INTERLAMINAR REINFORCEMENT OF COMPOSTE LAMINATES WITH HEAT ACTIVATED SHRINKING MICROFIBERS

Size: px
Start display at page:

Download "INTERLAMINAR REINFORCEMENT OF COMPOSTE LAMINATES WITH HEAT ACTIVATED SHRINKING MICROFIBERS"

Transcription

1 INTERLAMINAR REINFORCEMENT OF COMPOSTE LAMINATES WITH HEAT ACTIVATED SHRINKING MICROFIBERS Eric S. Kim, Patrick C. Lee, Dryver R. Huston The Department of Mechanical Engineering, University of Vermont, Burlington, VT Abstract This paper describes an innovative through-thickness fiber reinforcement technology for laminate structures by using shrinking microfibers. Unlike incumbent passive fiber reinforcing technology, in-situ shrinking microfibers that respond to an external stimulus such as heat can induce pre-compression to matrix and create additional resistance from external loads. In this paper, Heat-Activated Shrinking (HAS) microfibers and Heat Passive (HP) microfibers made were used to investigate the interlaminar reinforcing effect of fiber shrinking mechanism. The specimens were reinforced by three different fiber geometries: (i) 1.27 cm (0.5 in) interval stitch of single microfibers, (ii) 2.54 cm (1 in) interval stitch of single microfibers, (iii) 2.54 cm (1 in) interval stitch of double microfibers, and then peel strengths were compared with control using T-peel tests. For Case (i), the reinforcing effect from HAS microfibers was shown by 47.2 % improvement compared to the specimens with HP microfibers. By comparing to control specimens, it was almost 2,883% improvement. For Cases (ii) and (iii), 27.7 % and 57.0 % increases in peel strengths were resulted respectively. Comparing the control specimens and the specimens with HAS microfiber, it was 2,191% and 3,741% improvements, respectively. Introduction Polymer laminates with two-dimensional reinforcement structures have been exploited in various applications such as aircrafts, automobiles, and constructions [1]. However, the lack of through-thickness reinforcing technology can be a disadvantage in terms of cost, ease of processing, mechanical performance and impact damage resistance [2]. To overcome the shortcomings of 2D laminates such as cost and the efficiency of manufacturing, 3D composites has been introduced with various manufacturing technologies such as weaving, braiding, stitching, and knitting [2]. composites mechanical performance have been reviewed with the challenge of developing more automated means to manufacture composite structures of optimized design [5]. The manufacturing processes of through-the-thickness reinforced composites using tufting method have been presented in Dell Anno s study, and the presence of tufts using carbon fiber showed the significant increase in the delamination crack growth resistance of the double-beam specimens [6]. The study of interlaminar as well as intralaminar reinforcement of polymer-matrix composites using carbon nanotubes has been conducted as well [7, 8]. The advantages and disadvantages of applying z-pins (i.e, pins that applied to through-thickness direction of the laminate) to polymer composite laminates have been examined [9]. The delamination resistance of thick woven glass fiber reinforced polyester specimens with different ply orientation has been studied [10]. The interlaminar stresses resulting from bending of thick cylindrical laminated shells has been analyzed using a Kantorovich method [11]. The effects of through-thickness stitching using natural fibers on the interlaminar fracture toughness and tensile properties of flax fibre/epoxy composite laminates have been studied [12]. The present and future applications for 3D textile composites made by weaving, braiding, stitching, and knitting have been reviewed [1]. However, it seems that there is little research exploiting fiber materials with shrinking characteristics to precompress and reinforce the through-thickness directional strength of the laminate structures. The contraction of microfibers under specific stimuli in the composite would have higher mechanical properties with internal pre-stress, which could withstand from higher external loads or torsions (Figure 1). The objective of this study is to present and evaluate polymer lay-up structures with interlaminar-reinforcement by heat activated in-situ shrinking microfibers. The microfiber shrinking ratios were measured. Also, T-peel test results of shrinking fiber reinforced composite specimens, and control specimens were compared to demonstrate the reinforcing effect of shrinking reinforcement fibers. There have been numerous studies and applications regarding interlaminar reinforcement of composite structures. The effects of through-thickness reinforcement to the in-plane mechanical properties have been studied [3, 4]. The main attractions of the current levels of major interlaminar reinforcing techniques, the ability to tailor the SPE ANTEC Anaheim 2017 / 656

