DEFORMATION MECHANISMS IN TITANIUM. EFFECT OF THE IMPURITY RATE

Size: px
Start display at page:

Download "DEFORMATION MECHANISMS IN TITANIUM. EFFECT OF THE IMPURITY RATE"

Transcription

1 1805 DEFORMATION MECHANISMS IN TITANIUM. EFFECT OF THE IMPURITY RATE M.J. Philippe, 1 aboratoi re de meta 11 urgie, CNAM, Pads, France. C. Esl ing, 1 aboratoi re de meta 11 urgie structura 1 e, Uni vers ite de Metz, France. B. Hocheid, laboratoire de metallurgie, CNAM, Paris, France. introduction Like all other hexagonal materials, titanium has several glide and twin systems likely to operate. The corresponding critical resolved shear stresses (CRSS) vary much with the rates of interstitials. It is usually very difficult to determine these values. This determination requires the use of monocrystals with precise impurity rates, stressed in well defined directions. Moreov~r.these values for the monocrystal cannot be immediately extrapolated to the behaviour of the polycrystals. Thus we prepared polycrystalline samples by a process similar to the industrial one and studied the texture and the behaviour in tension and in compression as well as the deformation mechanisms of these various titanium alloys. Materiel s used Van Arkel titanium was melted by an electric arc and doped in nitrogen, oxygen and iron with respectively 0 to 300 ppm, 2500 ppm and 1000 ppm in weight. These ingots were then cold-rolled down to thickness of 1 mm to obtain a texture similar to that of the industrially produced sheets. The sheets deformed by 50 % were then submitted to vacuum annealing for an hour at 600 C. The non doped material show a grain size of about µ. The interstitial elements (O,N) do not really modify the grain size; the latter decrease weakly as the rate of interstitials increases. On the contrary, the addition of iron produces a rather large decrease of the grain size (Table I). Denomination rates in ppm of weight grain size after 02 Fe N2 annea 1 ing T '\, 50 µ T '\, 50 µ TSO, 3F~ '\, 50 µ - T90 2 4Fe '\, 40 µ Titanium _T Fe '\, 40 µ T Fe '\, 40 µ T90 2 7Fe '\, 30 µ T OFe '\, 20 µ T9024Fe1N '\, 40 µ T90 2 4Fe3N '\, 40 µ Table I The grain size as a function of the impurity rate.

2 1806 Textures The various samples show similar textures, the major component being close to {2115}<10lO>(fig.1). This preferred orientation is so strong that itcan be easily apprehended by a simple pole figures analysis without resorting to full three - dimensional ODF calculation (1-2). RO a) b) Fig. 1 - Texture of the sheets Pole figure {0002} a)-and {10l1} b) However, an increase of the oxygen rate slightly decreases,the tilt of the c axes with respect to the normal to the sheet plane (from 35 to 25 in the cases of our samples). These results are similar to those given by Larson et al (3). As we will see later a high rate of oxygen inhibits the twinning and the texture evolution observed is in agreement with the results of Thornburg (4) showing that the stable orientation of the c axes is at 35 from DN towards the transverse direction when twinning operates and becomes central when it does not. This was confirmed by our results with zirconium (5). Analysis of the plastic range of the tensile curves All the t~nsile curves of titanium show a kink at the yield point. The length of the plateau following this kink increases with the rate of interstitial impurities. Oxygen also increases appreciably the values of the yield stress (Re) and of the fracture stress (Rm). At the same time the maximal uniform elongation (eu) and the total elongation (et) decrease (tab le I I). The best modelling of the stress-strain curve (cr, ) obtained from the experimental points is achieved with a Jaoul-Crussard type representation (6). It is shown in this study that the strain hardening exponent n varies during the deformation. By plotting lnlicr versus ln, it is possible to find out, if n has one or several values, in relation to the slope of the curve (7). All the titanium alloys show at least two or even three stages when uniformely elongated from 0 to 12%. The first stage always corresponds to a relatively high n exponent. This holds whatever the alloy and the orientation of the tensile stress. Sometimes it increases up to 5% elongation \\fiereas it decreases down to 1 or 2% with high purity materials.. On the contrary, the exponent n associated to the second stage is very small or even practically zero. Finally the third stage appears only after 8% of elongation when the alloys are highly doped in oxygen. The hardening coefficient is negative, which indicates that diffuse necking has been reached. (tab 1 e I I I).

3 1807 Denomination et % eu % Re Rm RD TD RD TD RD TD RD TD T TB T502 3Fe T9024Fe 48, T18024Fe 37,1 35, T2502 4Fe , ,4 43, T902?Fe ,2 35,9 130 T9021 OFe ,5 32, T9024Fe 1N2 37, T902 4Fe 3N2 39,5 41, , ~~----~--~---~--~--~- Hv Table II Results of the tensile test in function of the impurity rate. T802 T90 2 4Fe T Fe Denomination T Fe - n n n n Stage I Stage I I Stage III RO TD RD TO RD TD RD TD T90 2 4Fe3N 2 RD TD Table III :. Values of the strain hardening exponent n in the 0-12 % range of elongation. Forming limit diagrams The curves have been drawn from Irsid type simulation tests, only in the limit cases of uniaxial tension and symmetrical biaxial expansion. In the case of uniaxial tension, the best characteristics are obtained with pure or iron-doped materials. The effect of oxygen is well marked in the field of biaxial expansion. An increase of the oxygen rate corresponds to a marked decrease of the major deformations e: 1 e: 2 at necking and fracture. An

