 35 wt%koh solution at 70 C, they are durable only for approximately 2 3 h, which corresponds to less than a 200 µm etching depth of silicon. Therefore, SiO 2 films cannot be applicable to deep etching such as µm. Consequently, DLC films are excellent materials as etching masks. 3.2 Effect of temperature on morphology and electric property of film Figure 6 shows SEM images of film surfaces obtained at different deposition temperatures. The films were prepared by DC PECVD. A lot of pinholes appear in the film surface for room temperature. However, these pinholes disappear at a deposition temperature of over 100 C. Figure 7 shows dielectric breakdown voltages for these samples as a function of temperature. Generally, DLC is an insulating material. Although, the sample at room temperature shows conductivity even at low voltage. This must be due to the surface

6 18 New Diamond and Frontier Carbon Technology, Vol. 15, No. 1 (2005) Table 2 Changes in film thicknesses by etching and results of etching rates. Films Etching condition Film thickness Etching rate Etchant Temperature ( C) Time (min) change (nm) (nm/min) DLC (RF) wt%koh 120 DLC (RF) SiO wt%koh SiO wt%koh SiO wt%koh Fig. 6. SEM images of film surfaces as a function of deposition temperature. DLC films were deposited by DLC PECVD. Fig. 7. Dielectric breakdown voltage of DLC film as a function of measuring temperature. DLC films were deposited by DLC PECVD.

7 N. Nawachi et al. 19 pinholes. These pinholes are believed to be formed by abnormal electric discharge during deposition, and the substrate surface is exposed at the pinholes. Samples obtained at over 200 C substrate temperature, show insulating property at room temperature. This means that the substrate surfaces of these samples are completely covered with insulating DLC films. However, the dielectric breakdown voltages of these samples decrease with increasing temperature, and all the samples become conductive at over 200 C. The pinholes on the DLC film surfaces disappeared at over 100 C deposition temperature as mentioned above. This phenomenon must be related to the electrical properties of the DLC film. Abnormal electric discharge results from electric charging on the film surface because of the insulating property of DLC films at room temperature. However, DLC becomes conductive by heating, and this electric charge should discharge through the film at over 100 C. From these results and discussions, it is found that substrate heating is an effective way of preventing the formation of pinholes. 4. Conclusions In order to investigate their etching mask properties, DLC films were deposited on silicon substrates by three different methods, and etching experiments were carried out. Additionally, the influence of substrate temperature on the surface of DLC films was studied. The results are summarized as follows. 1) The DLC films deposited by RF PECVD and IE have a high corrosion resistance against KOH solution. 2) DC PECVD, films, in which a lot of pinholes were observed, peeled off easily just after etching in KOH solution. 3) The dielectric breakdown voltage of DLC films decreased with increasing measurement temperature and became conductive at over 200 C. 4) Substrate heating at over 100 C during deposition effectively prevented the formation of pinholes. References 1) M. Ikenaga and K. Ikenaga: J. Surf. Fin. Soc. Jpn. 53 (2002) ) T. Nakahigashi: J. Surf. Fin. Soc. Jpn. 53 (2002) ) O. Takai: New Diamond 16 (2000) 15 (in Japanese). 4) M. Esashi: J. Vac. Soc. Jpn. 45 (2002) ) S. Shoji: J. Surf. Fin. Soc. Jpn. 54 (2003) ) K. Bean: IEEE Trans. Electron Devices ED-25 (1978) ) E. Bassous: IEEE Trans. Electron Devices ED-25 (1978) 1178.

Ultra High Barrier Coatings by PECVD

Ultra High Barrier Coatings by PECVD Society of Vacuum Coaters 2014 Technical Conference Presentation Ultra High Barrier Coatings by PECVD John Madocks & Phong Ngo, General Plasma Inc., 546 E. 25 th Street, Tucson, Arizona, USA Abstract Silicon

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material on any substrate (in principal) Start with pumping down

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical Vapor Deposition

Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical Vapor Deposition Mat. Res. Soc. Symp. Proc. Vol. 784 2004 Materials Research Society C7.7.1 Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical

More information

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining Sādhanā Vol. 34, Part 4, August 2009, pp. 557 562. Printed in India Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining VIVEKANAND BHATT 1,, SUDHIR CHANDRA 1 and

