Questions concerning the contents of the lecture Manufacturing Technology

Size: px
Start display at page:

Download "Questions concerning the contents of the lecture Manufacturing Technology"

Transcription

1 Questions concerning the contents of the lecture Manufacturing Manufaturing I 1. Introduction to Manufacturing No related questions 2. Measuring and Testing in Production 1. Explain systematic errors and random errors and name two examples for each. How can you minimize the effect of these errors on the work result? 2. What disturbances influence the production process (one example each)? 3. Explain the pneumatic measurement of cylindrical workpieces. 4. Explain the measurment of lengths with a interferometer. What is the comparision standard. 5. Why must measurments of high accuracy and high reproducibility be done in an air conditioned environment? 6. Why can it be necessary to determinate the structure of the boundary layer? With what parameters would you describe the structure (Phases, grain size, texture-anisotropy)? 7. What structure parameters can be determined with a light microscope? 8. How are residual stresses caused and how can they be measured? 9. Why is the structure of the workpiece affected by the production process (arbitrary example)? 3. Principles of Machining with Geometrically Defined Cutting Edge 1. Specify the influencing factors for choosing the geometry of the cutting part. 2. How to increase the stability of the cutting edge? 3. Specify the measures to reduce the passive force respectively the tendency to chatter. 4. Indicate and explain the types of wear at the cutting part. 5. Signify the main measured wear variables. 6. Specify the causes of wear and indicate their dependence of the cutting speed. 7. Explain comb and transverse crack formation. 8. Illustrate the term built-up edge formation and explain the progression of the wear land value and the surface roughness dependent on the cutting speed. page 1 of 8

2 4. Cutting Materials and Lubricants 1. Which are the components in high speed steel (HS), WC-Co-based cemented carbides (HW) and cermets (HT)? 2. Explain, why complex tools such as broaching and gear hobbing mills are made of high speed steel (HS)! 3. Why do cermets (HT) have a higher thermal strength than WC-Co-based cemented carbides (HW)? 4. What is the maximal chip thickness (monolayer) which can be realised by the PVD-coating setup? 5. What are the advantages of CVD-coatings compared to PVD-coatings? 6. Which coating materials are coated? 7. What problems can occur because of the coating of the tool? 5. Cutting materials II 1. Why have cemeted carbides a higher toughness than ceramics? 2. Explain, why steel is not machined by tools made of polycrystalline diamond (DP)! 3. What is the lower limit of workpiece (steel workpiece) hardness (Rockwell HRC) to be economically machined by polycrystalline boron nitride (BN)? 4. Explain the advantages of dry machining! 5. How does the lack of lubricants in machining operations concern the accuracy of the workpiece geometry? 6. Why are milling processes conducted without any lubrication when using oxide ceramics as cutting tool? 6. Cutting Criteria 1. Which heat treatment is used to reduce the hardness of a microstructure? Describe the appropriate temperature control. 2. Which microstructure exists after heating (T=1050 C, 2h) and cooling on air? 3. Which properties has a normalised microstructure? 4. Illustrate the characteristics of hard machining. 5. Why are free cutting steels well machinable? 6. Due to which special feature the machinability of cast iron materials is influenced? 7. Specify the factors influencing the machinability of aluminium alloys. 8. Due to which material properties nickel-based alloys are difficult to machine? 7. Manufacturing Methods with Geometrically Defined Cutting Edges 1. Describe the contact conditions of longitudinal cylindrical turning! 2. Specify the cutting speeds for roughturn and dress-turning! 3. Which benefits result by higher cutting speeds? 4. Which benefits have the high-precision-hardturning compared to grinding? 5. Which alternatives exist for surface-milling? 6. Which cutting materials can be used for milling with a face milling head? 7. Which cutting speeds can be realised in the above mentioned case? page 2 of 8

3 8. Practical use of Manufacturing Methods with Geometrically Defined Cutting Edges 1. Please structure the methods with geometrically defined cutting edges and rotationally main movement. 2. Please term the alternative drilling processes. 3. Which alternative wear types exist by drilling tools? 4. In what way does the twist drill angle and the workpiece hardness correlate? 5. Which alternative sawing types exist and by what properties are they characterised? 6. What is the difference between planing and shaping? 7. Which properties characterise the broaching technology? 8. Which criteria are used to identify the optimal cutting parameters? 9. Which aids are usually being used for the identification of the optimal cutting parameters? 10. Which coefficients describe the manufacturing time and cost? 11. Please give one example for an analytical, an empirical and a numerical model 9. Cutting with geometrically undefined edges: fundamentals 1. Which IT-Classification can be reached by grinding in comparision to other manufacturing processes and why? 2. How can the cutting operation be described for grinding? 3. Describe the energy distribution and the heat flow during cutting edge engagement. 4. Which wear forms does exist for grinding wheels? 5. How is a grinding wheel composed and what tasks does the respective elements have? 6. What are the different grain materials, which properties do they have and for what application do they suit? 7. What are different types of bond, what are their properties and application areas? 8. What is the main difference regarding the indication of conventional grinding wheels and grinding wheel with diamond and CBN? 9. What is the difference between static and kinematic cutting edges? 10. How is the material removal rate Q w defined for surface and for external cylindrical grinding? 11. What is the difference between creep and pendulum grinding? 10. Christmas lecture no related questions 11. Cutting with geometrical undefined cutting edge: Grinding tools and grinding wheel preparation not available so far page 3 of 8