4 1808 enrichment of titanium with iron does not modify the deformations much at necking and at fracture. (Fig. 2) ~2 " 1 2. Fig. 2 : Forming limit diagrams at necking Discussion Deformation mechanisms in uniaxial tension As the texture of these materials is very sharp, we consider the ideal orientation corresponding to the major component. In a uniaxial tension test (in RD or in TD) the orientation of the lattice favours prismatic glide. The Schmid's factor for two of the three prismatic systems amounts to 0.43 for a tension in R.D and to 0.29 in T.D. Micrographies in optical or electronic microscopy show that the glides often share a common slip direction at the beginning of deformation (fig. 3). Fig.3 Optical micrography at the early deformation stage. Fig.4 Cross slip at 7 % of deforrnation.

5 1809 This can be understood by the narrow orientation of most crystallites. Thus, the glides easily cross the grain boundaries at the very beginning of deformation. When the deformation rate increases, other slip lines appear within grain~ corresponding to slip on another prismatic plane (fig. 4). Twinning of {1012} or {1122} type appear at all the deformation stages and in all the Ti-alloys, except for those with high rates of interstitial elements ('V2000 ppm). It also appears less frequentely in the T80 2 alloy for whick no iron has been added. Twinning allows for stronger deformations at necking and stronger full deformations (in tension) on the forming limit diagrams. The mechanisms in biaxial expansion In equibiaxial expansion, the initial orientation of the lattice is not favorable to prismatic glide (Schmid's factor amounting to 0.14). However titanium twins during deformation at room temperature ({10l2} and {1122} twin types). Twinning is unusual or even non-existent in the case of samples strongly charged with oxygen, which accounts for the poor formability of these alloys in expansion (5-8). In addition to its contribution to the whole deformation, the reorientation of the twinned lattice allows for the prismatic slip to become active (fig. 5) (corresponding Schmid's factor amounts to 0.3 in the {1012} twin). Fig.5 : Prismatic slip within a {1012} twin. The intervention of twinning and its consequences The twinning process may be divided into 2 stages: first, nucleation and then propagation of the partial dislocations (emissary dislocations (9)) generating the twinned volume. Nucleation is easier with a low stacking fault energy associated to high values of the local stresses. This applies to hexagonal metals with the c/a ratio far from the ideal compactness and with, moreover, some rate of ~~~~!i!~!i2~~! elements deforming the lattice. The effect of an increasing grain size is to increase the true local stress.

6 1810 Finally, the twin propagation is only possible if the metal or alloy is not excessively charged with interstitial elements such as 0 2, N 2 which hinders the propagation of the-part1ai-dislocations and therefore the development of the twin. The above hypotheses are supported by the following experimental observations. There is no twinning in ultra-pure metals. On the contrary, twinning develops well in titanium doped with iron but with little oxygen and nitrogen and when the grain size is relatively high. Finally, twinning develops uneasily or not at all when titanium is highly charged with 02 In the latter case the micrographs show the existence of micro-twins( < 0.1 µ) in the neighbourhood of grain boundaries and these micro-twins have not extended. ~~ jjr 5~~". References (1) (2) (3) (4) (5) (6) (7) (8) (9) Fig.6 Micro-twins in the neighbourhood of a grain boundary. H.J. Bunge "Texture analysis in Materials Science" Butterworth,London (1982). H.J. Bunge, C. Esling (Ed) "Quantitative Texture analysis" S.F.M, Paris and D.G.M, Metallurgy Information New-York, OberUrsel (1982). F.R. Larson, A. Zarkades, P.H. Avery "Titanium Sciences and technology" (1973). D.R. Thornburg, Thesis Carnegie-Mellon University, Pittsburgh (1971). M.J. Philippe, Thesis Universite de Metz, France (1983). C. Crussard, B. Jaoul, Revue Metallurgie 47 (1950) M.J. Philippe, C. Baudet, B. Hocheid, Mem. Sci. Rev. Met. 10 (1982). M.J. i;uillaume, C. Beauvais, B. Hocheid, Icotom 6, Tokyo, Japan (1981). A.W. Sleeswyk, Acta. Met., 10 (1962) 705.