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Manabu Shimada, 1 Kikuo Okuyama, 1 Yutaka Hayashi, 1 Heru Setyawan, 2 and Nobuki Kashihara 2 1 Department

More information

200mm Next Generation MEMS Technology update. Florent Ducrot

200mm Next Generation MEMS Technology update. Florent Ducrot 200mm Next Generation MEMS Technology update Florent Ducrot The Most Exciting Industries on Earth Semiconductor Display Solar 20,000,000x reduction in COST PER TRANSISTOR in 30 years 1 20x reduction in

More information

5.8 Diaphragm Uniaxial Optical Accelerometer

5.8 Diaphragm Uniaxial Optical Accelerometer 5.8 Diaphragm Uniaxial Optical Accelerometer Optical accelerometers are based on the BESOI (Bond and Etch back Silicon On Insulator) wafers, supplied by Shin-Etsu with (100) orientation, 4 diameter and

More information

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon April 2009 A Deep Silicon RIE Primer 1.0) Etching: Silicon does not naturally etch anisotropically in fluorine based chemistries. Si

More information

Surface Micromachining Process for the Integration of AlN Piezoelectric Microstructures

Surface Micromachining Process for the Integration of AlN Piezoelectric Microstructures Surface Micromachining Process for the Integration of AlN Piezoelectric Microstructures Saravanan. S, Erwin Berenschot, Gijs Krijnen and Miko Elwenspoek Transducers Science and Technology Laboratory University

More information

Fabrication Techniques for Thin-Film Silicon Layer Transfer

Fabrication Techniques for Thin-Film Silicon Layer Transfer Fabrication Techniques for Thin-Film Silicon Layer Transfer S. L. Holl a, C. A. Colinge b, S. Song b, R. Varasala b, K. Hobart c, F. Kub c a Department of Mechanical Engineering, b Department of Electrical

More information

VLSI Technology. By: Ajay Kumar Gautam

VLSI Technology. By: Ajay Kumar Gautam By: Ajay Kumar Gautam Introduction to VLSI Technology, Crystal Growth, Oxidation, Epitaxial Process, Diffusion Process, Ion Implantation, Lithography, Etching, Metallization, VLSI Process Integration,

More information

MARORA A Plasma Selective-oxidation Apparatus for Metal-gate Devices

MARORA A Plasma Selective-oxidation Apparatus for Metal-gate Devices Hitachi Review Vol. 57 (2008), No. 3 127 MARORA A Plasma Selective-oxidation Apparatus for Metal-gate Devices Tadashi Terasaki Masayuki Tomita Katsuhiko Yamamoto Unryu Ogawa, Dr. Eng. Yoshiki Yonamoto,

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Surface Micromachining

Surface Micromachining Surface Micromachining Outline Introduction Material often used in surface micromachining Material selection criteria in surface micromachining Case study: Fabrication of electrostatic motor Major issues

More information

Corrosion Protect DLC Coating on Steel and Hastelloy

Corrosion Protect DLC Coating on Steel and Hastelloy Materials Transactions, Vol. 49, No. 6 (2008) pp. 1333 to 1337 #2008 The Japan Institute of Metals Corrosion Protect DLC Coating on Steel and Hastelloy Hironobu Miya and Jie Wang Semiconductor Equipment

More information

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University

Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University 2014 Ajay Kumar Gautam [VLSI TECHNOLOGY] VLSI Technology for 3RD Year ECE/EEE Uttarakhand Technical University Page1 Syllabus UNIT 1 Introduction to VLSI Technology: Classification of ICs, Scale of integration,

More information

Fabrication Technology

Fabrication Technology Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski

More information

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES 10.1149/1.2794473, The Electrochemical Society PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES S. Yim a, C. Bonhôte b, J. Lille b, and T. Wu b a Dept. of Chem. and Mat. Engr., San

More information

ME 189 Microsystems Design and Manufacture. Chapter 9. Micromanufacturing

ME 189 Microsystems Design and Manufacture. Chapter 9. Micromanufacturing ME 189 Microsystems Design and Manufacture Chapter 9 Micromanufacturing This chapter will offer an overview of the application of the various fabrication techniques described in Chapter 8 in the manufacturing

More information

Semiconductor Manufacturing Technology. IC Fabrication Process Overview

Semiconductor Manufacturing Technology. IC Fabrication Process Overview Semiconductor Manufacturing Technology Michael Quirk & Julian Serda October 00 by Prentice Hall Chapter 9 IC Fabrication Process Overview /4 Objectives After studying the material in this chapter, you