4 12. Grinding with undefined cutting edges processes and application examples 1. What is the material removal-rate a quantum for? 2. How do you assign the material romoval volume? 3. In which procedures for generating a rationally symmetric geometry is the tool feed a) radial b) axial? 4. What is the difference between down-grinding / up-grinding? 5. Name four common grinding procedures! 6. How can you avoid workpiece deflection in the process of external cylindrical grinding? 7. What problems can occur in the internal cylindrical grinding process and how are they caused? 8. What are the advantages and disadvantages in deep- and pendulum-grinding? 9. What are the typical devices, which are machined in centreless grinding? 10. What are the four active principles of the cutting edge engagement in machining with geometrically undefined cutting edges? 13. Excavating: Thermal excavating 1. Why must the wire electrode trail in EDM cutting operations? 2. What electrode materials are generally used for EDM Machining operations? 3. Demineralised water is generally used as a working medium in EDM cutting 4. operations. List the advantages and disadvantages associated with the use 5. of demineralised water. 6. Complex geometries with angles of inclination up to 30 can be produced in 7. EDM cutting operations. Name the two process-related limitations. 8. Name the residual stress condition affecting the area around the surface 9. of workpieces which have been machinend in EDM and ECM operations. 10. List the media used in EDM machining operations and outline their function. 11. Describe the material removal principles on which EDM and ECM are based. 14. Rapid Prototyping and Rapid Tooling not available so far page 4 of 8

5 Manufacturing II 1. Primary shaping - Casting 1. Explain the change of the crystal lattice during cooling down the liquefied material at the example of pure iron! 2. Outline and explain the globulitical, fringe crystal and monocrystalline solidification at turbine blades! 3. Coarse grain contra fine grain! 4. Nominate and explain different casting properties (5)! What is meant with shrinkage cavitation and how does that casting damage arise? 5. How are the moulding and casting processes defined? 6. Nominate and explain different methods of core production! 7. Into which main groups (3) are the casting processes classified? 8. Explain the principal work flow of the casting processes which belong to the three main groups! 9. Nominate and explain the essential parts of a casting simulation! 10. Explain the proceeding of the rapid-prototyping process for production of casting patterns! 2. Primary shaping - Powder metallurgy 1. Describe the difference between ideal crystals and real crystals! 2. Scetch the principle of stationary diffusion. Which diffusion laws do you know? 3. Specify and eyplain the three types of diffusion 4. Scetch - for the three types of diffusion - the temperature dependency of the diffusion coefficient D! 5. Explain the two significant methods for powder production, the methods for the characterization of metal powders and the three different alloying techniques! 6. Scetch the phases of compaction (use a cylindrical compact)! 7. Explain the terms density distribution, ejection force and spring-back! 8. Explain an industrial sintering process on the basis of a sintering conveyor furnace! 9. Explain the reasons for a sizing operation! Explain then a sizing operation, as example use e.g. the ball sizing of bushes! 10. Specify and explain the schematic flow of conventional PM-processes! 11. Which possibilites are provided by PM-technology for producing highly loaded parts? 12. Specifiy and explain the influencing parameters on the produciton costs of PMparts! page 5 of 8

6 3. Principles of forming & bulk forming 1 1. Explain the elastic and plastic deformation in the atomic structure. 2. Outline the progress of stress in a cold forming process with annealing for recrystallisation. 3. Outline the Mohr s stress circles with a uni-, bi- and triaxial compressive stress state. 4. Explain the definition of forward and backward extrusion. 5. Name and explain the requirements on lubrications. 6. What is a shringage ring system and for what are they used? 7. Which production tolerances are achievable in the different production processes forming and cutting? 8. Name and explain advantage and disadvantage in froming processes opposed to cutting processes. 9. What has to be done when the maximum natural strain is reached? 10. Name the influence of forming temperature on material properties. 4. Bulk Forming II 1. What is the difference between a flow curve at low and at high temperatures? 2. What is the transition temperature for hot forming (for steel, for lead)? 3. When do you use hot forging, when do you use cold forging? 4. Why are head and foot taken away from a cast ingot before or latest after the forging operation? 5. Why can only worse tolerances be reached in hot forming in comparison to cold forming? 6. Why are crankshafts not machined from bulk material? 7. What is the purpose of the flash in closed die forging? 8. What types of wear do occur in hot forging tools? 9. Why are forging tools not made of case hardened steel? page 6 of 8