2 Microfiber Preparation Figure 1. Hypothesis of an interlaminar strengthening effect of HAS microfibers, (a) Undamaged laminate structure, (b) Shrinking behavior of HAS microfibers that withstands delamination. Materials The polymer matrix used for this study was epoxy (System 3000 High Temp Epxy kit, part number 3000/3120), manufactured by Fibre Glast. For lay-up fiber, fiberglass fabric (part number 241) was selected. For HAS through-thickness microfibers, heat shrink tubes from Buyheatshrink (2:1 Low Shrink HP, Clear color, AMS- DTL-23053/5-306) were used. The tubes that heat activate at the lowest temperature (e.g., 80 C) was selected to minimize the strength loss and shape change of epoxy matrix during heat shrinking activation. Table 1 details the properties of the epoxy, fiberglass, and heat activated tubes. Table 1. Properties of law materials. Epoxy (a) (b) Cured Hardness Shore D 88 D Tensile Strength >252 MPa Elongation at Break % Tensile Modulus 16.1 GPa Flexural Strength 363 MPa Flexural Modulus 20.7 GPa Fiberglass Weave Pattern Plain Weight 81 g/m " Thickness mm Breaking Strength 1.79 Kg/mm Heat shrinking tube Shrink ratio 2:1 Longitudinal shrinkage 5-10% Activation temperature 80 C Operating temperature -55 C to 125 C Inside diameter before activation (mm) 6.50 Inside diameter after activation (mm) 3.18 HAS Microfibers Heat activated shrinking tubes, commonly used to protect electrical wiring and connections, were used to create HAS microfibers. These tubes shrink to ½ of their original diameter when they are heat activated. They were cut in spiral shape that the longest dimension (the length) of microfibers would shrink the most (i.e., 50%, Figure 2). This particular shrink tubing was selected with a critical shrink temperature (80 C) to be less than the continuous service temperature of epoxy (121 C) to prevent any damage during the shrinkage of microfiber. The average cross sectional areas of HAS microfibers were 1.16 mm " (4 mm x 0.29 mm). It was controlled such as a way that the cross sectional areas of HP microfibers are almost same as those of HAS microfibers (Figure 2). HP Microfibers HP microfibers were prepared by shrink-activating HAS microfibers prior to applying into the lay-up composite. HAS microfibers were put in an oven for 2 minutes at 100 C. The average cross sectional areas of HP microfibers were 1.12 mm " (2 mm x 0.56 mm), similar to those of HAS microfibers. Also, shrinking ratios in three-dimensions were calculated. HAS microfibers were prepared as 4 mm in length and 1 mm in width, and half of them were heat activated. The lengths, widths, and heights of 10 randomly selected HAS and HP microfibers were measured. The results are presented in Figure 3. 5 mm Figure 2. HAS microfiber to be stitched to the laminate composite. SPE ANTEC Anaheim 2017 / 657

3 (b) Figure 3. Three-dimensional measurement results of microfibers. It was shown that the shrinking ratio were 45.9% in longitudinal, 6.4% in lateral direction. There was 94.6% expansion in vertical direction. Laminate Composite Sample Preparation A fiberglass fabric was cut to a cm by 2.54 cm (6 inch by 1 inch) rectangular shape. Twelve sheets (5.4 g) of fiberglass were sewn with a HAS or HP microfiber. The first stitch was sewn in the middle of the fiberglass. Seven gram of epoxy was prepared. Three grams of epoxy were applied to cm by 2.54 cm rectangular shape on the Teflon paper. Fiberglass sewn with a HAS or HP microfiber was added on the epoxy. Fiberglass was separated in 6 sheets each, and 0.5 g of epoxy was applied on the bottom set of fiberglass. Another sheet of Teflon paper was put on the epoxy layer, and 0.5 g of epoxy was added on it. The other 6 sheets of fiberglass was layered on the epoxy-covered Teflon paper. 3 g of epoxy was poured on the fiberglass. Finally, the other Teflon paper sheet was added on the pre-cured epoxy-fiberglass composite, and pressed it with a weight. The composite were left for 20 hours of curing at room temperature. After 20 hours, the samples were put into the oven at 100 C for 3 minutes. After 3 minutes, the specimens were left for 12 hours for full curing. After the matrix was completely hardened, all the Teflon papers were taken away (Figure 4). Figure 4. Test specimens. (a) Layout, (b) Actual figures. Results and Discussions The T-peel tests were controlled by using a displacement control protocol (Figure 5). The load rate was fixed at 5 mm/min. The tests were conducted using a Family universal test machine (Model no , Test Resources Inc.). The device has a 4450 N (1000 lbf) capacity with 50 data points per second of data collecting frequency. The tests were conducted with three different Cases: (i) 1.27 cm interval stitch of single microfibers, (ii) 2.54 cm interval stitch of single microfibers, (iii) 2.54 cm interval stitch of double microfibers. (a) Figure 5. T-peel test using family universal test machine (Model no , Test Resources Inc.) with a load rate of 5mm/min. SPE ANTEC Anaheim 2017 / 658