Microstructural and Textural Evolution by Continuous Cyclic Bending and Annealing in a High Purity Titanium

Microstructural and Textural Evolution by Continuous Cyclic Bending and Annealing in a High Purity Titanium Materials Transactions, Vol. 45, No. 9 (24) pp. 2826 to 2831 #24 The Japan Institute of Metals Microstructural and Textural Evolution by Continuous Cyclic Bending and Annealing in a High Purity Titanium

More information

Chapter 8: Strain Hardening and Annealing

Chapter 8: Strain Hardening and Annealing Slide 1 Chapter 8: Strain Hardening and Annealing 8-1 Slide 2 Learning Objectives 1. Relationship of cold working to the stress-strain curve 2. Strain-hardening mechanisms 3. Properties versus percent

More information

Anisotropy paramder evaluation in textured titanium alloy sheets

Anisotropy paramder evaluation in textured titanium alloy sheets Anisotropy paramder evaluation in textured titanium alloy sheets Dr. V.N. SEREBRYANY, Dr. R.G. KOKNAEV '.. All - Russia Institute of Light Alloys, Russia, 121596 Mose.ow, Gorbunova str., 2.... :-. ANNOTATION

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing

Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing To cite

More information

The Effect of Crystallographic Texture on the Wrap Bendability in AA5754-O Temper Sheet Alloy

The Effect of Crystallographic Texture on the Wrap Bendability in AA5754-O Temper Sheet Alloy Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 The Japan Institute of Light Metals pp. 607-612 607 The Effect of Crystallographic Texture

More information

Module-6. Dislocations and Strengthening Mechanisms

Module-6. Dislocations and Strengthening Mechanisms Module-6 Dislocations and Strengthening Mechanisms Contents 1) Dislocations & Plastic deformation and Mechanisms of plastic deformation in metals 2) Strengthening mechanisms in metals 3) Recovery, Recrystallization

More information

The effect of composition and temperature on the deformation behaviour of magnesium-aluminium binary alloys

The effect of composition and temperature on the deformation behaviour of magnesium-aluminium binary alloys The effect of composition and temperature on the deformation behaviour of magnesium-aluminium binary alloys by Ajay Kumar Mahato A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

Texture and properties - II

Texture and properties - II Texture and properties - II Texture and Hall-Petch strength The Hall-Petch equation 0 k d - ½ where, 0 = k = d = lattice frictional stress locking parameter average grain size modifies for textured polycrystals

More information

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning

More information

Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy

Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy Materials Transactions, Vol. 44, No. 11 (2003) pp. 2276 to 2281 #2003 The Japan Institute of Metals Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy Y. N. Wang 1;2 and J.

More information

Design of High Strength Wrought Magnesium Alloys!

Design of High Strength Wrought Magnesium Alloys! Design of High Strength Wrought Magnesium Alloys! Joseph Robson! School of Materials! University of Manchester UK! joseph.robson@manchester.ac.uk! ! Strengthening of Mg! Mg has low density (2/3 Al, 1/4

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

Formation of texture and anisotropy of shape memory effect in Fe-Mn-Si-Co-Cr alloy

Formation of texture and anisotropy of shape memory effect in Fe-Mn-Si-Co-Cr alloy J. Phys. IVFrance 11 (200fc) Pr8-211 EDP Sciences, Les Ulis Formation of texture and anisotropy of shape memory effect in Fe-Mn-Si-Co-Cr alloy K.K. Jee, J.O. Song 1, W.Y. Jang 2, M.C. Shin and C.S. Choi

More information

Deformation characterization of cartridge brass

Deformation characterization of cartridge brass Indian Journal of Engineering & Materials Sciences Vol. 20, August 2013, pp. 283-288 Deformation characterization of cartridge brass Arun Kumar Verma a, A Shingweker b, M Nihichlani b, V Singh b & Prantik

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

A DISLOCATION MODEL FOR THE PLASTIC DEFORMATION OF FCC METALS AN ANALYSIS OF PURE COPPER AND AUSTENITIC STEEL

A DISLOCATION MODEL FOR THE PLASTIC DEFORMATION OF FCC METALS AN ANALYSIS OF PURE COPPER AND AUSTENITIC STEEL A DISLOCATION MODEL FOR THE PLASTIC DEFORMATION OF FCC METALS AN ANALYSIS OF PURE COPPER AND AUSTENITIC STEEL Background In the bcc model for work hardening in single phase materials, see (6), it is assumed

More information

Fundamentals of Plastic Deformation of Metals

Fundamentals of Plastic Deformation of Metals We have finished chapters 1 5 of Callister s book. Now we will discuss chapter 10 of Callister s book Fundamentals of Plastic Deformation of Metals Chapter 10 of Callister s book 1 Elastic Deformation

More information

Influence of Stress Ratio of Biaxial Tensile Test on the Lüders Band Formation in Al-Mg Alloy Sheets

Influence of Stress Ratio of Biaxial Tensile Test on the Lüders Band Formation in Al-Mg Alloy Sheets Proceedings of the 9 th International Conference on Aluminium Alloys (2004) Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd 799 Influence of Stress Ratio

More information

Strengthening Mechanisms

Strengthening Mechanisms Strengthening Mechanisms The ability of a metal/ alloy to plastically deform depends on the ability of dislocations to move. Strengthening techniques rely on restricting dislocation motion to render a

More information

MMPDS January 2003 CHAPTER 5 TITANIUM

MMPDS January 2003 CHAPTER 5 TITANIUM CHAPTER 5 TITANIUM 5.1 GENERAL This chapter contains the engineering properties and related characteristics of titanium and titanium alloys used in aircraft and missile structural applications. General

More information

Formability and Crystallographic Texture in Novel Magnesium Alloys

Formability and Crystallographic Texture in Novel Magnesium Alloys Formability and Crystallographic Texture in Novel Magnesium Alloys Carlos Soto, Dr. Pnina Ari-Gur, Andreas, Quojo Quainoo, Dr. Betsy Aller, Dr. Andrew Kline Western Michigan University Abstract By looking

