Carbon Fibers and Lignocellulosics

Size: px
Start display at page:

Download "Carbon Fibers and Lignocellulosics"

Transcription

1 Carbon Fibers and Lignocellulosics Clive Liu, Huibin Chang, Satish Kumar School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA IPST Executive Conference March 13,

2 Carbon Fibers Carbon fiber research began ~1960. Initially carbon fibers were made from cellulose. Carbon fibers are also made from petroleum pitch. From pitch, carbon fibers with tensile modulus (stiffness) >90% of the theoretical modulus, and high electrical and thermal conductivity can be made. However, pitch based carbon fibers have low compressive strength. Currently, carbon fibers are predominantly made from poly(acrylonitrile) co-polymer. PAN was first made ~1950. Tensile strength of initial carbon fibers made in 1960s was <1 GPa and tensile modulus was <100 GPa. These values represent ~15% and ~10% of the best tensile strength and modulus values achieved today, respectively. 2 Attempts are being made to make carbon fibers from other polymers and materials. This is done in an attempt to make carbon fibers cheaper and more renewable. 2 2

3 PAN based Carbon Fiber Processing Poly(acrylonitrile) (PAN) is polymerized from acrylonitrile. Acrylonitrile is a product of the petroleum industry. Therefore its price fluctuates with the price of oil. PAN polymer is extruded into fiber form from solution. PAN fiber is oxidized in air typically between 200 to 300 ºC, and the oxidation time can be between 1 to 2 hours. Oxidized fiber is then carbonized to a temperature of ºC. This is the carbon fiber used in most structural applications today. Carbonized fiber can be graphitized to ºC for specialized applications. Applications in aerospace and defense systems began in 1980s and in large scale civilian structures ~2010 (e.g. Boeing 787)

4 Carbon Fibers PAN based carbon fiber Carbon Nanotubes Science, 273, 483 (1996) Diameter: 5 µm Tensile strength: 3.1 N/tex (5.6 GPa) Tensile modulus: 155 N/tex (280 GPa) Diameter: 1 nm Tensile strength: N/tex ( GPa) Tensile modulus: 467 N/tex (1060 GPa) 4 4 4

5 40 ºC increase in Tan δ peak temperature at 10 wt% CNT Solvent resistance PAN fiber in the left vial dissolved while PAN/CNT fiber containing 1 wt% CNT did not dissolve even after 30 days 5 5 5

6 Interphase Comparison between composite and nanocomposite Carbon fiber CNT Diameter 5 µm 1 nm Interphase layer thickness Interphase/filler volume ratio 5 nm 5 nm 0.004/1 99/1 Interphase Bulk polymer For creating interphase, a nano material can be times more effective than a conventional reinforcement such as carbon fiber. Carbon Nanotubes act as a template for polymer orientation and nucleating agent for polymer crystallization

7 PAN/Carbon Nanotube Fibers PAN PAN/SWNT (99/1) Stabilized Carbonized 7 HG Chae, ML Minus, A Rasheed, S Kumar, Polymer, 48(13), 3781 (2007). 7 7

8 Fiber spinning system 8 8 8

9 Fiber drawing system Unwinding stand Water rinse Drawing stands stand Drying stand Take-up winder 9 9 9

10 Continuous carbonization line 10 10

11 PAN and PAN/CNT precursor fibers manufactured at Georgia Tech

12 Carbon fiber processed at Georgia Tech

13 Carbon Fibers: Current Challenges After nearly 50 years of development, carbon fiber technology now appears mature Both cost and performance appears to have reached a plateau. Performance: Tensile strength is about 5% of the theoretical value Tensile modulus of the high strength fiber is about 26% of the theoretical value Cost: Energy (1/3) + infrastructure (1/3) + material (1/3) Density: Density of current high strength commercial carbon fibers is about 1.76 g/cc. Recently carbon fibers with density of about 1.2 g/cc have been demonstrated. Scale up of this fiber is expected to require significant effort

14 PAN/Lignin/MWNT Composite Carbon Fiber March 13 th 2014 Hsiang-Hao (Clive) Liu Adviser: Dr. Satish Kumar School of Materials Science and Engineering Institute of Paper Science and Technology 14

15 Why Lignin? Abundant renewable resource: Lignin is the second most available biomacromolecule on earth Second only to cellulose. Low cost: Lignin is mostly regarded as the by-product of the paper manufacturing industry. Department of Energy Targets: Goal: $5/lb Strength: 1.75 GPa Modulus: 175 GPa 15 15

16 Precursor Spinning/Drawing Precursor spinning/drawing conditions PAN/Lignin (PL) PAN/Lignin/CNT (PLC) Solid Content Ratio (PAN/Lignin/CNT) Spin DR x Cold DR x Hot DR 70/30/0 1 x 1.8 x 7.5 = /30/3 1 x 2 x 6.75 = 13.5 PLC composite fiber PL composite fiber 16 16

17 From precursor to carbon fiber Oxidative Stabilization Trial Stabilization of precursor fibers with constant heating rate in temperature range between 250 ºC and 320 ºC with residence time from 150 minutes to 450 minutes. Carbonization Stabilized fibers purged with nitrogen for 40 minutes before heating. Constant heating rate to temperature ranging from 1000 ºC to 1200 ºC. Stabilization/Carbonization Setup 17 17

18 Comparison of Lignin and PAN/Lignin Carbon Fiber properties Carbon Fiber Composition Stream Explosion Lignin (Hydrogenlysis) Stream Explosion Lignin (Phenilysis) Diameter (µm) Tensile Strength (MPa) Tensile Modulus (GPa) Elongation at break (%) Reference 7.6± (Sudo et al., 1992) (Sudo et al., 1993) Acetesolv Lignin (Uraki et al., 1995) Alcell Lignin 31± (Kadla et al., 2002) Hardwood Kraft Lignin 46± (Kadla et al., 2002, 2005) Softwood Kraft Lignin (with Hardwood lignin permeate) Modified Technical (Hardwood) Lignin Zoltek PAN/Lignin (65/35) PAN/Lignin* 36± (Nordström et al., 2012) (Warren, 2012 ORNL Review) (Zoltek,2012) This work PAN/Lignin/CNT* This work *Batch carbonization 18 18