More information

EE 457 : Multilayer Devices

EE 457 : Multilayer Devices March 1, 2010 EE 457 : Multilayer Devices by prepared for: Prof. K. Westra M. Mohammed EE 457: Multilayer Devices Objectives...1 Process Flow...1 1.Cleaning...1 2.Thermal Oxidation...1 3.Aluminum Sputtering...1

More information

Isolation of elements

Isolation of elements 1 In an IC, devices on the same substrate must be isolated from one another so that there is no current conduction between them. Isolation uses either the junction or dielectric technique or a combination

More information

Schottky-Barrier-Height Modulation of Ni Silicide/Si Contacts by Insertion of Thin Er or Pt Layers

Schottky-Barrier-Height Modulation of Ni Silicide/Si Contacts by Insertion of Thin Er or Pt Layers Schottky-Barrier-Height Modulation of Ni Silicide/Si Contacts by Insertion of Thin Er or Pt Layers Yoshihisa Ohishi 1, Kohei Noguchi 1, Kuniyuki Kakushima 2, Parhat Ahmet 1, Kazuo Tsutsui 2, Nobuyuki Sugii

More information

Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD)

Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD) Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD) Ciprian Iliescu Conţinutul acestui material nu reprezintă in mod obligatoriu poziţia oficială a Uniunii Europene sau a

More information

DEPOSITION OF Al 2 O 3 ON CERAMIC SUBSTRATES BY PECVD METHOD. Lucie Špirková a Vlastimil Brožek a Jean Durand b

DEPOSITION OF Al 2 O 3 ON CERAMIC SUBSTRATES BY PECVD METHOD. Lucie Špirková a Vlastimil Brožek a Jean Durand b DEPOSITION OF Al 2 O 3 ON CERAMIC SUBSTRATES BY PECVD METHOD Lucie Špirková a Vlastimil Brožek a Jean Durand b a) Institute of Chemical Technology, 166 28 Prague, Czech Republic b) Laboratoire des Matériaux

More information

MEMS prototyping using RF sputtered films

MEMS prototyping using RF sputtered films Indian Journal of Pure & Applied Physics Vol. 45, April 2007, pp. 326-331 MEMS prototyping using RF sputtered films Sudhir Chandra, Vivekanand Bhatt, Ravindra Singh, Preeti Sharma & Prem Pal* Centre for

More information

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab.

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab. Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA Issues on contaminants on EUV mask Particle removal on EUV mask surface Carbon contamination removal on EUV mask surface

More information

Relation Between Internal Stress and Surface Roughness of Titanium Nitride Films Deposited by HCD Ion Plating

Relation Between Internal Stress and Surface Roughness of Titanium Nitride Films Deposited by HCD Ion Plating No.22,28 65 Relation Between Internal Stress and Surface Roughness of Titanium Nitride Films Deposited by HCD Ion Plating Itsuo Ishigami Ken-ichi Miura Hideaki Hoshino Tomoyuki Mizukoshi (28 6 17 ) An

More information

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Materials Transactions, Vol. 48, No. 5 (27) pp. 975 to 979 #27 The Japan Institute of Metals Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Akira Heya 1, Naoto Matsuo 1, Tadashi Serikawa

More information

Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference

Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between 2 materials Need strong selectivity from masking

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

AC Reactive Sputtering with Inverted Cylindrical Magnetrons

AC Reactive Sputtering with Inverted Cylindrical Magnetrons AC Reactive Sputtering with Inverted Cylindrical Magnetrons D.A. Glocker, Isoflux Incorporated, Rush, NY; and V.W. Lindberg and A.R. Woodard, Rochester Institute of Technology, Rochester, NY Key Words:

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

Plasma-Enhanced Chemical Vapor Deposition

Plasma-Enhanced Chemical Vapor Deposition Plasma-Enhanced Chemical Vapor Deposition Steven Glenn July 8, 2009 Thin Films Lab 4 ABSTRACT The objective of this lab was to explore lab and the Applied Materials P5000 from a different point of view.