4 Case (i): 1.27cm interval stitch of single microfibers Case (ii): 2.54cm interval stitch of single microfibers Figure 6. Case (i) of T-peel tests for laminate structures Figure 7. Case (ii) of T-peel tests for laminate structures The results in Figure 6 demonstrate that peel strengths for the Case (i): 1.27cm interval stitch using a single microfiber show that the specimens with HAS microfibers have higher peeling strengths than the specimens with HP microfibers. Compared to the specimens with HP microfibers, there was a 47.2 % improvement in the maximum peeling strengths. Compared to control specimens, there was a 2,883% improvement. The results confirm the hypothesis that introducing shrinking microfibers in composite structures can have a better interlaminate reinforcing strength than conventional passive fibers. Shrinking microfibers would reinforce the composites by inducing internal pre-stresses as well as physically closing the air pockets during shrinkage. Figure 7 shows that for the Case (ii): 2.54 cm interval stitch of a single microfiber, the specimens with HAS microfibers have higher maximum peel strengths than the specimens with HP microfibers in T-peel tests. Compared to HP microfiber reinforced specimens, the increase in the maximum strength of 27.7 % was observed. Compared to the control specimens, there was a 2,191% improvement. The results also indicate that shrinking microfibers in composite structures have a better reinforcing effect than conventional passive microfibers. The lower maximum peeling strengths for both HAS microfibers and HP microfibers compared to Case (i) indicate that interval of Case (i) (1.27 cm) would be closer to the optimum ratio to maximize the reinforcing effect of microfibers than Case (ii) (2.54 cm). SPE ANTEC Anaheim 2017 / 659

5 Case (iii): 2.54cm interval stitch of double microfibers Figure 8. Case (iii) of T-peel tests for laminate structures The T-peel test results of the specimens with HAS and HP microfibers for the Case (iii): 2.54 cm interval stitch of double microfibers indicate that the average maximum strengths of the specimens with HAS microfibers are 57.0 % higher than those with HP microfibers, as shown in Figure 8. By comparing to control specimens, there was a 3,741% improvement. Compared to Case (ii), the maximum strength increased by 70.7 %. As the volumetric ratio of through-thickness fiber increases, the matrix damage would be more likely to be caused, resulting that the peel strength would not be doubled as proportionally (Figure 9). Figure 9. Defects in matrix caused by through-thickness shrinking microfibers. Conclusion The study presented an innovative through-thickness fiber reinforcement technology for laminate structures by using in-situ heat activated shrinking microfibers in three different Cases with T-peel test results: (i) 1.27 cm interval stitch of single microfibers, (ii) 2.54 cm interval stitch of single microfibers, (iii) 2.54 cm interval stitch of double microfibers. For the Case (i), the reinforcing effect from HAS microfibers was shown by 47.2 % compared to the specimens with HP microfibers. Compared to the control specimens, it was 2,883%. For the Case (ii) and (iii), 27.7 % and 57.0 % increase in peeling strengths were resulted. By comparing to the control specimens, there were 2,191% and 3,741%, respectively. The purpose of this study is to investigate the interlaminar reinforcing effect of in-situ shrinking microfibers versus passive microfibers in laminate structures. The shrinking activation used in this study is triggered by external heat that could damage the polymeric matrix. Therefore, in real applications, selection of materials would need to be cautiously conducted considering the environment of specific applications. However, the result shown in the paper indicates that the exploitation of shrinking microfibers for through-thickness interlaminar reinforcement would be effective, and further study with shrinking microfibers with different stimulus would be worth being studied. As the further research, the effect of in-plane directional properties due to the throughthickness shrinking microfibers would be studied. Acknowledgement This research was supported in part by the University of Vermont Spark program. References 1. A. P. Mouritz, M. K. Bannister, P. J. Falzon, and K. H. Leong, Composites: Part A, 30, 1445 (1999) 2. L. Tong, A. P. Mouritz, M. K. Bannister, "3D fibre reinforced polymer composites", Esevier (2002) 3. A. P. Mouritz, and B. N. Cox, Composites: Part A, 31, 1 (2000) 4. A. P. Mouritz, B. N. Cox, Composites: Part A, 41, 709 (2010) 5. M. Bannister, Composites: Part A, 32, 901 (2001) 6. G. Dell'Anno, D. D. Cartie', I. K. Patridge, and A. Rezai, Composites: Part A, 38, 2366 (2007) 7. S. S. Wicks, R. G. D. Villoria, and B. L. Wardle, Composites Science and Technology, 70, 20 (2010) 8. E. J. Garcia, B. L. Wardle, and A. J. Hart, Composites: Part A, 39, 1065 (2008) 9. A. P. Mouritz, Composites: Part A, 38, 2383, (2007) 10. E. Triki, B. Zouari, and F. Dammak, Engineering Fracture Mechanics, 159, 63, (2016) 11. M. Tahani, A. Andakhshideh, and S. Maleki, Composite Part B, 98, 151, (2016) 12. M. Ravandi, W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay, Materials and Design, 109, 659, (2016) SPE ANTEC Anaheim 2017 / 660