7 5. Sheet Metal Forming I 1. Name and explain briefly the most common tests for analysis of the flow curve in sheet metal forming. 2. Explain the term anisotropy and name the most important types of anisotropy. 3. Briefly explain the most important tests to examine sheet metal quality. 4. How do you analyse the circle grid test? 5. Name the analysing tests to obtain friction coefficients in the sheet metal forming. 6. Briefly explain the principle of deep drawing. 7. Name the most common process variations in deep drawing. 8. Name four parameters that influence the result for a deep drawing process. 9. Name the factors on which the maximum expansion ratio in collar forming depends. 10. Sketch the neutral fibre in a stretch drawn profile. 6. Sheet Metal Forming II 1. Which are the three most common failures that can occur as a result of a spinning process? 2. Which elastic effect is responsible for many workpiece inaccuracies in sheet metal forming? 3. Name three types of bending processes. 4. Which process is particularly suitable for the manufacture of long sheet metal parts with a profiled cross section? 5. Under which conditions can a material be superplastically formed? 6. Give a description for a typical tube hydroforming process. 7. Explain the principle of laser bending. 8. Name three types of magnetic forming processes. 7. Process Design - Methods and Tools used in product - based production planning 1. Give a definition of the expression technology chain? 2. State differences between technology chain and manufacturing sequence? 3. Name the stages of generating technology chains? 4. Describe the evaluation of manufacturing sequences? 5. What are fuzzy data? 6. What is a fuzzy set? page 7 of 8

8 8. Fine Blanking 1. What does the sheared surface look like in blanking? 2. Why is this surface not completely smooth? 3. Please explain the punch force over punch travel for blanking! 4. Why are blanking tools made of hardened and tempered material? 5. Why are sheet metal parts of high quantity made preferably through blanking and not through CNC-wire electro-erosion? 6. What is the maximum stroke frequency of a blanking machine? 7. Why is there an increased fraction of smooth surface in fine blanking in comparison to normal blanking? 8. What is the reason behind the difficulty classes in fine blanking? Why can a protuding part be not arbotrarily thin? Why can a radius not be arbitrarily small? 9. Can hardened and annealed materials be used as workpiece material in fine blanking? 10. What is the maximum plastic strain in fine blanking? 9. Fertigungsfolgen: Seminar no questions available page 8 of 8

AISI A2 Cold work tool steel

AISI A2 Cold work tool steel T OOL STEEL FACTS AISI A2 Cold work tool steel Great Tooling Starts Here! General AISI A2 is an air- or oil hardening chromiummolybdenum-vanadium alloyed tool steel characterized by: Good machinability

More information

CUTTING TOOL TECHNOLOGY

CUTTING TOOL TECHNOLOGY CUTTING TOOL TECHNOLOGY Tool Life Tool Materials Tool Geometry Cutting Fluids Cutting Tool Technology Two principal aspects: 1. Tool material 2. Tool geometry Three Modes of Tool Failure Fracture failure

More information

INTRODUCTION. Think HSS

INTRODUCTION. Think HSS INTRODUCTION Think HSS SUMMARY METALLURGY 2 Excellent strength 3 A super sharp edge 4 Safe and reliable tools Alloy elements 6 The influence of alloy elements 7 Standard compositions of HSS 8 The HSS-PM

More information

AISI D2 Cold work tool steel

AISI D2 Cold work tool steel T OOL STEEL FACTS AISI D2 Cold work tool steel Great Tooling Starts Here! This information is based on our present state of knowledge and is intended to provide general notes on our products and their

More information

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba Cutting Tool Materials and Cutting Fluids HomeWork #2 22.37 obtain data on the thermal properties of various commonly used cutting fluids. Identify those which are basically effective coolants and those

More information

Manufacturing Technology I. Lecture 3. Fundamentals of Cutting

Manufacturing Technology I. Lecture 3. Fundamentals of Cutting Manufacturing Technology I Lecture 3 Fundamentals of Cutting Prof. Dr.-Ing. F. Klocke Structure of the lecture Examples: turning of steel The cutting part - Terms and symbols The cutting operation Loads

More information

METAL FORMING PROCESSES 2 MARKS QUESTIONS

METAL FORMING PROCESSES 2 MARKS QUESTIONS METAL FORMING PROCESSES 2 MARKS QUESTIONS UNIT I 1. How the metal forming process can be classified? 2. What is the significance of flow curve? 3. What is recrystallisation temperature? 4. Discuss about

More information

GRINDING AND OTHER ABRASIVE PROCESSES

GRINDING AND OTHER ABRASIVE PROCESSES GRINDING AND OTHER ABRASIVE PROCESSES Grinding Related Abrasive Process Abrasive Machining Material removal by action of hard, abrasive particles usually in the form of a bonded wheel Generally used as

More information

Bulk Deformation Processes

Bulk Deformation Processes Bulk Deformation Processes Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What is Bulk Deformation? Classification of Bulk Deformation Processes Types

More information

Chapter 14: Metal-Forging Processes and Equipments

Chapter 14: Metal-Forging Processes and Equipments Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 14: Metal-Forging Processes and Equipments Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various

More information

Selection of Tool & Die Steels

Selection of Tool & Die Steels Selection of Tool & Die Steels Introduction The success of a metal forming tool depends on optimizing all the factors affecting its performance. Usually, operating conditions (applied loads, abrasive environments,

More information

INDEX. forging Axisymmetric isothermal forging, cabbaging, compression of cylinders,

INDEX. forging Axisymmetric isothermal forging, cabbaging, compression of cylinders, INDEX Accuracy of simulation, 333 Air bending, 21, 141-147 Air rounding, 21 ALPID program, 136 Analysis in metal forming, 26-52 closed-die forging, 34, 35-36, 37 cold extrusion, 39-41 cold forging, 39-41

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 8: Forming Processes (Rolling, Extrusion, Forging, Drawing) DR. SOTIRIS L. OMIROU Forming Processes - Definition & Types - Forming processes are those in which

More information

Types of manufacturing processes

Types of manufacturing processes Materials processing Metal parts undergo sequence of processes Primary alter the ( raw ) material s basic shape or form. Sand casting Rolling Forging Sheet metalworking Types of manufacturing processes

More information

A wide range of cold-formable steel grades and aluminium alloys are used as wire materials within a diameter range from 5 mm to 34 mm.