19 Conclusions Successful production of the PAN/Lignin and PAN/Lignin/CNT carbon fibers. Future works Partially replace PAN with lignin in composite fibers. Continuous process of carbonization

20 Carbon Fibers from Polyacrylonitrile(PAN) and Cellulose Nanocrystals (CNC) Huibin Chang Advisor: Dr. Satish Kumar School of Materials Science and Engineering Institute of Paper Science and Technology 20 20

21 Why Cellulose Nanocrystals (CNC)? PAN CNC Tensile strength (GPa) ~ Elastic modulus in axial direction (GPa) ~ Crystallinity (%) The most abundant renewable polymer in the biosphere 21 Objective: Polyacrylonitrile (PAN)/Cellulose nanocrystals (CNCs) composite fibers will be gel spun using dimethyl formamide (DMF) as the solvent. Moon, Robert J., et al. Chemical Society Reviews 40.7 (2011):

22 Solution preparation and spinning PAN/CNC fibers 1. CNCs were dispersed in DMF (dimethyl formamide) 2. PAN was separately dissolved in DMF 3. CNC/DMF solution was added into the PAN/DMF solution 4. Excess solvent was evaporated 5. PAN/CNC/DMF solutions were spun into precursor fiber (Solid Content Ratio: CNC/PAN = 1/99) 6. Control PAN solution was also prepared and spun into precursor fiber 22 22

23 Conclusions The tensile strength, modulus and elongation at break of PAN/CNC fibers at highest draw ratio are increased by 20%, 9% and 16%, respectively when 1wt% CNC is added into the PAN matrix

24 Future Work Characterize the thermal and dynamic mechanical properties Stabilize and carbonize fibers Characterize the mechanical and structural properties of carbonized fibers

25 Functional Fibers, Paper, and Materials

26 Current staff and students Dr. Han Gi Chae Senior Research Engineer Dr. Kishor Gupta Research Scientist II Dr. Yaodong Liu Research Scientist II Dr. Prabhakar Gulgunje Research Engineer II Dr. M. G. Kamath Research Engineer II Dr. Sushanta Ghoshal Postdoctoral Fellow Dr. Vijay Raghavan Postdoctoral Fellow Dr. Chandrani Pramanik Postdoctoral Fellow Dr. Ashok Singh Postdoctoral Fellow An-Ting Chien Graduate Student Brad Newcomb Graduate Student Clive Liu Graduate Student IPST Fellow Amir Davijani Graduate Student Po-Hsiang Wang Graduate Student Huibin Chang Graduate Student IPST Fellow Current and past support and collaborations DARPA AFOSR IPST ONR NSF NIST AFRL Boeing Rice University UIUC G. P. Peterson, B. Feng CNI, Unidym, CCNI Applied Sciences Inc Collaborators and former group members

Studies on PAN/CNC and PAN/Lignin Nanocomposites. Georgia Institute of Technology Satish Kumar s Group Presented by Jeffrey Luo

Studies on PAN/CNC and PAN/Lignin Nanocomposites. Georgia Institute of Technology Satish Kumar s Group Presented by Jeffrey Luo Studies on PAN/CNC and PAN/Lignin Nanocomposites Georgia Institute of Technology Satish Kumar s Group Presented by Jeffrey Luo 1 Outline Background Polyacrylonitrile (PAN)/Carbon Nanotube (CNT) Fibers

More information

Carbon Fibers and Carbon Nanotube based Materials

Carbon Fibers and Carbon Nanotube based Materials Advanced Aerospace Materials: A Beyond The Next Workshop Carbon Fibers and Carbon Nanotube based Materials Satish Kumar School of Materials Science and Engineering Georgia Institute of Technology Atlanta,

More information

Biopolymers for Fibers, Textiles, and beyond

Biopolymers for Fibers, Textiles, and beyond Biopolymers for Fibers, Textiles, and beyond Satish Kumar School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0295 Email: satish.kumar@gatech.edu 1 Fibers in 1900

More information

Processing of High-Strength Polymer Fibers

Processing of High-Strength Polymer Fibers Processing of High-Strength Polymer Fibers Donggang Yao, Professor School of Materials Science & Engineering Georgia Institute of Technology Atlanta, GA 30332 Email: yao@gatech.edu Phone: 404-894-9076

More information

Is Super 5 Rayon possible? Dr. Axel Rußler, DI Bernhard Müller R&D Glanzstoff Industries

Is Super 5 Rayon possible? Dr. Axel Rußler, DI Bernhard Müller R&D Glanzstoff Industries Is Super 5 Rayon possible? Dr. Axel Rußler, DI Bernhard Müller R&D Glanzstoff Industries 10.09.2014 Overview Glanzstoff Industries High Tech Cellulose The Glanzstoff Approach Glanzstoff at a Glance Tire

More information

3D printed Nanocellulosic materials and their composite

3D printed Nanocellulosic materials and their composite 3D printed Nanocellulosic materials and their composite By Vincent Li 1, 2 Advised by Professor H.Qi 1,3, and Professor Y. Deng 1, 2 1 Renewable Bioproducts Institute 2 School of Chemical and Biomolecular

More information

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges

Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Fiber spinning of biopolymers containing nanowhiskers : Possibilities and challenges Aji P. Mathew and Kristiina Oksman Wood and Bionanocomposites, Division of Materials Science Luleå University of Technology,

More information

CARBOXYMETHYL CELLULOSE NANOCOMPOSITES

CARBOXYMETHYL CELLULOSE NANOCOMPOSITES CARBOXYMETHYL CELLULOSE NANOCOMPOSITES YongJae Choi Department of Chemical Engineering and John Simonsen Department of Wood Science & Engineering Oregon State University Outline I. Introduction II. Materials

More information

Development of Biomaterials & Devices from Renewable Resources

Development of Biomaterials & Devices from Renewable Resources Development of Biomaterials & Devices from Renewable Resources Prof. Dr. Marie-Pierre Laborie Dr. ir. Pieter Samyn Institute for Forest Utilization and Works Science Werthmannstrasse 6 79085 Freiburg im