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

A New Liquid Precursor for Pure Ruthenium Depositions. J. Gatineau, C. Dussarrat

A New Liquid Precursor for Pure Ruthenium Depositions. J. Gatineau, C. Dussarrat 1.1149/1.2727414, The Electrochemical Society A New Liquid Precursor for Pure Ruthenium Depositions J. Gatineau, C. Dussarrat Air Liquide Laboratories, Wadai 28, Tsukuba city, Ibaraki Prefecture, 3-4247,

More information

Application of ultra-thin aluminum oxide etch mask made by atomic layer deposition technique

Application of ultra-thin aluminum oxide etch mask made by atomic layer deposition technique IOP Publishing Journal of Physics: Conference Series 61 (2007) 369 373 doi:10.1088/1742-6596/61/1/074 International Conference on Nanoscience and Technology (ICN&T 2006) Application of ultra-thin aluminum

More information

Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated Degradation Test

Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated Degradation Test Materials Transactions, Vol. 52, No. 3 (2011) pp. 464 to 468 #2011 The Japan Institute of Metals Surface Analysis of Electrochromic Switchable Mirror Glass Based on Magnesium-Nickel Thin Film in Accelerated

More information

Lecture 10: MultiUser MEMS Process (MUMPS)

Lecture 10: MultiUser MEMS Process (MUMPS) MEMS: Fabrication Lecture 10: MultiUser MEMS Process (MUMPS) Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, 1 Recap Various VLSI based

More information

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating

Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Linear Plasma Sources for Surface Modification and Deposition for Large Area Coating Dr Tony Williams Gencoa Ltd, UK Victor Bellido-Gonzalez, Dr Dermot Monaghan, Dr Joseph Brindley, Robert Brown SVC 2016,

More information

Atomic Layer Deposition(ALD)

Atomic Layer Deposition(ALD) Atomic Layer Deposition(ALD) AlO x for diffusion barriers OLED displays http://en.wikipedia.org/wiki/atomic_layer_deposition#/media/file:ald_schematics.jpg Lam s market-leading ALTUS systems combine CVD

More information

Full Nanomechanical Characterization of Ultra-Thin Films

Full Nanomechanical Characterization of Ultra-Thin Films APPLICATION NOTE By: Jeffrey Schirer and Julia Nowak, Ph.D. Hysitron, Inc. Eiji Kusano and Mune-aki Sakamoto Department of Chemistry, Kanazawa Institute of Technology, Japan Full Nanomechanical Characterization

More information

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson Alternative Methods of Yttria Deposition For Semiconductor Applications Rajan Bamola Paul Robinson Origin of Productivity Losses in Etch Process Aggressive corrosive/erosive plasma used for etch Corrosion/erosion

More information

Cu Wiring Process for TFTs - Improved Hydrogen Plasma Resistance with a New Cu Alloy -

Cu Wiring Process for TFTs - Improved Hydrogen Plasma Resistance with a New Cu Alloy - Cu Wiring Process for TFTs - Improved Hydrogen Plasma Resistance with a New Cu Alloy - Masanori Shirai*, Satoru Takazawa*, Satoru Ishibashi*, Tadashi Masuda* As flat-screen TVs become larger and their

More information

Transactions on Engineering Sciences vol 2, 1993 WIT Press, ISSN

Transactions on Engineering Sciences vol 2, 1993 WIT Press,  ISSN A study of thin-film continuous coating process by vapour deposition P. Gimondo," F. Arezzo,* B. Grifoni,* G. Jasch& "Centra Sviluppo Materiali SpA, Via di Castel & Von Ardenne Anlagentchnik GmbH, Plattleite

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

Electrical Characteristics of Rare Earth (La, Ce, Pr and Tm) Oxides/Silicates Gate Dielectric

Electrical Characteristics of Rare Earth (La, Ce, Pr and Tm) Oxides/Silicates Gate Dielectric Electrical Characteristics of Rare Earth (La, Ce, Pr and Tm) Oxides/Silicates Gate Dielectric K. Matano 1, K. Funamizu 1, M. Kouda 1, K. Kakushima 2, P. Ahmet 1, K. Tsutsui 2, A. Nishiyama 2, N. Sugii

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Sealing Mechanism of Anodic Porous Oxide Films Formed on Aluminum in Lithium Hydroxide Solution

Sealing Mechanism of Anodic Porous Oxide Films Formed on Aluminum in Lithium Hydroxide Solution Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 The Japan Institute of Light Metals pp. 1463-1468 1463 Sealing Mechanism of Anodic Porous