High Performance Toughened Vinyl Ester Resins

High Performance Toughened Vinyl Ester Resins High Performance Toughened Vinyl Ester Resins A novel approach to reduce fatigue cycling damage, impact resistance, and crack propagation in composite structures 100 East Cottage Avenue Carpentersville,

More information

Part 4 MECHANICAL PROPERTIES

Part 4 MECHANICAL PROPERTIES Part 4 MECHANICAL PROPERTIES Fiber Composite Materials M. S. Ahmadi 192 TENSILE PROPERTIES Tensile properties, such as tensile strength, tensile modulus, and Poisson s ratio of flat composite laminates,

More information

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite Journal of Minerals and Materials Characterization and Engineering, 2013, 1, 231-235 http://dx.doi.org/10.4236/jmmce.2013.15036 Published Online September 2013 (http://www.scirp.org/journal/jmmce) Influence

More information

FATIGUE PROPERTIES OF Z-PINNED AIRCRAFT COMPOSITE MATERIALS

FATIGUE PROPERTIES OF Z-PINNED AIRCRAFT COMPOSITE MATERIALS 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES FATIGUE PROPERTIES OF Z-PINNED AIRCRAFT COMPOSITE MATERIALS A.P. Mouritz*, P. Chang*, B.N. Cox** *School of Aerospace, Mechanical & Manufacturing

More information

Investigation of energy absorption of a GFRP composite crash box

Investigation of energy absorption of a GFRP composite crash box Structures Under Shock and Impact X 177 Investigation of energy absorption of a GFRP composite crash box H. Ghasemnejad, H. Hadavinia & A. Aboutorabi Faculty of Engineering, Kingston University, SW15 3DW,

More information

NUMERICAL AND EXPERIMENTAL ANALYSIS OF COMPOSITE TUBES UNDER EXTERNAL HYDROSTATIC PRESSURE

NUMERICAL AND EXPERIMENTAL ANALYSIS OF COMPOSITE TUBES UNDER EXTERNAL HYDROSTATIC PRESSURE NUMERICAL AND EXPERIMENTAL ANALYSIS OF COMPOSITE TUBES UNDER EXTERNAL HYDROSTATIC PRESSURE S. Pavlopoulou, R. Shankhachur, P. Potluri University of Manchester, Northwest Composites Centre, School of Materials,

More information

Composite materials for wind turbine blades. Department of Mechanical, Chemical and Materials Engineering University of Cagliari, Italy

Composite materials for wind turbine blades. Department of Mechanical, Chemical and Materials Engineering University of Cagliari, Italy Composite materials for wind turbine blades 1 Wind turbine blades Wind turbine blades are complex structures whose design involves the two basic aspects of Selection of the aerodynamic shape Structural

More information

Keywords: Damage, matrix cracking, 3D orthogonal, non-crimp, woven

Keywords: Damage, matrix cracking, 3D orthogonal, non-crimp, woven 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DAMAGE DEVELOPMENT IN A GLASS/EPOXY NON-CRIMP 3D ORTHOGONAL WOVEN FABRIC COMPOSITE S Vadlamani 1, Z Kakaratsios 1, S L Ogin 1*, D A Jesson, A S Kaddour

More information

Exploring Mechanical Property Balance in Tufted Carbon Fabric/Epoxy

Exploring Mechanical Property Balance in Tufted Carbon Fabric/Epoxy Exploring Mechanical Property Balance in Tufted Carbon Fabric/Epoxy Giuseppe Dell Anno 1 Denis D. Cartié 1 Giuliano Allegri 2 Ivana K. Partridge 1 Amir Rezai 3 1 - Composites Centre, Cranfield University,