More information

Biodegradable Nanocomposites Reinforced with Cellulose Fibrils

Biodegradable Nanocomposites Reinforced with Cellulose Fibrils Biodegradable Nanocomposites Reinforced with Cellulose Fibrils Qingzheng Cheng Dr. Siqun Wang Dr. Timothy G Rials Tennessee Forest Products Center University of Tennessee June 15, 2007 Outline Introduction

More information

Carbon Nanotube Thread for Multifunctional Structures

Carbon Nanotube Thread for Multifunctional Structures Boeing Fiber Workshop 2008 Carbon Nanotube Thread for Multifunctional Structures NANOWORLD Nanotechnology Nanoized 787 OUTLINE 1. CARBON NANOTUBE (CNT) SYNTHESIS Carbon Nanotube (CNT) Array Substrate

More information

CELLULOSE/POLYSULFONE NANOCOMPOSITES. Graduate Student: Sweda Noorani. Advisors: Dr John Simonsen Dr Sundar Atre

CELLULOSE/POLYSULFONE NANOCOMPOSITES. Graduate Student: Sweda Noorani. Advisors: Dr John Simonsen Dr Sundar Atre CELLULOSE/POLYSULFONE NANOCOMPOSITES Graduate Student: Sweda Noorani Advisors: Dr John Simonsen Dr Sundar Atre OSU Oregon State University Corvallis,Oregon INTRODUCTION CONTENTS EXPERIMENTAL METHODS RESULTS

More information

Forest Biomaterials in Canada: FPInnovations Scientific and Technical Expertise

Forest Biomaterials in Canada: FPInnovations Scientific and Technical Expertise Forest Biomaterials in Canada: FPInnovations Scientific and Technical Expertise Jimmy Jong, PhD. Research Manager for Cellulosic Biomaterials FPInnovations, Canada For Oct. 11, 2017, Uruguay (Symposium

More information

Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite

Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite From the SelectedWorks of Innovative Research Publications IRP India Summer August 1, 2015 Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite

More information

CARBON NANOTUBE GRAFTED CARBON FIBERS: OPTIMUM PROCESS

CARBON NANOTUBE GRAFTED CARBON FIBERS: OPTIMUM PROCESS CARBON NANOTUBE GRAFTED CARBON FIBERS: OPTIMUM PROCESS Kyoung Ju Kim 1, Jeong Min Lee 1, Ji Ho Youk 2, Woong-Ryeol Yu 1 * 1 Department of Materials Science and Engineering, Seoul National University, 599

More information

A Novel Method for Carbon Nanotube Production and the Mechanisms Involved

A Novel Method for Carbon Nanotube Production and the Mechanisms Involved A Novel Method for Carbon Nanotube Production and the Mechanisms Involved Xinfeng Xie 1 Barry Goodell 1, Yuhui Qian 1, Geoffrey Daniel 2, Jody Jellison 3 1 Wood Science and Technology, University of Maine,

More information

MECHANICAL BEHAVIOUR OF THERMOPLASTIC (PES, PBT) CARBON NANOFIBRE COMPOSITES

MECHANICAL BEHAVIOUR OF THERMOPLASTIC (PES, PBT) CARBON NANOFIBRE COMPOSITES MECHANICAL BEHAVIOUR OF THERMOPLASTIC (PES, PBT) CARBON NANOFIBRE COMPOSITES A.Gómez [1,2], B. Ramón [1], A. Torregaray [1], J.R. Sarasua [1] [1] University of the Basque Country (EHU-UPV), Department

More information

Development of Elastic Polylactic Acid Material Using Electron Beam Radiation

Development of Elastic Polylactic Acid Material Using Electron Beam Radiation ELECTRONICS Development of Elastic Polylactic Acid Material Using Electron Beam Radiation Shinichi KANAZAWA Sumitomo Electric Fine Polymer has developed a technology for fabricating a brand new elastic

More information

Nanomaterials Research. Forest Products Laboratory. at the Forest Products Laboratory. Ron Sabo Jerry Winandy Ted Wegner.

Nanomaterials Research. Forest Products Laboratory. at the Forest Products Laboratory. Ron Sabo Jerry Winandy Ted Wegner. Nanomaterials Research at the Forest Products Laboratory Ron Sabo Jerry Winandy Ted Wegner US Forest Service Forest Products Laboratory Madison, WI USA USDA Forest Service Mission Sustain the health, diversity,

More information

Free standing Multilayer Thin Film of Cellulose Nanocrystals

Free standing Multilayer Thin Film of Cellulose Nanocrystals Free standing Multilayer Thin Film of Cellulose Nanocrystals Chaoyang Jiang Department of Chemistry The University of South Dakota Edmonton, June 25, 2009 Cellulose Nanocrystals Nanotechnology R&D Priority

More information

Drying Cellulose Nanocrystal Suspensions

Drying Cellulose Nanocrystal Suspensions Drying Cellulose Nanocrystal Suspensions Abstract. Drying cellulose nanocrystals (CNCs) while maintaining their nanoscale dimensions is a major challenge for uses which require a dry form of the material.

More information

Cellulose Nanofibers from Wheat Straw NDSU Bernie Steele October 12, 2007

Cellulose Nanofibers from Wheat Straw NDSU Bernie Steele October 12, 2007 1 Cellulose Nanofibers from Wheat Straw NDSU Bernie Steele October 12, 2007 Cellulose Nanofibers from Wheat Straw for High-value Green Nanocomposite Materials Applications 2 Outline Why cellulose nanofibers?