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Elastic deformation Plastic deformation Fracture II. Stable Plastic Deformation S s y For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation III. Unstable

More information

Dislocations and Plastic Deformation

Dislocations and Plastic Deformation Dislocations and Plastic Deformation Edge and screw are the two fundamental dislocation types. In an edge dislocation, localized lattice distortion exists along the end of an extra half-plane of atoms,

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline Creep and High Temperature Failure Outline Creep and high temperature failure Creep testing Factors affecting creep Stress rupture life time behaviour Creep mechanisms Example Materials for high creep

More information

The Effect of Nitrogen on Martensite Formation in a Cr-Mn-Ni Stainless Steel

The Effect of Nitrogen on Martensite Formation in a Cr-Mn-Ni Stainless Steel The Effect of Nitrogen on Martensite Formation in a Cr-Mn-Ni Stainless Steel T. Biggs, R. Knutsen To cite this version: T. Biggs, R. Knutsen. The Effect of Nitrogen on Martensite Formation in a Cr-Mn-

More information

Strain path change effect on dislocation microstructure of multicrystalline copper sheets

Strain path change effect on dislocation microstructure of multicrystalline copper sheets Materials Chemistry and Physics 98 (2006) 44 50 Strain path change effect on dislocation microstructure of multicrystalline copper sheets N.A. Sakharova, J.V. Fernandes Departamento de Engenharia Mecânica

More information

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10 Lectures 9 and 10 Chapter 7: Dislocations & Strengthening Mechanisms Dislocations & Materials Classes Metals: Disl. motion easier. -non-directional bonding -close-packed directions for slip. electron cloud

More information

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 34L STAINLESS STEEL H.-J. Christ, C. K. Wamukwamba and H. Mughrabi The fatigue behaviour of the austenitic stainless steel AISI34L

More information

Influence of Texture on the Plastic Anisotropy of Mg Alloy Determined by Experimental and Numerical Investigation

Influence of Texture on the Plastic Anisotropy of Mg Alloy Determined by Experimental and Numerical Investigation International Journal of Innovations in Materials Science and Engineering (IMSE), VOL. 1, NO. 3 108 Influence of Texture on the Plastic Anisotropy of Mg Alloy Determined by Experimental and Numerical Investigation

More information

MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY

MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY TEQIP Workshop on HRXRD, IIT Kanpur, 05 Feb 2016 MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY K.S. Suresh Department of Metallurgical and Materials Engineering Indian Institute of

More information

Engineering Materials

Engineering Materials Engineering Materials Heat Treatments of Ferrous Alloys Annealing Processes The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time

More information

ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation

ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation Anastasia Tzoumaka Fall 2017 Intorduction: Single crystals, are monocrystalline

More information

The Influence of Sheet Metal Anisotropy on Laser Forming Process (101) ABSTRACT 1. INTRODUCTION 2. BACKGROUND 2.1 Deformation textures in BCC

The Influence of Sheet Metal Anisotropy on Laser Forming Process (101) ABSTRACT 1. INTRODUCTION 2. BACKGROUND 2.1 Deformation textures in BCC The Influence of Sheet Metal Anisotropy on Laser Forming Process (11) Peng Cheng and Y. Lawrence Yao, Department of Mechanical Engineering, Columbia University, New York, NY 17, USA ABSTRACT Cold rolled

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Deformation Twinning in Bulk Aluminum with Coarse Grains

Deformation Twinning in Bulk Aluminum with Coarse Grains Proceedings of the 12th International Conference on Aluminium Proceedings Alloys, of the September 12th International 5-9, 2010, Yokohama, Conference Japan on 2010 Aluminum The Japan Alloys, Institute

More information

TENSION/COMPRESSION ASYMMETRY IN CREEP BEHAVIOR OF A Ni-BASED SUPERALLOY

TENSION/COMPRESSION ASYMMETRY IN CREEP BEHAVIOR OF A Ni-BASED SUPERALLOY Pergamon Scripta Materialia, Vol. 41, No. 5, pp. 461 465, 1999 Elsevier Science Ltd Copyright 1999 Acta Metallurgica Inc. Printed in the USA. All rights reserved. 1359-6462/99/$ see front matter PII S1359-6462(99)00191-8

More information

CRYSTALLOGRAPHIC TEXTURE AND MECHANICAL PROPERTIES IN HIGH MARTENSITIC DUAL PHASE STEELS. S. Barella, R. Venturini,C. Mapelli

CRYSTALLOGRAPHIC TEXTURE AND MECHANICAL PROPERTIES IN HIGH MARTENSITIC DUAL PHASE STEELS. S. Barella, R. Venturini,C. Mapelli CRYSTALLOGRAPHIC TEXTURE AND MECHANICAL PROPERTIES IN HIGH MARTENSITIC DUAL PHASE STEELS S. Barella, R. Venturini,C. Mapelli Politecnico di Milano-Dipartimento di Meccanica-Sezione Materiali Via La Masa