More information

BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS

BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS A. Kobayashi 1, Y. Sato 2 and Y. Takahashi 3 1 Technical Development Department, Nippon

More information

Faserverbundwerkstoffe Composite Technology

Faserverbundwerkstoffe Composite Technology New products 6/2009 New products, updated 17.06.2009. Prices may vary. Further offers, availability and ordering see eshop at www.r-g.de. Aramid-/Carbon-mesh fabric 40 g/m² Plain weave, width 100 cm Woven

More information

FIBRE ORIENTATION EFFECTS ON THE TENSILE PROPERTIES OF BIAXIAL CARBON/EPOXY NCF COMPOSITES

FIBRE ORIENTATION EFFECTS ON THE TENSILE PROPERTIES OF BIAXIAL CARBON/EPOXY NCF COMPOSITES FIBRE ORIENTATION EFFECTS ON THE TENSILE PROPERTIES OF BIAXIAL CARBON/EPOXY NCF COMPOSITES K. Vallons, I. Duque, S. V. Lomov and I. Verpoest Department of Metallurgy and Materials Engineering, Katholieke

More information

IMPACT RESISTANCE AND TOLERANCE OF INTERLEAVED RTM LAMINATES

IMPACT RESISTANCE AND TOLERANCE OF INTERLEAVED RTM LAMINATES IMPACT RESISTANCE AND TOLERANCE OF INTERLEAVED RTM LAMINATES Andre Duarte 1, Israel Herszberg 2 and Rowan Paton 3 1 Sir Lawrence Wackett Centre for Aerospace Design Technology, Royal Melbourne Institute

More information

CURVED BEAM TEST BEHAVIOR OF 3D WOVEN COMPOSITES

CURVED BEAM TEST BEHAVIOR OF 3D WOVEN COMPOSITES CURVED BEAM TEST BEHAVIOR OF 3D WOVEN COMPOSITES Christopher Redman, Harun Bayraktar, Michael McClain Albany Engineered Composites 112 Airport Drive Rochester, NH 03867 ABSTRACT The use of traditional

More information

Characterization of Physical Properties of Roadware Clear Repair Product

Characterization of Physical Properties of Roadware Clear Repair Product Characterization of Physical Properties of Roadware Clear Repair Product November 5, 2009 Prof. David A. Lange University of Illinois at Urbana-Champaign Introduction Roadware MatchCrete Clear (MCC) is

More information

Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate

Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate International Journal of Computational Engineering Research Vol, 03 Issue, 10 Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate K.Vasantha

More information

FINITE ELEMENT ANALYSIS OF COMPOSITES UNDER DIFFERENT LOAD CONDITIONS WITH THE EFFECT OF HYBRIDIZATION OF GLASS REINFORCEMENT ON KEVLAR FIBRES

FINITE ELEMENT ANALYSIS OF COMPOSITES UNDER DIFFERENT LOAD CONDITIONS WITH THE EFFECT OF HYBRIDIZATION OF GLASS REINFORCEMENT ON KEVLAR FIBRES International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 446 454, Article ID: IJMET_09_11_043 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

IJMTES International Journal of Modern Trends in Engineering and Science ISSN:

IJMTES International Journal of Modern Trends in Engineering and Science ISSN: AN EXPERIMENTAL INVESTIGATION AND FINITE ELEMENT MODELING OF RCC COLUMNS CONFINED WITH FRP SHEETS UNDER AXIAL COMPRESSION S.Mohamed Hussain 1, C.Loganathan 2,A.Sree Arun 3 1 (Department of Civil,Gnanamani

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

Thermal Shock and Thermal Fatigue on Delamination of Glass Fiber Reinforced Polymeric Composites

Thermal Shock and Thermal Fatigue on Delamination of Glass Fiber Reinforced Polymeric Composites Thermal Shock and Thermal Fatigue on Delamination of Glass Fiber Reinforced Polymeric Composites B. C. RAY Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela-769008,

More information

MECHANICAL CHARACTERIZATION OF GFRP LAMINATE REINFORCED WITH SHORT CARBON FIBRE FILLERS UNDER ILSS TEST AND 3-POINT BEND TEST