More information

Effect of CNTs on Shape memory properties of PLLA/PCL blends

Effect of CNTs on Shape memory properties of PLLA/PCL blends Effect of CNTs on Shape memory properties of PLLA/PCL blends Maryam Amirian 1, Ali Nabipour Chakoli 2, Hossein Afarideh 3, t=0s t=2s t=5s t=10s t=15s t=20s 1 Dep. of Physics, Teachers Uni., Tehran, Iran,

More information

POLY(LACTIC ACID) BASED SINGLE COMPOSITES

POLY(LACTIC ACID) BASED SINGLE COMPOSITES POLY(LACTIC ACID) BASED SINGLE COMPOSITES S. Ouajai 1*, T. Ungtrakul 1, A. Reung-u-rai 1 and R.A. Shanks 2 1 Department of Industrial Chemistry, Faculty of Applied Science, KMUTNB 1518 Piboonsongkarm road,

More information

1/9/13. Table of content LIGNIN-BASED CARBON FIBER! - Introduction and Justification of Research. - Research Objectives. - Proposed Methods

1/9/13. Table of content LIGNIN-BASED CARBON FIBER! - Introduction and Justification of Research. - Research Objectives. - Proposed Methods LIGNIN-BASED CARBON FIBER! ANDREAS ATTWENGER! M.S. CANDIDATE! UNIVERSITY OF TENNESSEE! CENTER FOR RENEWABLE CARBON! NOVEMBER 14, 2012-12:20 PM - ROOM 160 PBB! 2 Table of content - Introduction and Justification

More information

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites High Performance Structure and Materials VI 379 Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites H. Takagi1, A. N. Nakagaito1 & K. Uchida2 1 2 Institute of Technology

More information

Carbonization conditions for electrospun nanofibre of polyacylonitrile copolymer

Carbonization conditions for electrospun nanofibre of polyacylonitrile copolymer Indian Journal of Fibre & Textile Research Vol. 33, September 2008, pp. 345-353 Carbonization conditions for electrospun nanofibre of polyacylonitrile copolymer Yoshihiro Yamashita a & Naoya Aoki The University

More information

Biomaterials Research in MSE at Georgia Tech

Biomaterials Research in MSE at Georgia Tech Biomaterials Research in MSE at Georgia Tech Naresh Thadhani, Chair MSE Advances in Lignocellulosic Processes and Products: A Cross-Disciplinary, Multi-Industry Symposium October 1-2, 2014 www.mse.gatech.edu

More information

Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn

Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn Date Submitted 22 December 2005, Date Accepted 15 June 2006 F. Dabirian 1, Y. Hosseini 2 and S.

More information

Tensile Testing of Bamboo Fiber Reinforced Epoxy Composite

Tensile Testing of Bamboo Fiber Reinforced Epoxy Composite IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 07-11 www.iosrjournals.org Tensile Testing of Bamboo Fiber Reinforced Epoxy Composite R. S. Wani, R.

More information

Spray Deposition Modeling of Carbon Nano-Inks

Spray Deposition Modeling of Carbon Nano-Inks University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Spray Deposition Modeling of Carbon Nano-Inks 2015 John Sparkman University of Central Florida Find similar

More information

Broad Base. Best Solutions. SIGRAFIL Continuous Carbon Fiber Tow

Broad Base. Best Solutions. SIGRAFIL Continuous Carbon Fiber Tow Broad Base. Best Solutions. COMPOSITEs Fibers and MATERIALS SIGRAFIL Continuous Carbon Fiber Tow 2 Carbon fibers and composites made by SGL Group. Q Comprehensive product range Q Integrated value chain

More information

CRYSTALLIZATION EFFECTS OF CARBON NANOTUBES IN POLYAMIDE 12

CRYSTALLIZATION EFFECTS OF CARBON NANOTUBES IN POLYAMIDE 12 CRYSTALLIZATION EFFECTS OF CARBON NANOTUBES IN POLYAMIDE 12 A Thesis Presented to The Academic Faculty by Rolfe Bradley Johnson In Partial Fulfillment of the Requirements for the Degree Master of Polymers

More information

Evaluation of Interphase Properties in Fiber Reinforced Polymer Composite Using Contact Resonance Force Microscopy

Evaluation of Interphase Properties in Fiber Reinforced Polymer Composite Using Contact Resonance Force Microscopy Evaluation of Interphase Properties in Fiber Reinforced Polymer Composite Using Contact Resonance Force Microscopy Sandeep S. Nair, Siqun Wang Tennessee Forest Products Center University of Tennessee Knoxville,

More information

Vibration Analysis of Propeller Shaft Using FEM.

Vibration Analysis of Propeller Shaft Using FEM. Vibration Analysis of Propeller Shaft Using FEM. 1 Akshay G. Khande, 2 Shreyash A. Sable, 3 Vaibhav R. Bidwai, 4 Chandrasekhar B. Aru, 5 Brahmanand S.Jadhav 12345 Mechanical Engineering Department, Babasahebh

More information

EFFECT OF CARBON NANOTUBE DISPERSION ON THE FRACTURE TOUGHNESS OF POLYMERS

EFFECT OF CARBON NANOTUBE DISPERSION ON THE FRACTURE TOUGHNESS OF POLYMERS EFFECT OF CARBON NANOTUBE DISPERSION ON THE FRACTURE TOUGHNESS OF POLYMERS V. Mirjalili, P. Hubert Department of Mechanical Engineering, McGill University 817 Sherbrooke Street West, Montreal, Quebec H3A

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

Composite Materials Raw Materials. Week

Composite Materials Raw Materials. Week Composite Materials Raw Materials Week 2 24.02.2014 Content Reinforcements Matrix Materials Fabrics Prepregs Preforms Molding compound Honeycomb and core materials Introduction Each manufacturing method

More information

Ultrahigh Temperature Composites for Thermal Protection Systems (TPS)

Ultrahigh Temperature Composites for Thermal Protection Systems (TPS) Roadmap - Theme 2 Ops Safety, Payloads and Safety (November 3, 2014, Hosted by FCAAP) Ultrahigh Temperature Composites for Thermal Protection Systems (TPS) Donovan Lui, Fei Liang, Hongjiang Yang, Jay Kapat,

More information

THERMAL CONDUCTION OF NANO-DIAMOND DISPERSED POLYURETHANE NANO-COMPOSITES

THERMAL CONDUCTION OF NANO-DIAMOND DISPERSED POLYURETHANE NANO-COMPOSITES THERMAL CONDUCTION OF NANO-DIAMOND DISPERSED POLYURETHANE NANO-COMPOSITES Andrew P Limmack and Dr H-X Peng ACCIS, University of Bristol Department of Aerospace Engineering Queens Building, University Walk,