More information

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING Lynne Michaelson 1, Anh Viet Nguyen 2, Krystal Munoz 1, Jonathan C. Wang

More information

Photolithography I ( Part 2 )

Photolithography I ( Part 2 ) 1 Photolithography I ( Part 2 ) Chapter 13 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm)

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm) 4 Silicon Temperature Sensors 4.1 Introduction The KTY temperature sensor developed by Infineon Technologies is based on the principle of the Spreading Resistance. The expression Spreading Resistance derives

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

Post-CMP Cleaning: Interaction between Particles and Surfaces

Post-CMP Cleaning: Interaction between Particles and Surfaces Post-CMP Cleaning: Interaction between Particles and Surfaces J.-G. Park and T.-G. Kim Department of Materials Engineering, Hanyang University, Ansan, 426-791, South Korea E-mail: jgpark@hanyang.ac.kr

More information

Gaetano L Episcopo. Introduction to MEMS

Gaetano L Episcopo. Introduction to MEMS Gaetano L Episcopo Introduction to MEMS What are MEMS? Micro Electro Mechanichal Systems MEMS are integrated devices, or systems of devices, with microscopic parts, such as: Mechanical Parts Electrical

More information

Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing

Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing Micro and nano structuring of carbon based materials for micro injection moulding and hot embossing Victor Usov, Graham Cross, Neal O Hara, Declan Scanlan, Sander Paulen, Chris de Ruijter, Daniel Vlasveld,

More information

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey Section 4: Thermal Oxidation Jaeger Chapter 3 Properties of O Thermal O is amorphous. Weight Density =.0 gm/cm 3 Molecular Density =.3E molecules/cm 3 O Crystalline O [Quartz] =.65 gm/cm 3 (1) Excellent

More information

Dry Metal Forming Open Access Journal

Dry Metal Forming Open Access Journal Dry Metal Forming Open Access Journal Fast Manuscript Track Edited by Frank Vollertsen Available online at elib.suub.uni-bremen.de www.drymetalforming.de Dry Met. Forming OAJ FMT 3 (2017) 025 029 Received

More information

SURFACE MICROMACHINING

SURFACE MICROMACHINING SURFACE MICROMACHINING Features are built up, layer by layer on the surface of a substrate. Surface micromachined devices are much smaller than bulk micromachined components. Nature of deposition process

More information

MECHANICAL COMPATIBILITY OF TI COATINGS DEPOSITED BY HVOF THERMAL SPRAYING

MECHANICAL COMPATIBILITY OF TI COATINGS DEPOSITED BY HVOF THERMAL SPRAYING MECHANICAL COMPATIBILITY OF TI COATINGS DEPOSITED BY HVOF THERMAL SPRAYING Elena Simona CUTEAN a, Ion MITELEA a, Viorel Aurel ŞERBAN a, Florin Marian CORNEA a Politehnica University of Timişoara, Faculty

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

Processing guidelines. Negative Tone Photoresist Series ma-n 2400

Processing guidelines. Negative Tone Photoresist Series ma-n 2400 Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

Optical characterization of an amorphoushydrogenated carbon film and its application in phase modulated diffractive optical elements

Optical characterization of an amorphoushydrogenated carbon film and its application in phase modulated diffractive optical elements Optical characterization of an amorphoushydrogenated carbon film and its application in phase modulated diffractive optical elements G. A. Cirino a, P. Verdonck a, R. D. Mansano a, L. G. Neto b a LSI-PEE-EPUSP

More information

Growth of SiC thin films on graphite for oxidation-protective coating

Growth of SiC thin films on graphite for oxidation-protective coating Growth of SiC thin films on graphite for oxidation-protective coating J.-H. Boo, a) M. C. Kim, and S.-B. Lee Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea S.-J. Park and J.-G.