MECHANICAL CHARACTERIZATION OF GFRP LAMINATE REINFORCED WITH SHORT CARBON FIBRE FILLERS UNDER ILSS TEST AND 3-POINT BEND TEST MECHANICAL CHARACTERIZATION OF GFRP LAMINATE REINFORCED WITH SHORT CARBON FIBRE FILLERS UNDER ILSS TEST AND 3-POINT BEND TEST Kalyan Kumar Singh, Prashant Rawat and Amit Kumar Rai 1 Department of Mechanical

More information

EFFECT OF FABRIC ARCHITECTURE (NCF) ON BENDING AND CREEP TEST OF TEXTILE COMPOSITES

EFFECT OF FABRIC ARCHITECTURE (NCF) ON BENDING AND CREEP TEST OF TEXTILE COMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF FABRIC ARCHITECTURE (NCF) ON BENDING AND CREEP TEST OF TEXTILE COMPOSITES T. Sakai 1*, S. Wakayama 1, C.R. Rios-Soberanis 1,2, J. Rodriguez-Laviada

More information

Date: Author: Torben K. Jacobsen. 2 Unidirectional reinforcement material (1258 g/m 2 ): Id Layer Unit Stitching. 0±1 (warp)

Date: Author: Torben K. Jacobsen. 2 Unidirectional reinforcement material (1258 g/m 2 ): Id Layer Unit Stitching. 0±1 (warp) 1 Glass reinforcement: Two materials are supplied for the project. One is a non-woven unidirectional glass rovings with a minor amount of off-axis reinforcement. The other is a non-woven glass roving in

More information

Effects of Loading Speed on the Failure. Behaviour of FRP Composites

Effects of Loading Speed on the Failure. Behaviour of FRP Composites Effects of Loading Speed on the Failure Behaviour of FRP Composites B. Das, S. K. Sahu and B. C. Ray National Institute of Technology, Rourkela-769008, India Key Words: Composites, characterization, loading

More information

Mechanical Properties of E-Glass/ Vinylester/Powder Rubber Hybrid Composites

Mechanical Properties of E-Glass/ Vinylester/Powder Rubber Hybrid Composites Mechanical Properties of E-Glass/ Vinylester/Powder Rubber Hybrid Composites Abstract: Sudheer K V 1,Pramod Kumar N 2, Avinash N V 3 and Umashankar K S 4 The present work is to determine the mechanical

More information

LATE-STAGE FATIGUE DAMAGE IN A GLASS/EPOXY NON-CRIMP 3D ORTHOGONAL WOVEN FABRIC COMPOSITE

LATE-STAGE FATIGUE DAMAGE IN A GLASS/EPOXY NON-CRIMP 3D ORTHOGONAL WOVEN FABRIC COMPOSITE LATE-STAGE FATIGUE DAMAGE IN A GLASS/EPOXY NON-CRIMP 3D ORTHOGONAL WOVEN FABRIC COMPOSITE L Baiocchi a,b, T F Capell b, S A McDonald c, S L Ogin b*, P Potluri c, M Quaresimin a, P A Smith b, P J Withers

More information

Using Abaqus to Model Delamination in Fiber-Reinforced Composite Materials

Using Abaqus to Model Delamination in Fiber-Reinforced Composite Materials Using Abaqus to Model Delamination in Fiber-Reinforced Composite Materials Dimitri Soteropoulos, Konstantine A. Fetfatsidis, and James A. Sherwood, University of Massachusetts at Lowell Department of Mechanical

More information

STRESS ANALYSIS OF GLASS FIBRE REINFORCED COMPOSITES USED IN WIND TURBINES

STRESS ANALYSIS OF GLASS FIBRE REINFORCED COMPOSITES USED IN WIND TURBINES STRESS ANALYSIS OF GLASS FIBRE REINFORCED COMPOSITES USED IN WIND TURBINES Kalyana Chakravarthy P 1,Dr. Raghunandana.K 2 1 Assistant Professor Sr. Scale Dept. of Mechatronics, Manipal Institute of Technology,

More information

Characterisation of Hollow Glass Fibre Reinforced Vinyl-Ester Composites

Characterisation of Hollow Glass Fibre Reinforced Vinyl-Ester Composites Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/107921, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Characterisation of Hollow Glass Fibre Reinforced

More information

Bond efficiency factor at different textile geometries reinforced concrete beams

Bond efficiency factor at different textile geometries reinforced concrete beams Bond efficiency factor at different textile geometries reinforced concrete beams [Fahed Alrshoudi, Philip Purnell] Abstract-- Textile reinforced non-structural concrete member has been commonplace in last

More information

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP.