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

Defects in solids http://www.bath.ac.uk/podcast/powerpoint/inaugural_lecture_250407.pdf http://www.materials.ac.uk/elearning/matter/crystallography/indexingdirectionsandplanes/indexing-of-hexagonal-systems.html

More information

Deformation textures in wire drawn perlitic steel

Deformation textures in wire drawn perlitic steel Int J Mater Form (2010) 3:7 11 DOI 10.1007/s12289-009-0410-3 ORIGINAL RESEARCH Deformation textures in wire drawn perlitic steel M. Zidani & S. Messaoudi & T. Baudin & D. Solas & M. H. Mathon Received:

More information

where n is known as strain hardening exponent.

where n is known as strain hardening exponent. 5.1 Flow stress: Flow stress is the stress required to sustain a certain plastic strain on the material. Flow stress can be determined form simple uniaxial tensile test, homogeneous compression test, plane

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

CHARACTERIZATION OF TITANIUM ALLOYS FOR CRYOGENIC APPLICATIONS

CHARACTERIZATION OF TITANIUM ALLOYS FOR CRYOGENIC APPLICATIONS CHARACTERIZATION OF TITANIUM ALLOYS FOR CRYOGENIC APPLICATIONS M. Reytier, F. Kircher, B. Levesy CEA Saclay, DSM / DAPNIA / STCM Gif sur Yvette, 91191, France ABSTRACT Titanium alloys are employed in the

More information

Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys

Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys Materials Transactions, Vol. 45, No. 4 (24) pp. 19 to 195 Special Issue on Frontiers of Smart Biomaterials #24 The Japan Institute of Metals Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga

More information

Lecture # 11 References:

Lecture # 11 References: Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC Dr.Haydar Al-Ethari

More information

Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion

Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion Materials Sciences and Applications, 213, 4, 768-772 Published Online December 213 (http://www.scirp.org/journal/msa) http://dx.doi.org/1.4236/msa.213.41297 Strain Capacities Limits of Wrought Magnesium

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

577 METZ. F ROYER (1) NADARI (2) F YILA ca P LIPINSKI 2 D CECCALDI () N BERVEILLER () P PENELLE (a)

577 METZ. F ROYER (1) NADARI (2) F YILA ca P LIPINSKI 2 D CECCALDI () N BERVEILLER () P PENELLE (a) Textures and Microstructures, 1991, Vols 14-18, pp. 1129-1134 Reprints available from the publisher Photocopying permitted by license only (C) 1991 Gordon and Breach Science Publishers SA Printed in the

More information

On the Portevin-Le Chatelier instabilities in the industrial Al-2.5%Mg alloy

On the Portevin-Le Chatelier instabilities in the industrial Al-2.5%Mg alloy On the Portevin-Le Chatelier instabilities in the industrial Al-2.5%Mg alloy N. CHIBANE, H. AIT-AMOKHTAR Laboratoire de Physico-Chimie des Matériaux et Catalyse (LPCMC), Université A. Mira de Béjaia, 06000,

More information

Effect of Stacking Fault Energy on Evolution of Recrystallization Textures in Drawn Wires and Rolled Sheets

Effect of Stacking Fault Energy on Evolution of Recrystallization Textures in Drawn Wires and Rolled Sheets Materials Science Forum Vols. 495-497 (2005) pp. 1243-1248 online at http://www.scientific.net 2005 Trans Tech Publications, Switzerland 194 Effect of Stacking Fault Energy on Evolution of Recrystallization

More information

WEEK FOUR. This week, we will Define yield (failure) in metals Learn types of stress- strain curves Define ductility.

WEEK FOUR. This week, we will Define yield (failure) in metals Learn types of stress- strain curves Define ductility. WEEK FOUR Until now, we Defined stress and strain Established stress-strain relations for an elastic material Learned stress transformation Discussed yield (failure) criteria This week, we will Define

More information

Microstructures and Mechanical Properties of Ultra Low Carbon IF Steel Processed by Accumulative Roll Bonding Process

Microstructures and Mechanical Properties of Ultra Low Carbon IF Steel Processed by Accumulative Roll Bonding Process Materials Transactions, Vol. 43, No. 9 (22) pp. 232 to 2325 c 22 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Microstructures and Mechanical Properties of Ultra Low Carbon IF Steel Processed by

More information

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number:

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Instructions: Answer all questions and show your work. You will not receive partial credit unless you show your work.

More information

High-Performance, High-Strength Steel Sheets for Exposed Auto Body Panels

High-Performance, High-Strength Steel Sheets for Exposed Auto Body Panels JFE TECHNICAL REPORT No. 10 (Dec. 2007) High-Performance, High-Strength Sheets for Exposed Auto Body Panels FUJITA Takeshi *1 URABE Toshiaki *2 SAKURAI Michitaka *3 Abstract: JFE has developed two types

More information

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature. Final Exam Wednesday, March 21, noon to 3:00 pm (160 points total) 1. TTT Diagrams A U.S. steel producer has four quench baths, used to quench plates of eutectoid steel to 700 C, 590 C, 350 C, and 22 C

More information

Texture development during cold and warm rolled samples of AZ31B magnesium alloy

Texture development during cold and warm rolled samples of AZ31B magnesium alloy Texture development during cold and warm rolled samples of AZ31B magnesium alloy Litzy L. Choquechambi Catorceno1;Luis Flavio Gaspar Herculano1; Hamilton Ferreira Gomes de Abreu 1 1UFC (Federal University