More information

Carbon Fiber Reinforced Polyamide 6,6 as Substitution for Metal Used in Car Seat (Automotive Application)

Carbon Fiber Reinforced Polyamide 6,6 as Substitution for Metal Used in Car Seat (Automotive Application) [CARBON FIBER REINFORCED POLYAMIDE] 1 UNIVERSITI TEKNIKAL MALAYSIA MELAKA FACULTY OF MANUFACTURING ENGINEERING DEPARTMENT OF MATERIAL ENGINEERING ACADEMIC YEAR 2015/2016 SEMESTER 3BMFB BMFB 3293 COMPOSITE

More information

DISPERSION EVALUATION OF CARBON NANOTUBE AND MECHANICAL PROPERTIES FOR CARBON NANOTUBE/POLYAMIDE 6

DISPERSION EVALUATION OF CARBON NANOTUBE AND MECHANICAL PROPERTIES FOR CARBON NANOTUBE/POLYAMIDE 6 Materials and Contact Characterisation VIII 257 DISPERSION EVALUATION OF CARBON NANOTUBE AND MECHANICAL PROPERTIES FOR CARBON NANOTUBE/POLYAMIDE 6 KAZUTO TANAKA, SATOSHI JOTOKU, HIROKI MUKAOKU & TSUTAO

More information

Fiber Research Facility. Intertech PIRA GOCarbonFiber 2011 October 5, 2011

Fiber Research Facility. Intertech PIRA GOCarbonFiber 2011 October 5, 2011 Fiber Research Facility Intertech PIRA GOCarbonFiber 2011 October 5, 2011 Agenda Introduction of Harper International Background Relationship to Oak Ridge National Laboratory (ORNL) Carbon Fiber Technology

More information

Novel Malleable Covalent Networks and Their Applications in Repairable Carbon Fiber Reinforced Composites with Full Recyclability

Novel Malleable Covalent Networks and Their Applications in Repairable Carbon Fiber Reinforced Composites with Full Recyclability Novel Malleable Covalent Networks and Their Applications in Repairable Carbon Fiber Reinforced Composites with Full Recyclability Wei Zhang Department of Chemistry and Biochemistry Materials Science and

More information

MICROCELLULAR NANOCOMPOSITE INJECTION MOLDING PROCESS

MICROCELLULAR NANOCOMPOSITE INJECTION MOLDING PROCESS MICROCELLULAR NANOCOMPOSITE INJECTION MOLDING PROCESS Mingjun Yuan (1),Lih-Sheng Turng (1)*, Rick Spindler (2), Daniel Caulfield (3),Chris Hunt (3) (1) Dept. of Mechanical Engineering, University of Wisconsin-Madison,

More information

EFFECTS OF GRAPHITE SELECTION ON THERMALLY CONDUCTIVE COMPOUNDS FOR LED LAMP HEAT SINKS

EFFECTS OF GRAPHITE SELECTION ON THERMALLY CONDUCTIVE COMPOUNDS FOR LED LAMP HEAT SINKS EFFECTS OF GRAPHITE SELECTION ON THERMALLY CONDUCTIVE COMPOUNDS FOR LED LAMP HEAT SINKS Daniele Bonacchi IMERYS Graphite & Carbon, Bodio Switzerland Abstract Thermally conductive compounds are viewed as

More information

STUDIES ON MICROSTRUCTUREAND MECHANICAL PROPERTIES OFMODIFIED LM25 ALUMINIUM ALLOY

STUDIES ON MICROSTRUCTUREAND MECHANICAL PROPERTIES OFMODIFIED LM25 ALUMINIUM ALLOY STUDIES ON MICROSTRUCTUREAND MECHANICAL PROPERTIES OFMODIFIED LM25 ALUMINIUM ALLOY Venkatachalam G 1, Kumaravel A 2,Arun Kumar N 3, Dhanasekaran Rajagopal 4 1,2,4 Department of Mechanical Engineering,

More information

STRUCTURE, PROCESSING, AND PROPERTIES OF POLYACRYLONITRILE/CARBON NANOTUBES COMPOSITE FILMS

STRUCTURE, PROCESSING, AND PROPERTIES OF POLYACRYLONITRILE/CARBON NANOTUBES COMPOSITE FILMS STRUCTURE, PROCESSING, AND PROPERTIES OF POLYACRYLONITRILE/CARBON NANOTUBES COMPOSITE FILMS A Thesis Presented to The Academic Faculty by Huina Guo In Partial Fulfillment of the Requirements for the Degree

More information

Cellulose Nanofiber-reinforced Unsaturated Polyester as a Potential Substitute for Glass Fiber-reinforced Plastics.

Cellulose Nanofiber-reinforced Unsaturated Polyester as a Potential Substitute for Glass Fiber-reinforced Plastics. Cellulose Nanofiber-reinforced Unsaturated Polyester as a Potential Substitute for Glass Fiber-reinforced Plastics. A. N. Nakagaito a,b, S. Sato a,c, A. Sato a,d and H. Yano a a Research Institute for

More information

Axial Tensile Testing of Single Fibres

Axial Tensile Testing of Single Fibres Modern Mechanical Engineering, 2012, 2, 151-156 doi:10.4236/mme.2012.24020 Published Online November 2012 (http://www.scirp.org/journal/mme) Axial Tensile Testing of Single Fibres Prasanna Kumar Ilankeeran,

More information

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization Researcher: Kunbae (Kevin) Noh, Graduate Student, MAE Dept. and CMRR Collaborators: Leon Chen,

More information

Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass

Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass Researchers at the Georgia Institute of Technology have developed a new type of lowtemperature fuel cell that directly converts

More information

Aerogel World s Lightest Material Aerogel Lighter Than Air Aerogel Insulation

Aerogel World s Lightest Material Aerogel Lighter Than Air Aerogel Insulation Aerogel World s Lightest Material Aerogel Lighter Than Air Aerogel Insulation Aerogel is a very special type of foam which is 99.8% air. Aerogel is a low-density solid-state material derived from gel in

More information

CRYSTALLOGRAPHIC MATCHING EFFECT IN SELF-INDUCED NANOHYBRID SHISH-KEBAB STRUCTURE OF POLY E-CAPROLACTONE)