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Mohit Jaiswal Assistant Professor, Department of Civil

More information

Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load

Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load To cite this article: Sravani Koppula et

More information

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening 2016 International Conference on Electronic Information Technology and Intellectualization (ICEITI 2016) ISBN: 978-1-60595-364-9 Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

More information

An CFRP Fabrics as Internal Reinforcement in Concrete Beams

An CFRP Fabrics as Internal Reinforcement in Concrete Beams An CFRP Fabrics as Internal Reinforcement in Concrete Beams Mithila Achintha 1 *, Fikri Alami 1, Alan Bloodworth 1 1 Faculty of Engineering and the Environment, University of Southampton, UK *Corresponding

More information

EPOXY RESIN SYSTEMS FOR HIGH PERFORMANCE FRP

EPOXY RESIN SYSTEMS FOR HIGH PERFORMANCE FRP EPOXY RESIN SYSTEMS FOR HIGH PERFORMANCE FRP MOULDS Dr Mahesh Soni * GM Research & Development - Polymers / Atul Ltd mahesh_soni@atul.co.in Dr Utkarsh Shukla Manager Research & Development - Polymers /

More information

A Study on Cotton-Ramie Fabric Reinforced Composites

A Study on Cotton-Ramie Fabric Reinforced Composites International Journal of Materials Science ISSN 0973-4589 Volume 12, Number 1 (2017), pp. 117-125 Research India Publications http://www.ripublication.com A Study on Cotton-Ramie Fabric Reinforced Composites

More information

EFFECT OF 3D REINFORCEMENT ON DYNAMIC BEHAVIOR OF COMPOSITE MATERIALS USING SHPB TECHNIQUES: EXPERIMENTAL INVESTIGATION

EFFECT OF 3D REINFORCEMENT ON DYNAMIC BEHAVIOR OF COMPOSITE MATERIALS USING SHPB TECHNIQUES: EXPERIMENTAL INVESTIGATION EFFECT OF 3D REINFORCEMENT ON DYNAMIC BEHAVIOR OF COMPOSITE MATERIALS USING SHPB TECHNIQUES: EXPERIMENTAL INVESTIGATION M. Tarfaoui a*, C. Bouery a, A. El Malki a a ENSTA Bretagne,MSN/LBMS/DFMS, 2 rue

More information

Determination of through thickness properties for Composite thick laminate S.Vali-shariatpanahi * * Stress Engineer/Durability group leader -Airbus

Determination of through thickness properties for Composite thick laminate S.Vali-shariatpanahi * * Stress Engineer/Durability group leader -Airbus Determination of through thickness properties for Composite thick laminate S.Vali-shariatpanahi * * Stress Engineer/Durability group leader -Airbus Address: Building 09J, Airbus UK,FILTON,BRISTOL BS 99

More information

EXPERIMENTAL ANALYSIS OF HYBRID CARBON FIBER COMPOSITE SPECIMEN

EXPERIMENTAL ANALYSIS OF HYBRID CARBON FIBER COMPOSITE SPECIMEN EXPERIMENTAL ANALYSIS OF HYBRID CARBON FIBER COMPOSITE SPECIMEN Nithin Prasad 1, Adarsh Ramachandran 2 1 M Tech Student, Department of Mechanical Engineering, Sree Narayana Institute of Technology, Adoor,

More information

Finite Element Simulations of Ballistic Impact on Glass Fiber Composite

Finite Element Simulations of Ballistic Impact on Glass Fiber Composite Finite Element Simulations of Ballistic Impact on Glass Fiber Composite Johns Abraham Dr. K. Senthil Kumar Dr. S. Sankar M. Tech HOD Associate Professor Nehru College of Engineering and Research Centre

More information

Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component

Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich composites component IOP Conference Series: Materials Science and Engineering OPEN ACCESS Properties of polyurethane foam/coconut coir fiber as a core material and as a sandwich component To cite this article: M A Azmi et

More information

Composite Rods as a Steel Substitute in Concrete Reinforcement

Composite Rods as a Steel Substitute in Concrete Reinforcement Composite Rods as a Steel Substitute in Concrete Reinforcement C. Gonilho Pereira 1,a, R. Fangueiro 2,b, S. Jalali 1,c, M. Araújo 2,d, P. Marques 2,e 1 University of Minho, Department of Civil Engineering,

More information

Composites. Fiber-Reinforced Composites. Fig Several geometric arrangements of fiber reinforcements. Source: Ref 10.1