More information

EVOLUTION OF HOT-ROLLED TEXTURE DURING COLD ROLLING AND ANNEALING IN TI-IF STEEL

EVOLUTION OF HOT-ROLLED TEXTURE DURING COLD ROLLING AND ANNEALING IN TI-IF STEEL Advances in Materials Science and Engineering: An International Journal (MSEJ), Vol., No., September EVOLUTION OF HOT-ROLLED TEXTURE DURING COLD ROLLING AND ANNEALING IN TI-IF STEEL Guo Yan-hui,, Zhang

More information

EFFECT Of Zr, Sn AND Al ADDITION ON MECHANICAL PROPERTIES OF

EFFECT Of Zr, Sn AND Al ADDITION ON MECHANICAL PROPERTIES OF EFFECT Of Zr, Sn AND Al ADDITION ON MECHANICAL PROPERTIES OF METASTABLE p TITANIUM ALLOYS S.Isiyama, S.Hanada Nippon S~ainless Steel Co., Ltd. Minatocho, Jyoetsu, Niigata-ken, 942 Japan Institute for Materials

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Origins of Strength and Ductility in Mg Y Alloys. Xiaohui Jia ( Supervisor: Dr.Marek Niewczas ) 701 Graduate Seminar 18 th December,2012

Origins of Strength and Ductility in Mg Y Alloys. Xiaohui Jia ( Supervisor: Dr.Marek Niewczas ) 701 Graduate Seminar 18 th December,2012 Origins of Strength and Ductility in Mg Y Alloys Xiaohui Jia ( Supervisor: Dr.Marek Niewczas ) 71 Graduate Seminar 18 th December,212 Outline 2 Introduction Background Slip systems and twin types in Magnesium

More information

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling Materials Transactions, Vol. 48, No. 2 (07) pp. 121 to 126 #07 The Japan Institute of Metals Effect of Li Addition on Synthesis of - BCC Alloys by means of Ball Milling Kohta Asano, Hirotoshi Enoki and

More information

In situ analysis of the influence of twinning on the strain hardening rate and fracture mechanism in AZ31B magnesium alloy

In situ analysis of the influence of twinning on the strain hardening rate and fracture mechanism in AZ31B magnesium alloy J Mater Sci (2015) 50:2532 2543 DOI 10.1007/s10853-014-8812-0 In situ analysis of the influence of twinning on the strain hardening rate and fracture mechanism in AZ31B magnesium alloy Michal Gzyl Raphaël

More information

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel To be presented at Materials Science & Technology 2009 Conference (MS&T 09) October 25-29, 2009, Pittsburgh, PA Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade

More information

Modeling the evolution of orientation distribution functions during grain growth of some Ti and Zr alloys

Modeling the evolution of orientation distribution functions during grain growth of some Ti and Zr alloys Materials Science Forum Vols. 558-559 (2007) pp. 1163-1168 online at http://www.scientific.net (2007) Trans Tech Publications, Switzerland Modeling the evolution of orientation distribution functions during

More information

Ductility of Ultra High Purity Copper

Ductility of Ultra High Purity Copper Ductility of Ultra High Purity Copper S. Fujiwara, K. Abiko To cite this version: S. Fujiwara, K. Abiko. Ductility of Ultra High Purity Copper. Journal de Physique IV Colloque, 1995, 05 (C7), pp.c7-295-c7-300.

More information

Recrystallization Behavior of Cold Rolled Alloy 718. R.P. Singh, J.M. Hyzak, T.E. Howson and R.R. Biederman *

Recrystallization Behavior of Cold Rolled Alloy 718. R.P. Singh, J.M. Hyzak, T.E. Howson and R.R. Biederman * Recrystallization Behavior of Cold Rolled Alloy 718 R.P. Singh, J.M. Hyzak, T.E. Howson and R.R. Biederman * Wyman-Gordon Company, North Grafton, MA 01536 * Worcester Polytechnic Institute, Worcester,

More information

E-BRITE E-BRITE. Technical Data Sheet. Stainless Steel: Superferritic GENERAL PROPERTIES PLANAR SOLID OXIDE FUEL CELLS CHEMICAL COMPOSITION

E-BRITE E-BRITE. Technical Data Sheet. Stainless Steel: Superferritic GENERAL PROPERTIES PLANAR SOLID OXIDE FUEL CELLS CHEMICAL COMPOSITION E-BRITE Stainless Steel: Superferritic (UNS 44627, ASTM Type XM-27) GENERAL PROPERTIES E-BRITE alloy is a high purity ferritic stainless steel which combines excellent resistance to corrosion and oxidation

More information

Prediction of plastic anisotropy of textured polycrystalline sheets. based on a new single crystal model

Prediction of plastic anisotropy of textured polycrystalline sheets. based on a new single crystal model Prediction of plastic anisotropy of textured polycrystalline sheets based on a new single crystal model Nitin Chandola, Oana Cazacu, Benoit Revil-Baudard, Department of Mechanical and Aerospace Engineering,