A wide range of cold-formable steel grades and aluminium alloys are used as wire materials within a diameter range from 5 mm to 34 mm. Cold-Formed Parts 2 ESKA manufactures complex precision cold-formed parts for applications with large and medium quantities. The highly-efficient cold- forming process ensures economic manufacture of near-net-shape

More information

Extrusion of complex shapes

Extrusion of complex shapes Extrusion of complex shapes 1 Hot extrusion Hot extrusion is the process of forcing a heated billet to flow through a shaped die opening It is used to produce long, strait metal products of constant cross

More information

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining. Traditional Manufacturing Processes Casting Forming Sheet metal processing Powder- and Ceramics Processing Plastics processing Cutting Joining Surface treatment FUNDAMENTALS OF METAL FORMING Overview of

More information

MANUFACTURING PROCESSES. Tool Material & Cutting Fluid

MANUFACTURING PROCESSES. Tool Material & Cutting Fluid MANUFACTURING PROCESSES Tool Material & Cutting Fluid 1 CUTTING TOOL MATERIAL Success in metal cutting depends on the selection of the proper cutting tool (material and geometry) for a given work material.

More information

1 Cutting Tool Materials of common use

1 Cutting Tool Materials of common use 1 Cutting Tool Materials of common use Instructional Objectives At the end of this lesson, the students will be able to (i) Identify the needs and cite the chronological development of cutting tool materials.

More information

VBN Components AB. 3D-printing for demanding applications. ESS, Max IV, IUC Syd/Big Science Dk Lund,

VBN Components AB. 3D-printing for demanding applications. ESS, Max IV, IUC Syd/Big Science Dk Lund, VBN Components AB 3D-printing for demanding applications ESS, Max IV, IUC Syd/Big Science Dk Lund, 2017-09-19 Ulrik Beste CTO, VBN Componens AB ulrik.beste@vbncomponents.com 070 235 86 26 VBN Components

More information

Mechanical behavior of crystalline materials- Comprehensive Behaviour

Mechanical behavior of crystalline materials- Comprehensive Behaviour Mechanical behavior of crystalline materials- Comprehensive Behaviour In the previous lecture we have considered the behavior of engineering materials under uniaxial tensile loading. In this lecture we

More information

A NEW ERA? 3M CUBITRON II REVEALS FULL POTENTIAL OF BEVEL-GEAR GRINDING

A NEW ERA? 3M CUBITRON II REVEALS FULL POTENTIAL OF BEVEL-GEAR GRINDING A NEW ERA? 3M CUBITRON II REVEALS FULL POTENTIAL OF BEVEL-GEAR GRINDING Reinventing the world of grinding processes: 3M s geometrically defined sintered corundum technology, Cubitron II, meets the stringent

More information

MATERIALIZING VISIONS. Bohler-Uddeholm H13 TOOL STEEL

MATERIALIZING VISIONS. Bohler-Uddeholm H13 TOOL STEEL MATERIALIZING VISIONS Bohler-Uddeholm H13 TOOL STEEL Bohler-Uddeholm H13 General Bohler-Uddeholm H13 is a chromium-molybdenumvanadium alloyed steel which is characterized by: Good resistance to abrasion

More information

2890 Ligonier St. Latrobe, PA Phone Fax Toll Free

2890 Ligonier St. Latrobe, PA Phone Fax Toll Free Your Best Choice For Carbide Components 2890 Ligonier St. Latrobe, PA 15650 Phone 724.532.3041 Fax 724.532.3043 Toll Free 800.862.7066 www.extramet.net OUR HISTORY OUR MISSION Extramet s Primary Objective

More information

Module 3 Selection of Manufacturing Processes. IIT Bombay

Module 3 Selection of Manufacturing Processes. IIT Bombay Module 3 Selection of Manufacturing Processes Lecture 3 Design for Bulk Deformation Processes Instructional objectives By the end of this lecture, the students are expected to learn the working principle

More information

STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS

STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS STEELS & COATINGS FOR CUTTING TOOL APPLICATIONS Requirements for cutting tools There are several characteristics that are essential to the good performance of a cutting tool. Powder Metal High Speed Steels

More information

Manufacturing Process II. Forging

Manufacturing Process II. Forging Manufacturing Process II Forging Introduction Forging is a deformation process in which the work is compressed between two dies, using either impact or gradual pressure to form the part. It is the oldest