CRYSTALLOGRAPHIC MATCHING EFFECT IN SELF-INDUCED NANOHYBRID SHISH-KEBAB STRUCTURE OF POLY E-CAPROLACTONE) CRYSTALLOGRAPHIC MATCHING EFFECT IN SELF-INDUCED NANOHYBRID SHISH-KEBAB STRUCTURE OF POLY E-CAPROLACTONE) Xiaofeng Wang, 1,2 Yanhong Gao, 2,3 Yiyang Xu, 1,2 Xuyan Li, 1,2 Lin Jiang, 2,3 Qian Li, 1,2* 1

More information

PENETRATION RESISTANCE OF HYBRID FIBRE REINFORCED CONCRETE UNDER LOW VELOCITY IMPACT LOADING

PENETRATION RESISTANCE OF HYBRID FIBRE REINFORCED CONCRETE UNDER LOW VELOCITY IMPACT LOADING Congrès annuel de la Société canadienne de génie civil Annual Conference of the Canadian Society for Civil Engineering Montréal, Québec, Canada 5-8 juin 2002 / June 5-8, 2002 PENETRATION RESISTANCE OF

More information

Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and Nanocomposites

Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and Nanocomposites https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll 4/21/2017 AFRL-AFOSR-VA-TR-2017-0090 Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and Nanocomposites

More information

Technical Specifications

Technical Specifications Technical Specifications Dimafix is a smart adhesive that varies its adherence properties according to the temperature, in the range usually used for 3D printing. Figure 1 shows how Dimafix increases adherence

More information

Available online at ScienceDirect

Available online at  ScienceDirect Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 71 ( 2014 ) 16 21 Experimental Study on Temperature Distribution of Concrete Filled Steel Tube Reinforced Concrete Square Short

More information

CELLULOSIC NANOCOMPOSITE PREPARED BY ACETYLATION OF BACTERIAL CELLULOSE USING SUPERCRITICAL CARBON DIOXIDE

CELLULOSIC NANOCOMPOSITE PREPARED BY ACETYLATION OF BACTERIAL CELLULOSE USING SUPERCRITICAL CARBON DIOXIDE CELLULOSIC NANOCOMPOSITE PREPARED BY ACETYLATION OF BACTERIAL CELLULOSE USING SUPERCRITICAL CARBON DIOXIDE M. Suetsugu, M. Kotera, T. Nishino Graduate School of Engineering, Kobe University Rokko, Nada,

More information

Cold-curing epoxy system based on Araldite LY 564 / Hardener HY 560

Cold-curing epoxy system based on Araldite LY 564 / Hardener HY 560 Ciba Specialty Chemicals Performance Polymers Structural Composites MATRIX SYSTEMS FOR AEROSPACE COMPOSITES MATRIX SYSTEMS FOR INDUSTRIAL COMPOSITES DATA SHEET Cold-curing epoxy system based on Araldite

More information

Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams

Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams CELANESE ENGINEERED MATERIALS Michael Ruby October, 2013 1 Overview

More information

High Modulus Carbon Fibres in Super-Structural Compounds

High Modulus Carbon Fibres in Super-Structural Compounds High Modulus Carbon Fibres in Super-Structural Compounds As a matter of fact, even if composite properties guarantee the best answer to the most severe project requirements, many industrial products can

More information

PERFORMANCE SPECIFICATION SHEET

PERFORMANCE SPECIFICATION SHEET METRIC MIL-PRF-85045/21 26 July 1999 PERFORMANCE SPECIFICATION SHEET CABLE, FIBER OPTIC, EIGHT FIBERS, ENHANCED PERFORMANCE, CABLE CONFIGURATION TYPE 2 (OFCC), FOR SUBMARINE OUTBOARD USE ONLY (NOT FOR

More information

Ultra High Molecular Weight Polyethylene (UHMWPE)

Ultra High Molecular Weight Polyethylene (UHMWPE) Ultra High Molecular Weight Polyethylene (UHMWPE) UTEC is the trade name of the Ultra High Molecular Weight Polyethylene (UHMWPE) developed and produced by Braskem with its own catalyst and production

More information

Key Words: mechanical properties; fibers reinforcement; polypropylene; composites, cotton stalks.

Key Words: mechanical properties; fibers reinforcement; polypropylene; composites, cotton stalks. Cotton Stalks Fiber-Reinforced Polypropylene Composites: Comparison of Experimental Data and Calculated Tensile Strength and Elastic Modulus Dr. Ahmed Ibrahim Seedahmed Department of Plastic Engineering,

More information

CompoTech Technology. The CompoTech Process

CompoTech Technology.  The CompoTech Process CompoTech Technology Precision filament laying, pressing and machined surfaces used for composite milling ram production. CompoTech has perfected their unique axial fibre filament placement and winding

More information

The effect of Nano-fibrillated cellulose on the mechanical properties of polymer films.

The effect of Nano-fibrillated cellulose on the mechanical properties of polymer films. The effect of Nano-fibrillated cellulose on the mechanical properties of polymer films. Gerard Gagnon, Rikard Rigdal, Jake Schual-Berke, Mike Bilodeau and Douglas W. Bousfield Department of Chemical and

More information

The potential for laser processing of metallic composites

The potential for laser processing of metallic composites The potential for laser processing of metallic composites AILU Workshop: Laser processing of polymer, metal and ceramic composites 3 rd December 2008 Presentation by Stephen Kyle-Henney Metal Matrix Composites

More information

Biodegradable Polymer /Clay Nanocomposites Based on Poly(Butylene Adipate-co-Terephthalate) and Poly(Lactic Acid)

Biodegradable Polymer /Clay Nanocomposites Based on Poly(Butylene Adipate-co-Terephthalate) and Poly(Lactic Acid) Biodegradable Polymer /Clay Nanocomposites Based on Poly(Butylene Adipate-co-Terephthalate) and Poly(Lactic Acid) Mahin Shahlari and Sunggyu Lee Department of Chemical and Biological Engineering Missouri