More information

MAX-PLANCK PROJECT REPORT

MAX-PLANCK PROJECT REPORT FINITE ELEMENT SIMULATION OF PLASTIC DEFORMATION OF STEELS MAX-PLANCK PROJECT REPORT D. Raabe, F. Roters Max-Planck-Institut für Eisenforschung Max-Planck-Str. 1 40237 Düsseldorf Germany February 2004,

More information

MECHANICAL PROPERTIES PROPLEM SHEET

MECHANICAL PROPERTIES PROPLEM SHEET MECHANICAL PROPERTIES PROPLEM SHEET 1. A tensile test uses a test specimen that has a gage length of 50 mm and an area = 200 mm 2. During the test the specimen yields under a load of 98,000 N. The corresponding

More information

THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION

THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION The Rev. texture Adv. Mater. strengthening Sci. 31 (2012) effect 157-162 in a magnesium alloy processed by severe plastic deformation 157 THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED

More information

AN OVERVIEW OF THE HISTORY OF PLASTICITY THEORY

AN OVERVIEW OF THE HISTORY OF PLASTICITY THEORY 1 AN OVERVIEW OF THE HISTORY OF PLASTICITY THEORY INTRODUCTION Plasticity theory deals with yielding of materials, often under complex states of stress. Plastic deformation, unlike elastic deformation,

More information

Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys* 1

Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys* 1 Materials Transactions, Vol. 5, No. 12 (9) pp. 2726 to 273 Special Issue on Low Cost Reduction Processes, Roles of Low Cost Elements and Interstitial Elements, and Microstructural Control for Generalization

More information

Recrystallization Theoretical & Practical Aspects

Recrystallization Theoretical & Practical Aspects Theoretical & Practical Aspects 27-301, Microstructure & Properties I Fall 2006 Supplemental Lecture A.D. Rollett, M. De Graef Materials Science & Engineering Carnegie Mellon University 1 Objectives The

More information

Tensile Behavior and Cold Workability of Ti-Mo Alloys

Tensile Behavior and Cold Workability of Ti-Mo Alloys Materials Transactions, Vol. 45, No. 5 (2004) pp. 1571 to 1576 Special Issue on Recent Research and Developments in Titanium and Its Alloys #2004 The Japan Institute of Metals Tensile Behavior and Cold

More information

Practical Methods for Estimating Formability of Sheet Materials

Practical Methods for Estimating Formability of Sheet Materials Practical Methods for Estimating Formability of Sheet Materials By David Diaz Infante, Berk Aykas, Ali Fallahiarezoodar and Taylan Altan Formability is the ability of a sheet material of a given composition

More information

Influences of Silicon on Properties of Hard Drawn Aluminium Wire

Influences of Silicon on Properties of Hard Drawn Aluminium Wire Influences of Silicon on Properties of Hard Drawn Aluminium Wire XueXia XU 1, a*, YanTing FENG 1,b, DongYu LIU 2,3,c, Yong WANG 1,d, WenBin LI 1,e, KangHua YAN 2,f and BaoRang LI 2,3,g 1 State Grid Hebei

More information

Microstructure and texture of asymmetrically rolled aluminium and titanium after deformation and recrystallization

Microstructure and texture of asymmetrically rolled aluminium and titanium after deformation and recrystallization IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Microstructure and texture of asymmetrically rolled aluminium and titanium after deformation and recrystallization To cite this

More information

An Investigation of the Effect of Anisotropy on the Thermomechanical Behavior of Textured Nickel/Titanium Shape Memory Alloys

An Investigation of the Effect of Anisotropy on the Thermomechanical Behavior of Textured Nickel/Titanium Shape Memory Alloys An Investigation of the Effect of Anisotropy on the Thermomechanical Behavior of Textured Nickel/Titanium Shape Memory Alloys Anthony Wheeler Advisor: Dr. Atef Saleeb Honors research Project Abstract The

More information

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary 1 A simple view of fatigue 1. Will a crack nucleate? 2. Will it grow? 3. How fast will

More information

Uniaxial Ratcheting Behaviors of Metals with Different Crystal Structures or Values of Fault Energy: Macroscopic Experiments

Uniaxial Ratcheting Behaviors of Metals with Different Crystal Structures or Values of Fault Energy: Macroscopic Experiments J. Mater. Sci. Technol., 11, 7(5), 5-5. Uniaxial Ratcheting Behaviors of Metals with Different Crystal Structures or Values of Fault Energy: Macroscopic Experiments Guozheng Kang 1), Yujie Liu ), Yawei

More information

VACUUM SINTERING AND SINTER-HARDENING OF Mo AND Ni LOW ALLOYED STEEL

VACUUM SINTERING AND SINTER-HARDENING OF Mo AND Ni LOW ALLOYED STEEL Powder Metallurgy Progress, Vol.4 (2004), No 2 79 VACUUM SINTERING AND SINTER-HARDENING OF Mo AND Ni LOW ALLOYED STEEL V. Stoyanova, A. Molinari Abstract The main purpose of this work is to investigate

More information

AND Ti-Si-(Al) EUTECTIC ALLOYS Introduction. temperatur-dependent

AND Ti-Si-(Al) EUTECTIC ALLOYS Introduction. temperatur-dependent NATO Advanced Research Workshop Metallic Materials with high structural Efficiency Kyiv, Ukraine, 07.-13.09.2003 Max-Planck-Institute for Iron Research, Duesseldorf, Germany Prof. Dr.-Ing. STRUCTURES AND

More information

- Slip by dislocation movement - Deformation produced by motion of dislocations (Orowan s Eq.)