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working - Drawing & Extrusion Drawing Drawing is an operation in which the cross-section of solid rod, wire or tubing is reduced or changed in shape by pulling

More information

VANADIS 10 SuperClean High performance powder metallurgical cold work tool steel

VANADIS 10 SuperClean High performance powder metallurgical cold work tool steel SuperClean High performance powder metallurgical cold work tool steel Critical tool steel properties for GOOD TOOL PERFORMANCE Correct hardness for the application Very high wear resistance Sufficient

More information

Uddeholm Vanax SuperClean. Uddeholm Vanax SuperClean

Uddeholm Vanax SuperClean. Uddeholm Vanax SuperClean Uddeholm Vanax SuperClean 1 Vanax is a trade mark registered in the European Union and in the U.S. UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

where n is known as strain hardening exponent.

where n is known as strain hardening exponent. 5.1 Flow stress: Flow stress is the stress required to sustain a certain plastic strain on the material. Flow stress can be determined form simple uniaxial tensile test, homogeneous compression test, plane

More information

The best of both worlds

The best of both worlds The best of both worlds CoroMill 210 the ultimate roughing cutter for modern machining techniques Use CoroMill 210 for plunge milling to mill away large volumes of metal or for high feed milling of flat

More information

Lecture 9 - Manufacturing in Engineering

Lecture 9 - Manufacturing in Engineering Introduction Dr. Carolyn Skurla Speaking Slide 2 Process Selection Choice depends on: The material from which the component is to be made. The size, shape, and dimension tolerances for the component. The

More information

FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY

FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY 1 SIMULATION IN SHEET METAL FORMING Simulation is an essential part of the development chain, especially

More information

Primary shaping - Powder Metallurgy

Primary shaping - Powder Metallurgy Chair of Manufacturing Technology Primary shaping - Powder Metallurgy Manufacturing Technology II Exercise 2 Laboratory for Machine Tools and Production Engineering Chair of Manufacturing Technology Prof.

More information

Uddeholm Formvar. FORMVAR is a trade mark registered in the European Union

Uddeholm Formvar. FORMVAR is a trade mark registered in the European Union Uddeholm Formvar FORMVAR is a trade mark registered in the European Union UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright

More information

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining SPECIAL ISSUE Development of New SUMIBORON for Cast Iron and Ferrous Powder Metal Machining Yusuke Matsuda*, Katsumi OKaMura, shinya uesaka and tomohiro FuKaYa SUMIBORON P (polycrystalline cubic boron

More information

Pollution Prevention in Machining and Metal Fabrication

Pollution Prevention in Machining and Metal Fabrication ... Pollution Prevention in Machining and Metal Fabrication A Manual for Technical Assistance Providers Excerpts March 2001... CHAPTER 5 Innovative Pollution Prevention Technologies Industry vendors have

More information

Edition 5, The latest revised edition of this brochure is the English version, which is always published on our web site

Edition 5, The latest revised edition of this brochure is the English version, which is always published on our web site UDDEHOLM SVERKER 3 This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty

More information

Chapter 15 Extrusion and Drawing of Metals

Chapter 15 Extrusion and Drawing of Metals Introduction Chapter 15 Extrusion and Drawing of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and

More information

HSS rolled. HSS ground. HSS Co 5 ground. HSS-TiN ground. Twist drills DIN 338 type N. Point cuts:

HSS rolled. HSS ground. HSS Co 5 ground. HSS-TiN ground. Twist drills DIN 338 type N. Point cuts: Twist drills DIN 338 type N High performance twist drill suitable for all normal drilling in conventional materials. Point cut: helical point Helix angle: 20-30 tolerance: h8 Right-hand cutting 1,0 up

More information

Chapter 18: Powder Metallurgy

Chapter 18: Powder Metallurgy Chapter 18: Powder Metallurgy ผ ช วยศาสตราจารย เร อโท ดร. สมญา ภ นะยา Reference: DeGarmo s Materials and Processes in Manufacturing 18.1 Introduction Powder metallurgy is the name given to the process

More information

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University 12. Mold Materials Bong-Kee Lee Chonnam National University Mold Materials easy toolmaking good performance during production good machining properties ease of hear treatment where hardening is required

More information

Chapter 14 Forging of Metals

Chapter 14 Forging of Metals Introduction Chapter 14 Forging of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and Schmid What is

More information

Modelling and Simulation. in Manufacturing Technology

Modelling and Simulation. in Manufacturing Technology Modelling and Simulation in Manufacturing Technology Cutting ith Undefined Cutting Prof. Dr.-Ing. F. Klocke Structure Chip removal mechanisms From geometrically defined to geometrically undefined cutting

More information

PRELIMINARY BROCHURE. Uddeholm Caldie

PRELIMINARY BROCHURE. Uddeholm Caldie PRELIMINARY BROCHURE Uddeholm Caldie UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based

More information

VDM Alloy 80 A Nicrofer 7520 Ti

VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A Nicrofer 7520 Ti Material Data Sheet No. 4048 February 2017 February 2017 VDM Alloy 80 A 2 VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A is a nickel-chromium alloy that can be age-hardened.