More information

OPTIMIZED SEMI-ADDITIVE PROCESS FOR POLYIMIDE AS DIELECTRIC IN BUILD UP PACKAGES

OPTIMIZED SEMI-ADDITIVE PROCESS FOR POLYIMIDE AS DIELECTRIC IN BUILD UP PACKAGES OPTIMIZED SEMI-ADDITIVE PROCESS FOR POLYIMIDE AS DIELECTRIC IN BUILD UP PACKAGES Fei Peng 1, Ernest Long 1, Jim Watkowski 1, Kesheng Feng 1, Naomi Ando 2, Kazuhiro Inazu 2 1 MacDermid, 227 Freight St,

More information

EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD. Hybrid system KOLZER DGK 36

EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD. Hybrid system KOLZER DGK 36 email : carlo.gennari@fastwebnet.it web site : http://carlogennariforni.beepworld.it/kolzer.htm EQUIPMENT AND SYSTEM FOR VACUUM COATING METALLIZING, SPUTTERING, PLASMA and PECVD Hybrid system KOLZER DGK

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

The most important parameters determining the performance of a cutting blade are:

The most important parameters determining the performance of a cutting blade are: Diamond blades exceptionally wear resistant and extremely sharp P. Gluche 1, S. Strobel 1, H.-J. Fecht 2 1 GFD Gesellschaft für Diamantprodukte mbh, Lise-Meitner-Str. 13, 89081 Ulm, Germany 2 University

More information

Study of the Effect of Substrate on 3D Surface Roughness in Diamond-Like-Carbon Coating Process

Study of the Effect of Substrate on 3D Surface Roughness in Diamond-Like-Carbon Coating Process Study of the Effect of Substrate on 3D Surface Roughness in Diamond-Like-Carbon Coating Process Sergio Mordo*, Valery Popravko** Ahmad Barari*** *Faculty of Engineering and Applied Science, University

More information

Chapter 2 Additive Processes for Semiconductors and Dielectric Materials

Chapter 2 Additive Processes for Semiconductors and Dielectric Materials Chapter 2 Additive Processes for Semiconductors and Dielectric Materials Christian A. Zorman, Robert C. Roberts, and Li Chen Abstract This chapter presents an overview of the key methods and process recipes

More information

Advanced developer-soluble gap-fill materials and applications

Advanced developer-soluble gap-fill materials and applications Advanced developer-soluble gap-fill materials and applications Runhui Huang, Dan Sullivan, Anwei Qin, Shannon Brown Brewer Science, Inc., 2401 Brewer Dr., Rolla, MO, USA, 65401 ABSTRACT For the via-first

More information

Evaluation of adhesion promoters for Parylene C on gold metallization

Evaluation of adhesion promoters for Parylene C on gold metallization Current Directions in Biomedical Engineering 2015; 1:493 497 V. Radun*, R. P. von Metzen, T. Stieglitz, V. Bucher, and A. Stett Evaluation of adhesion promoters for Parylene C on gold metallization Abstract:

More information

CSI G SYSTEMS CSI GAS DELIVERY SUPPORT. Chemical Vapor Deposition (CVD)

CSI G SYSTEMS CSI GAS DELIVERY SUPPORT. Chemical Vapor Deposition (CVD) This page discusses the CVD processes often used for integrated circuits (ICs). Particular materials are deposited best under particular conditions. Facilitation recommendations are at the bottom of the

More information

Isolation Technology. Dr. Lynn Fuller

Isolation Technology. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Isolation Technology Dr. Lynn Fuller Motorola Professor 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

More information

Annealing effects on microstructure and mechanical properties of chromium oxide coatings

Annealing effects on microstructure and mechanical properties of chromium oxide coatings Available online at www.sciencedirect.com Thin Solid Films 516 (2008) 4685 4689 www.elsevier.com/locate/tsf Annealing effects on microstructure and mechanical properties of chromium oxide coatings Xiaolu

More information

An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1

An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1 Materials Transactions, Vol. 44, No. 3 (2003) pp. 389 to 395 #2003 The Japan Institute of Metals An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1 Rongguang

More information

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES.

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. SESSION 14 MATERIALS AND PROCESSES FOR ADVANCED PACKAGING UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. Eric Schulte 1, Gilbert Lecarpentier 2 SETNA Corporation

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/2009 300mm Fab Tour http://www-03.ibm.com/technology/manufacturing/technology_tour_300mm_foundry.html Overview of IC Technology

More information

Radiation Tolerant Isolation Technology

Radiation Tolerant Isolation Technology Radiation Tolerant Isolation Technology Background The following contains a brief description of isolation technologies used for radiation hardened integrated circuits. The technologies mentioned are junction

More information

Device Fabrication: Metallization

Device Fabrication: Metallization Device Fabrication: Metallization 1 Applications: Interconnection 2 Q & A Can we reduce all dimensions of metal interconnection line at the same ratio? R= l/wh. When we shrink all dimensions (length l,

More information

Applied Research for Vacuum Web Coating: What is Coming Next?