More information

THE EFFECT OF PITCH COMPOSITION ON THE ADSORPTION BEHAVIOR OF Pd-DOPED ACF

THE EFFECT OF PITCH COMPOSITION ON THE ADSORPTION BEHAVIOR OF Pd-DOPED ACF THE EFFECT OF PITCH COMPOSITION ON THE ADSORPTION BEHAVIOR OF Pd-DOPED ACF Halil Levent Tekinalp 1, Eduardo Cervo 1, Mark C. Thies 1, Cristian Contescu 2, Nidia C. Gallego 2, and Dan D. Edie 1 1 Department

More information

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures

SMU 2113 ENGINEERING SCIENCE. PART 1 Introduction to Mechanics of Materials and Structures SMU 2113 ENGINEERING SCIENCE PART 1 Introduction to Mechanics of Materials and Structures These slides are designed based on the content of these reference textbooks. OBJECTIVES To introduce basic principles

More information

Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression Zhifeng u, Zhongfan Chen 1 Abstract A series of tests on cold-formed steel foamed concrete (CSFC) composite

More information

The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite

The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite Paper Presenter: S.H. Allameh 1 A. Akhlaghi 2, M. Noghani 3, M. Emamy 4. 1,4- School of Metallurgy

More information

The kraft pulp mill biorefinery platform

The kraft pulp mill biorefinery platform The kraft pulp mill biorefinery platform Peter Axegård, INNVENTIA AB, Sweden, peter.axegard@innventia.com Niklas berglin, INNVENTIA, Sweden, niklas.berglin@innventia.com Karin Lindgren, INNVENTIA, Sweden,

More information

Dr LJ Erasmus June 2013

Dr LJ Erasmus June 2013 Dr LJ Erasmus June 2013 Self baking Electrode Mr Söderberg, Sem& Westley Det norske Aktieselskabfor Electrokemisk Industri, Oslo 1919 6/14/2013 2 SöderbergElectrodes A Triumph of Materials Engineering

More information

Characterization of Cellulose Nanocrystal Surfaces by SPM

Characterization of Cellulose Nanocrystal Surfaces by SPM Characterization of Cellulose Nanocrystal Surfaces by SPM R.R, Lahiji 1,2, R. Reifenberger 1,2, A. Raman 1,3, Alan Rudie 4, and R. J. Moon 1,4,5 1 Birck Nanotechnology Center, Purdue University 2 Department

More information

Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix

Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix ffect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix A. Allaoui, P. vesque and J. B. Bai * LMSSMAT CNRS UMR8579, cole Centrale Paris, 9229 Châtenay-Malabry, France ABSTRACT

More information

The effects of alkali-silane treatment and filler materials on the tensile and water absorption properties of hemp fibre reinforced polypropylene.

The effects of alkali-silane treatment and filler materials on the tensile and water absorption properties of hemp fibre reinforced polypropylene. The effects of alkali-silane treatment and filler materials on the tensile and water absorption properties of hemp fibre reinforced polypropylene. Lance Paiken A dissertation submitted to the Faculty of

More information

ANALYSIS OF CARBON PLASTICS DESTRUCTION CAUSES BASED ON EPOXY BINDING

ANALYSIS OF CARBON PLASTICS DESTRUCTION CAUSES BASED ON EPOXY BINDING ANALYSIS OF CARBON PLASTICS DESTRUCTION CAUSES BASED ON EPOXY BINDING Natalia Vladimirovna Romanova 1, Lenar Nurgaleevich Shafigullin 1, Gulnaz Robertovna Shafigullina 1, Damir Ramilevich Sarimov 1 1 Kazan

More information

Cold Spray Developments at UTRC

Cold Spray Developments at UTRC Hamilton Sundstrand Sikorsky Pratt & Whitney UTC Fire & Security Otis Elevator UTC Power Carrier Cold Spray Developments at UTRC Aaron Nardi United Technologies Research Center Cold Spray Action Team (CSAT)

More information

Application Development and

Application Development and Cellulose Filament (CF) Demonstration, Application Development and Commercialization Balázs Tolnai, Daniel Archambault, Richard Drolet, Nicolas Duplessis, Mathieu Harvey, Kruger Biomaterials Inc. Kruger

More information

THE EFFECT OF PHTHALOCYANINE PIGMENT ON THE MICROSTRUCTURAL AND MECHANICAL PERFORMANCE OF PROPYLENE- ETHYLENE BLOCK COPOLYMER

THE EFFECT OF PHTHALOCYANINE PIGMENT ON THE MICROSTRUCTURAL AND MECHANICAL PERFORMANCE OF PROPYLENE- ETHYLENE BLOCK COPOLYMER THE EFFECT OF PHTHALOCYANINE PIGMENT ON THE MICROSTRUCTURAL AND MECHANICAL PERFORMANCE OF PROPYLENE- ETHYLENE BLOCK COPOLYMER Major, I.F.M and McNally, G.M. Polymer Processing Research Centre, Queen s

More information

Development of Piezoelectric Nanocomposites for Energy Harvesting and Self-Sensing

Development of Piezoelectric Nanocomposites for Energy Harvesting and Self-Sensing Development of Piezoelectric Nanocomposites for Energy Harvesting and Self- Kenneth J. Loh Assistant Professor Department of Civil & Environmental Engineering University of California, Davis The Applied

More information

4.2.2 Dynamic Mechanical Thermal Analysis (DMTA) and Differential Scanning Calorimetry (DSC)

4.2.2 Dynamic Mechanical Thermal Analysis (DMTA) and Differential Scanning Calorimetry (DSC) hapter 4: Dynamic Mechanical Thermal nalysis (DMT) and Differential Scanning alorimetry (DS) 4.2.2 Dynamic Mechanical Thermal nalysis (DMT) and Differential Scanning alorimetry (DS) Dynamic mechanical

More information

Increasing the interfacial strength in carbon fiber/polypropylene composites by growing CNTs on the fibers

Increasing the interfacial strength in carbon fiber/polypropylene composites by growing CNTs on the fibers Computational Methods and Experimental Measurements XVI 275 Increasing the interfacial strength in carbon fiber/polypropylene composites by growing CNTs on the fibers S. Yumitori 1, Y. Arao 2, T. Tanaka

More information

Versatile Core-Sheath Biofibers using Coaxial Electrospinning

Versatile Core-Sheath Biofibers using Coaxial Electrospinning Mater. Res. Soc. Symp. Proc. Vol. 1094 2008 Materials Research Society 1094-DD06-02 Versatile Core-Sheath Biofibers using Coaxial Electrospinning Daewoo Han 1, Steven T. Boyce 2, and Andrew J. Steckl 1

More information

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS

THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS J. N. Reddy e-mail: jnreddy@tamu.edu Texas A&M University College Station, TX 77843-3123 USA * This document

More information

SPECIALTY MATERIALS, INC.