More information

Alro Steel. Tool & Die Steel. Handbook. A Helpful Guide to the Properties, Selection, & Heat Treatment of Tool Steels.

Alro Steel. Tool & Die Steel. Handbook. A Helpful Guide to the Properties, Selection, & Heat Treatment of Tool Steels. Alro Steel Metals Industrial Supplies Plastics Tool & Die Steel Handbook A Helpful Guide to the Properties, Selection, & Heat Treatment of Tool Steels. MISSION STATEMENT To ensure the long-term success

More information

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance.

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. UDDEHOLM DIEVAR Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. The chemical composition and the very latest in production technique make

More information

UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION. Prepared by S. SENTHIL KUMAR AP / MECH SVCET

UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION. Prepared by S. SENTHIL KUMAR AP / MECH SVCET UNCONVENTIONAL MACHINING PROCESS UNIT 1 INTRODUCTION Prepared by S. SENTHIL KUMAR AP / MECH SVCET INTRODUCTION Conventional machining process Metal is removed by means of tool which is harder than work

More information

Metal extrusion. Metal stamping

Metal extrusion. Metal stamping Metal extrusion Answer the following questions 1. In which of the following extrusion operation is friction a factor in determining the extrusion force (one best answer): (a) direct extrusion or (b) indirect

More information

UDDEHOLM VIDAR 1 ESR

UDDEHOLM VIDAR 1 ESR UDDEHOLM VIDAR 1 ESR This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty

More information

Non Traditional Machining INTRODUCTION TO NTM

Non Traditional Machining INTRODUCTION TO NTM Types of Manufacturing Processes: INTRODUCTION TO NTM Manufacturing processes can be broadly divided into two groups Primary manufacturing processes Secondary manufacturing processes. The Primary manufacturing

More information

Heinz Tschaetsch Metal Forming Practise

Heinz Tschaetsch Metal Forming Practise Heinz Tschaetsch Metal Forming Practise Heinz Tschaetsch Metal Forming Practise Processes Machines Tools Translated by Anne Koth 123 Author: Professor Dr.-Ing. e. h. Heinz Tschaetsch Paul-Gerhardt-Str.

More information

Powder-Metal Processing and Equipment

Powder-Metal Processing and Equipment Powder-Metal Processing and Equipment Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 17 Powder Metallurgy Metal powders are compacted into desired and

More information

METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN

METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN New York Oxford OXFORD UNIVERSITY PRESS 1989 CONTENTS Symbols, xiii 1. Introduction, 1 1.1 Process Modeling, 1 1.2 The

More information

PRELIMINARY BROCHURE. Uddeholm Vanadis 8 SuperClean

PRELIMINARY BROCHURE. Uddeholm Vanadis 8 SuperClean PRELIMINARY BROCHURE Uddeholm Vanadis 8 SuperClean UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information

More information

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009 Powder Metallurgy Powder-Metal Processing and Equipment Metal powders are compacted into desired and often complex shapes and sintered* to form a solid piece * Sinter: To heat without melting Text Reference:

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

RAMAX 2. Prehardened stainless holder steel

RAMAX 2. Prehardened stainless holder steel RAMAX 2 Prehardened stainless holder steel This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be

More information

QRO 90 SUPREME Hot work tool steel

QRO 90 SUPREME Hot work tool steel T O O L S T E E L F A C T S QRO 90 Hot work tool steel Great Tooling Starts Here! Cover photo: Bo Dahlgren This information is based on our present state of knowledge and is intended to provide general

More information

Superabrasive CUTTING TOOLS & WEAR PARTS

Superabrasive CUTTING TOOLS & WEAR PARTS Superabrasive CUTTING TOOLS & WEAR PARTS CUTTING TOOLS Polycrystalline Diamond (PCD) PCD Cutting Tools PCD tools are as abrasion resistant as natural diamond tools and are much tougher. The diamond layer

More information

Vanax SuperClean. Uddeholm Vanax SuperClean

Vanax SuperClean. Uddeholm Vanax SuperClean Vanax SuperClean Uddeholm Vanax SuperClean ASSAB is a trademark of voestalpine High Performance Metals Pacific Pte Ltd. The information contained herein is based on our present state of knowledge and is

More information

Materials & Technology at Kennametal. Dev Banerjee VMA Conference March, 2012

Materials & Technology at Kennametal. Dev Banerjee VMA Conference March, 2012 Materials & Technology at Kennametal Dev Banerjee VMA Conference March, 2012 Contents Kennametal overview Materials portfolio Processing capabilities Basics of sintered carbide processing & properties

More information

special hot work tool steel CR7V-L

special hot work tool steel CR7V-L special hot work tool steel CR7V-L T h e p r e m i u m s t e e l w i t h m a x i m u m h i g h t e m p e r at u r e w e a r r e s i s ta n c e 2 From the casting of steel to finished die... LONG-STANDING

More information

Processing of Metal Powders

Processing of Metal Powders Chapter 17 Processing of Metal Powders QUALITATIVE PROBLEMS 17.15 Why is there density variation in the compacting of powders? How is it reduced? The main reason for density variation in compacting of