- Slip by dislocation movement - Deformation produced by motion of dislocations (Orowan s Eq.) Lecture #12 - Critical resolved shear stress Dr. Haydar Al-Ethari - Slip y dislocation movement - Deformation produced y motion of dislocations (Orowan s Eq.) References: 1- Derek Hull, David Bacon, (2001),

More information

Wrought Aluminum I - Metallurgy

Wrought Aluminum I - Metallurgy Wrought Aluminum I - Metallurgy Northbrook, IL www.imetllc.com Copyright 2015 Industrial Metallurgists, LLC Course learning objectives Explain the composition and strength differences between the alloy

More information

Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature

Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical & Materials Engineering Faculty Publications Mechanical & Materials Engineering, Department of 2016 Rolling-induced

More information

Metallurgy and Friction Stir Welding. Anne Denquin Onera, Châtillon, France Department of Metallic Structures and Materials

Metallurgy and Friction Stir Welding. Anne Denquin Onera, Châtillon, France Department of Metallic Structures and Materials Metallurgy and Friction Stir Welding Anne Denquin Onera, Châtillon, France Department of Metallic Structures and Materials Basics of the FSW Process Typical temperature domain for Al alloys : 200 C ()

More information

Keywords: Slip systems, Twinning, Deformation Texture, Recrystallization Texture, Dynamic Recrystallization, Texture Simulation

Keywords: Slip systems, Twinning, Deformation Texture, Recrystallization Texture, Dynamic Recrystallization, Texture Simulation Materials Science Forum Online: 2005-09-15 ISSN: 1662-9752, Vols. 495-497, pp 623-632 doi:10.4028/www.scientific.net/msf.495-497.623 2005 Trans Tech Publications, Switzerland Texture Development in pure

More information

HYDROGEN EMBRITTLEMENT AND LOW TEMPERATURE EFFECTS ON CARBON STEELS

HYDROGEN EMBRITTLEMENT AND LOW TEMPERATURE EFFECTS ON CARBON STEELS HYDROGEN EMBRITTLEMENT AND LOW TEMPERATURE EFFECTS ON CARBON STEELS LAURA VERGANI Politecnico di Milano, Department of Mechanical Engineering, Milano, Italy CHIARA COLOMBO Politecnico di Milano, Department

More information

Intragranular Deformation Mechanisms during Ambient-Temperature Creep in Hexagonal Close-Packed Metals

Intragranular Deformation Mechanisms during Ambient-Temperature Creep in Hexagonal Close-Packed Metals Materials Transactions, Vol. 50, No. 12 (2009) pp. 2865 to 2872 #2009 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Intragranular Deformation Mechanisms during Ambient-Temperature Creep in Hexagonal

More information

arxiv: v1 [cond-mat.mtrl-sci] 8 Nov 2016

arxiv: v1 [cond-mat.mtrl-sci] 8 Nov 2016 Directional Anisotropy of Crack Propagation Along Σ3 Grain Boundary in BCC Fe G. Sainath*, B.K. Choudhary** Deformation and Damage Modeling Section, Mechanical Metallurgy Division Indira Gandhi Centre

More information

EFFECT OF THE LCF LOADING CYCLE CHARACTERISTICS ON THE FATIGUE LIFE OF INCONEL 718 AT HIGH TEMPERATURE

EFFECT OF THE LCF LOADING CYCLE CHARACTERISTICS ON THE FATIGUE LIFE OF INCONEL 718 AT HIGH TEMPERATURE EFFECT OF THE LCF LOADING CYCLE CHARACTERISTICS ON THE FATIGUE LIFE OF INCONEL 718 AT HIGH TEMPERATURE F.Taina 1,2, M. Pasqualon 2, V. Velay 1, D.Delagnes 1, P. Lours 1. 1-Université de Toulouse Institut

More information

Index. Atmosphere Effect on fatigue processes, 49, 200 Auger spectroscopy, 51 A533-B steel Mode II fracture, 235, 242 B

Index. Atmosphere Effect on fatigue processes, 49, 200 Auger spectroscopy, 51 A533-B steel Mode II fracture, 235, 242 B STP600-EB/Jun. 1976 Index Abrasion Due to crack closure, 228 On Mode II fractures, 240 AgaMg-AgMg alloys, 160, 166 AISI 1025 steel Hydrogen attack, 88 Microstructure of, 91 Tensile properties, 90 AISI

More information

Determination of True Stress Strain Curves of Sheet Metals in Post-Uniform Elongation Range* 1

Determination of True Stress Strain Curves of Sheet Metals in Post-Uniform Elongation Range* 1 Materials Transactions, Vol. 5, No. 1 (29) pp. 138 to 144 #29 The Japan Society for Technology of Plasticity Determination of True Stress Strain Curves of Sheet Metals in Post-Uniform Elongation Range*

More information