Applied Research for Vacuum Web Coating: What is Coming Next? Applied Research for Vacuum Web Coating: What is Coming Next? Matthias Fahland, John Fahlteich, Steffen Günther, Manuela Junghähnel, Claus Luber, Nicolas Schiller, Cindy Steiner, Steffen Straach, Michiel

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

Fatigue behaviour of duplex treated AISI 316L stainless steel

Fatigue behaviour of duplex treated AISI 316L stainless steel Kovove Mater. 45 2007 35 40 35 Fatigue behaviour of duplex treated AISI 316L stainless steel A. Çelik*,Y.Arslan,A.F.Yetim,I.Efeoglu Department of Mechanical Engineering, Ataturk University, 25240, Erzurum,

More information

Reactor wall plasma cleaning processes after InP etching in Cl 2 /CH 4 /Ar ICP discharge

Reactor wall plasma cleaning processes after InP etching in Cl 2 /CH 4 /Ar ICP discharge Reactor wall plasma cleaning processes after InP etching in Cl 2 /CH 4 /Ar ICP discharge R. Chanson a, E. Pargon a, M. Darnon a, C. Petit Etienne a, S. David a, M. Fouchier a, B. Glueck b, P. Brianceau

More information

A hollow cathode high density plasma process for internally coating cylindrical substrates

A hollow cathode high density plasma process for internally coating cylindrical substrates A hollow cathode high density plasma process for internally coating cylindrical substrates D. Lusk, M. Gore Sub-One Europe Ltd., The Exchange No 1, 5 th Aberdeen, Scotland, AB11 5PJ Floor, 62 Market Street,

More information

Enabling Technology in Thin Wafer Dicing

Enabling Technology in Thin Wafer Dicing Enabling Technology in Thin Wafer Dicing Jeroen van Borkulo, Rogier Evertsen, Rene Hendriks, ALSI, platinawerf 2G, 6641TL Beuningen Netherlands Abstract Driven by IC packaging and performance requirements,

More information

Process Flow in Cross Sections

Process Flow in Cross Sections Process Flow in Cross Sections Process (simplified) 0. Clean wafer in nasty acids (HF, HNO 3, H 2 SO 4,...) --> wear gloves! 1. Grow 500 nm of SiO 2 (by putting the wafer in a furnace with O 2 2. Coat

More information

Lecture 8. Deposition of dielectrics and metal gate stacks (CVD, ALD)

Lecture 8. Deposition of dielectrics and metal gate stacks (CVD, ALD) Lecture 8 Deposition of dielectrics and metal gate stacks (CVD, ALD) Thin Film Deposition Requirements Many films, made of many different materials are deposited during a standard CMS process. Gate Electrodes

More information

BIOACTIVE SILICIUM-CONTAINING COATINGS ON TITANIUM SUBSTRATE

BIOACTIVE SILICIUM-CONTAINING COATINGS ON TITANIUM SUBSTRATE Powder Metallurgy Progress, Vol.11 (2011), No 3-4 271 BIOACTIVE SILICIUM-CONTAINING COATINGS ON TITANIUM SUBSTRATE O. S. Antonova, V. V. Smirnov, S. M. Barinov, N. V. Bakunova, Ľ. Medvecký, J. Ďurišin

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(1):163-167 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Synthesis and Characterization of Carbon Nano Spheres

More information

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther

Lecture 19 Microfabrication 4/1/03 Prof. Andy Neureuther EECS 40 Spring 2003 Lecture 19 Microfabrication 4/1/03 Prof. ndy Neureuther How are Integrated Circuits made? Silicon wafers Oxide formation by growth or deposition Other films Pattern transfer by lithography

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 Lecture Outline EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720

More information

LOT. Contents. Introduction to Thin Film Technology. Chair of Surface and Materials Technology

LOT. Contents. Introduction to Thin Film Technology. Chair of Surface and Materials Technology Introduction to Thin Film Contents 1. Introduction and Application Examples (2h) 2. Preparation of Thin Films by PVD (Physical Vapor Deposition) (6h) 2.1 Vacuum Technique (1h) 2.1.1 Kinetics of Gases 2.1.2

More information