More information

EXPERIMENTAL EVALUATION OF RBD PALM OLEIN AS LUBRICANT IN COLD METAL FORMING

EXPERIMENTAL EVALUATION OF RBD PALM OLEIN AS LUBRICANT IN COLD METAL FORMING Jurnal Mekanikal December 2010, No. 31, 1-10 EXPERIMENTAL EVALUATION OF RBD PALM OLEIN AS LUBRICANT IN COLD METAL FORMING S. Syahrullail *1, S. Kamitani 2 and K. Nakanishi 2 1 Faculty of Mechanical Engineering,

More information

TA202A: Introduction to. N. Sinha Department of Mechanical Engineering IIT Kanpur

TA202A: Introduction to. N. Sinha Department of Mechanical Engineering IIT Kanpur TA202A: Introduction to Manufacturing Processes N. Sinha Department of Mechanical Engineering IIT Kanpur Email: nsinha@iitk.ac.in Processing Operations Alters a material s shape, physical properties,

More information

3. Residual Stresses

3. Residual Stresses 3. Residual Stresses 3. Residual Stresses 22 Figure 3.1 br-ei-3-1e.cdr weld Various Reasons of Residual Stress Development grinding disk less residual stresses, and it will never be stress-free! The emergence

More information

Dislocations and Plastic Deformation

Dislocations and Plastic Deformation Dislocations and Plastic Deformation Edge and screw are the two fundamental dislocation types. In an edge dislocation, localized lattice distortion exists along the end of an extra half-plane of atoms,

More information

ME 4563 ME 4563 ME Introduction to Manufacturing Processes. College of Engineering Arkansas State University.

ME 4563 ME 4563 ME Introduction to Manufacturing Processes. College of Engineering Arkansas State University. Introduction to Manufacturing Processes College of Engineering Arkansas State University 1 Bulk Deformation 2 1 Rolling 3 What is Rolling? A process of reducing the thickness (or changing the cross-section

More information

UDDEHOLM NIMAX. Nimax is a trade mark registered in the European Union and in the U.S.

UDDEHOLM NIMAX. Nimax is a trade mark registered in the European Union and in the U.S. UDDEHOLM NIMAX Reliable and efficient tool steel is essential for good results. The same goes for achieving high productivity and high availability. When choosing the right steel many parameters must be

More information

Edition 9, The latest revised edition of this brochure is the English version, which is always published on our web site

Edition 9, The latest revised edition of this brochure is the English version, which is always published on our web site UDDEHOLM SLEIPNER This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty

More information

Manufacturing Technology II. Exercise 2. Powder Metallurgy

Manufacturing Technology II. Exercise 2. Powder Metallurgy Lehrstuhl für Technologie der Fertigungsverfahren Laboratorium für Werkzeugmaschinen und Betriebslehre Manufacturing Technology II Exercise 2 Powder Metallurgy Werkzeugmaschinenlabor Lehrstuhl für Technologie

More information

Design for Forging. Forging processes. Typical characteristics and applications

Design for Forging. Forging processes. Typical characteristics and applications Design for Forging Forging processes Forging is a controlled plastic deformation process in which the work material is compressed between two dies using either impact or gradual pressure to form the part.

More information

Die steels and components for extrusion

Die steels and components for extrusion Die steels and components for extrusion Contents Uddeholm your partner... 4 Uddeholm hot work tool steel for extrusion... 4 Tooling components in an extrusion press... 5 Tool steel properties for extrusion

More information

MATERIALIZING VISIONS. Bohler-Uddeholm M42 HIGH SPEED STEEL

MATERIALIZING VISIONS. Bohler-Uddeholm M42 HIGH SPEED STEEL MATERIALIZING VISIONS Bohler-Uddeholm M42 HIGH SPEED STEEL General Cobalt-alloyed, molybdenum high speed steel possessing high hardness, excellent cutting properties, exceptional compressive strength,

More information

QRO 90 SUPREME. Hot work tool steel

QRO 90 SUPREME. Hot work tool steel QRO 90 SUPREME Hot work tool steel This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed

More information

DC53. Rev o lu tion. Medium Chrome Tool Steel

DC53. Rev o lu tion. Medium Chrome Tool Steel DC53 Medium Chrome Tool Steel The High Performance Alternative for: Punches & Dies Draw & Form Dies Shear Blades Shredder Knives Thread & Form Rolls Cold Heading Dies Mill Rolls & Slitters Rev o lu tion

More information

The Influence of Friction Conditions on Formability of DC01 Steels by ISF

The Influence of Friction Conditions on Formability of DC01 Steels by ISF IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 3 Ver. I (May. - Jun. 2015), PP 134-138 www.iosrjournals.org The Influence of Friction

More information

Manufacturing Process Selection for Aerospace Gas turbine blades & vanes

Manufacturing Process Selection for Aerospace Gas turbine blades & vanes for Aerospace Gas turbine blades & vanes Temperature- Pressure Cross Section of a Gas Turbine (P-T Distribution) Vane / Blade Materials : Super Alloys like CM 247, RENE 80 Disc / Casing Materials : Udimet