SPECIALTY MATERIALS, INC. DETERMINATION OF CROSS-PLY LAMINATE STACKING SEQUENCE FOR THE COMPRESSION STRENGTH TESTING OF A UNIDIRECTIONAL BORON EPOXY MATERIAL Submitted to SAMPE Fall Technical Conference Dallas, November 6-9, 2006

More information

Engineering Quantum Dots for Live-Cell Single-Molecule Imaging

Engineering Quantum Dots for Live-Cell Single-Molecule Imaging Engineering Quantum Dots for Live-Cell Single-Molecule Imaging Andrew M. Smith and Shuming Nie Georgia Tech and Emory University Department of Biomedical Engineering 2011 NSF Nanoscale Science and Engineering

More information

Innovative Forest Products Biorefinery

Innovative Forest Products Biorefinery Helsinki University of Technology Innovative Forest Products Biorefinery Adriaan van Heiningen and Tapani Vuorinen Helsinki University of Technology Department of Forest Products Technology Espoo, Finland

More information

Solef. Solef PVDF Aqueous Dispersions. for Lithium Batteries

Solef. Solef PVDF Aqueous Dispersions. for Lithium Batteries Solef Solef PVDF Aqueous Dispersions for Lithium Batteries Innovative Polymerization Technology Solef PVDF is a partially fluorinated, semi-crystalline polymer with excellent thermo-mechanical and chemical

More information

Document No.: NMS 128/2, Revision A, June 21 th, 2011

Document No.: NMS 128/2, Revision A, June 21 th, 2011 NATIONAL INSTITUTE FOR AVIATION RESEARCH Wichita State University Document No.: NMS 128/2, Revision A, June 21 th, 2011 NCAMP Material Specification This specification is generated and maintained in accordance

More information

EVALUATION OF MECHANICAL PROPERTIES OF HEMP-RAMIE FIBERS REINFORCED WITH EPOXY HYBRID COMPOSITES

EVALUATION OF MECHANICAL PROPERTIES OF HEMP-RAMIE FIBERS REINFORCED WITH EPOXY HYBRID COMPOSITES EVALUATION OF MECHANICAL PROPERTIES OF HEMP-RAMIE FIBERS REINFORCED WITH EPOXY HYBRID COMPOSITES Chandrashekar K M 1, Venkate Gowda C 2, N G S Uduppa 3 Department of Mechanical Engineering, Machine Design

More information

Polymer 50 (2009) Contents lists available at ScienceDirect. Polymer. journal homepage:

Polymer 50 (2009) Contents lists available at ScienceDirect. Polymer. journal homepage: Polymer 0 (09) 1868 1876 Contents lists available at ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Generation and characterization of carbon nano-fiber poly(arylene ether sulfone)

More information

Summary. Carbon in solid form exhibit diverse structure and physical properties. It is this diversity

Summary. Carbon in solid form exhibit diverse structure and physical properties. It is this diversity Summary Carbon in solid form exhibit diverse structure and physical properties. It is this diversity coupled with the ability to prepare carbon products in complete random to perfectly aligned torm that

More information

Electrical and Thermal Properties of Electrically Conductive Adhesives Using A Heat-resistant Epoxy Binder

Electrical and Thermal Properties of Electrically Conductive Adhesives Using A Heat-resistant Epoxy Binder Electrical and Thermal Properties of Electrically Conductive Adhesives Using A Heat-resistant Epoxy Binder Masahiro Inoue 1),3) and Johan Liu 1),2) (1) Department of Microtechnology and Nanoscience, Chalmers

More information

POSSIBLE APPLICATIONS FOR NANOCELLULOSE IN PACKAGING Mikael Ankerfors

POSSIBLE APPLICATIONS FOR NANOCELLULOSE IN PACKAGING Mikael Ankerfors POSSIBLE APPLICATIONS FOR NANOCELLULOSE IN PACKAGING 2013-11-18 Mikael Ankerfors NOMENCLATURE Microfibrillated cellulose (MFC) - Original name since the 1980 s Nanocellulose = Collective name for all types

More information

carbon Abstract: 1. Introduction produce the toughness of Nanotubes Elasticity India in a 36- in the tensile strength showed Single-walled

carbon Abstract: 1. Introduction produce the toughness of Nanotubes Elasticity India in a 36- in the tensile strength showed Single-walled World Journal of Nano Science and Engineering, 2011, 1, ** doi: 10.4236/wjnse.2011.110011 Published Online March 20111 (http://www.scirp.org/journal/wjnse) Enhancement of Elastic Modulus of Epoxy Resin

More information

Thermal and Morphological Properties of Thermoplastic Elastomer Nanocomposites Based on PA6/NBR

Thermal and Morphological Properties of Thermoplastic Elastomer Nanocomposites Based on PA6/NBR Iranian Journal of Chemical Engineering Vol. 8, No. 1 (Winter), 2011, IAChE Thermal and Morphological Properties of Thermoplastic Elastomer Nanocomposites Based on PA6/NBR P. Mahallati 1, A. Arefazar 2,

More information

Rapid Hot Pressing Technology for Composite Materials Manufacturing

Rapid Hot Pressing Technology for Composite Materials Manufacturing Rapid Hot Pressing Technology for Composite Materials Manufacturing Formatted Dai Huang 1, Irwin C. Lewis 2, Richard T. Lewis 2 1 GrafTech International Ltd, 12900 Snow Road, Parma, OH 44130, USA 2 Consultant

More information