More information

1. Definitions and classification of Metal forming processes

1. Definitions and classification of Metal forming processes 1. Definitions and classification of Metal forming processes 1.1 Introduction: Metal forming is a very important manufacturing operation. It enjoys industrial importance among various production operations

More information

BZN* Compacts Tool Blanks and Inserts. Machining of Ferrous Materials

BZN* Compacts Tool Blanks and Inserts. Machining of Ferrous Materials BZN* Tool Blanks and Inserts Machining of Ferrous Materials BZN* Tool Blanks and Inserts Diamond Innovations manufactures a complete line of high quality polycrystalline CBN products for machining ferrous

More information

Development of Machining Procedures to Minimize Distortion During Manufacture

Development of Machining Procedures to Minimize Distortion During Manufacture Development of Machining Procedures to Minimize Distortion During Manufacture D. Hornbach and P. Prevéy Lambda Research ABSTRACT Distortion during machining can result in high scrap rates and increased

More information

ANSWER ONLY FIVE QUESTIONS

ANSWER ONLY FIVE QUESTIONS Ministry of Higher Education & Scientific Research, Baghdad-Iraq University Of Technology Department of Materials Engineering وزارة التعليم العالي والبحث العلمي بغاد - العراق الجامعت التكنولوجيت قسم هندست

More information

1. Consider the following stress-strain responses of metallic materials:

1. Consider the following stress-strain responses of metallic materials: TECNOLOGIA MECÂNICA Mestrado em Engenharia de Materiais January 3, 2015 Number: Name: 1. Consider the following stress-strain responses of metallic materials: Y Load Unload Y E Load E Unload Y (1) (2)

More information

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS Dr.S.Shamasundar ProSIM, 21/B. 9 th main Shankara Nagara, Mahalakshmipuram Bangalore-560096 Email: shama@pro-sim.com Web: www.pro-sim.com

More information

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS

A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 A SHORT NOTE ON MANUFACTURING PROCESS OF METAL POWDERS 1 R.Raja, 2 M.Rajkumar 1 Assistant Lecturer, St. Joseph College

More information

Metal Forming Process. Prof.A.Chandrashekhar

Metal Forming Process. Prof.A.Chandrashekhar Metal Forming Process Prof.A.Chandrashekhar Introduction Shaping of a component by the application of external forces is known as the metal forming. Metal forming can be described as a process in which

More information

CRIMP TOOLING WHERE FORM MEETS FUNCTION

CRIMP TOOLING WHERE FORM MEETS FUNCTION CRIMP TOOLING WHERE FORM MEETS FUNCTION The cost of quality can be expensive Introduction Quality, cost, and throughput are associated with specific measurements and linked to process variables. Crimp

More information

Masterflex Polishing Products

Masterflex Polishing Products Masterflex Polishing Products How to Order Masterflex Polishing Products When ordering it is important to give as much information about the operation as possible so that the correct grading is supplied.

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

Powder Metallurgy. Science, Technology. and Materials. Anish Upadhyaya. G S Upadhyaya. Department of Materials Science and Engineering

Powder Metallurgy. Science, Technology. and Materials. Anish Upadhyaya. G S Upadhyaya. Department of Materials Science and Engineering Powder Metallurgy Science, Technology and Materials Anish Upadhyaya Associate Professor Department of Materials Science and Engineering Indian Institute of Technology Kanpur, India G S Upadhyaya Former

More information

RODS & PREFORMS.

RODS & PREFORMS. RODS & PREFORMS US www.ceratizit.com rods & preforms MAIN CATALOG 4 5 Dear customer, With innovative production technologies and newly developed carbide grades for the precision tool industry, we offer

More information

Bulk Deformation Forming - Rolling

Bulk Deformation Forming - Rolling 1 Bulk Deformation Forming - Rolling Overview - Shaping and Forming Powders Pressing SLS Special Injection Molding Firing/ Sintering 2 Raw Material Molten Material Continuous Casting/Rolling Ingot casting

More information

STRENGTH OF MATERIALS laboratory manual

STRENGTH OF MATERIALS laboratory manual STRENGTH OF MATERIALS laboratory manual By Prof. Shaikh Ibrahim Ismail M.H. Saboo Siddik College of Engineering, MUMBAI TABLE OF CONTENT Sr. No. Title of Experiment page no. 1. Study of Universal Testing

More information

CHAPTER 14. Forging of Metals

CHAPTER 14. Forging of Metals CHAPTER 14 Forging of Metals 2 3 4 5 6 Forging (a) (b) (a) Schematic illustration of the steps involved in forging a bevel gear with a shaft. Source: Forging Industry Association. (b) Landing-gear components

More information

Objectives. This chapter provides fundamental background on processes of drawing of rods, wires and tubes.

Objectives. This chapter provides fundamental background on processes of drawing of rods, wires and tubes. WIRE DRAWING Objectives This chapter provides fundamental background on processes of drawing of rods, wires and tubes. Mathematical approaches for the calculation of drawing load will be introduced. Finally

More information

9. Welding Defects 109

9. Welding Defects 109 9. Welding Defects 9. Welding Defects 109 Figures 9.1 to 9.4 give a rough survey about the classification of welding defects to DIN 8524. This standard does not classify existing welding defects according

More information