Composites. Fiber-Reinforced Composites. Fig Several geometric arrangements of fiber reinforcements. Source: Ref 10.1 Elementary Materials Science William F. Hosford Copyright 2013 ASM International All rights reserved www.asminternational.org Chapter 10 Composites With composite materials, combinations of properties

More information

EFFECT OF FLEXIBLE INTERPHASE ON DYNAMIC CAHRASTERISTICS OF CFRP

EFFECT OF FLEXIBLE INTERPHASE ON DYNAMIC CAHRASTERISTICS OF CFRP THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF FLEXIBLE INTERPHASE ON DYNAMIC CAHRASTERISTICS OF CFRP T. Fukuda 1 *, A. Ohtani 1, A. Nakai 1 1 Department of mechanical and systems

More information

DESIGN AND ANALYSIS OF LEAF SPRING BY USING HYBRID COMPOSITE MATERIAL

DESIGN AND ANALYSIS OF LEAF SPRING BY USING HYBRID COMPOSITE MATERIAL DESIGN AND ANALYSIS OF LEAF SPRING BY USING HYBRID COMPOSITE MATERIAL Anjish M George 1, Sarathdas S 2 1M Tech Student, Department of Mechanical Engineering, Sree Narayana Institute of Technology, Adoor,

More information

VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES

VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES VACUUM PROCESS FOR STRENGTHENING CONCRETE STRUCTURES Amando Padilla R., Antonio Flores B., Guillermo Landa A. and Iván Panamá UAM Azcapotzalco ABSTRACT This research is focused to study the effectiveness

More information

SIZE EFFECTS ON THE TENSILE AND FLEXURAL STRENGTH OF GFRP LAMINATES

SIZE EFFECTS ON THE TENSILE AND FLEXURAL STRENGTH OF GFRP LAMINATES 8 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS SIZE EFFECTS ON THE TENSILE AND FLEXURAL STRENGTH OF GFRP LAMINATES Z.F. Liu*, G. Du, J.Y. Xiao, S.X. Bai, W.J. Zhang College of Aerospace and Material

More information

CYCOM 2237 POLYIMIDE RESIN SYSTEM

CYCOM 2237 POLYIMIDE RESIN SYSTEM DESCRIPTION CYCOM 2237 is Cytec Engineered Materials version of PMR-5. It is formulated for high temperature applications where low void content is critical. CYCOM 2237 has the best overall balance of

More information

Investigation of Impact Performance of Glass/Epoxy Laminates

Investigation of Impact Performance of Glass/Epoxy Laminates Investigation of Impact Performance of Glass/Epoxy Laminates Aarthy S P.G Student, Department of Mechanical Engineering Regional Centre of Anna University, Tirunelveli, Tamilnadu, India Velmurugan T Assistant

More information

Statistical Investigation of Parameters Influence on Fracture Toughness of the Glass Fiber Reinforced Composites

Statistical Investigation of Parameters Influence on Fracture Toughness of the Glass Fiber Reinforced Composites Statistical Investigation of Parameters Influence on Toughness of the Glass Fiber Reinforced Composites Ganga Reddy C 1, Dr. Shantharaja M 2 1,2 Department of Mechanical Engineering, University Visvesvaraya

More information

DAMAGE EVOLUTION IN THIN AND THICK-PLY REGIONS OF NCF THIN-PLY LAMINATES UNDER OFF-AXIS UNIAXIAL LOADING

DAMAGE EVOLUTION IN THIN AND THICK-PLY REGIONS OF NCF THIN-PLY LAMINATES UNDER OFF-AXIS UNIAXIAL LOADING DAMAGE EVOLUTION IN THIN AND THICK-PLY REGIONS OF NCF THIN-PLY LAMINATES UNDER OFF-AXIS UNIAXIAL LOADING G. Guillamet 1, A. Turon 1, J. Costa 1, J. Renart 1 1 Analysis and Advanced Materials for Structural

More information

Cold-curing epoxy system based on Araldite LY 564 / Hardener HY 560

Cold-curing epoxy system based on Araldite LY 564 / Hardener HY 560 Ciba Specialty Chemicals Performance Polymers Structural Composites MATRIX SYSTEMS FOR AEROSPACE COMPOSITES MATRIX SYSTEMS FOR INDUSTRIAL COMPOSITES DATA SHEET Cold-curing epoxy system based on Araldite

More information

STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES. Abstract

STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES. Abstract STRUCTURAL CHARACTERISTICS OF CONCRETE-FILLED GLASS FIBER REINFORCED COMPOSITE PILES Sung Woo Lee 1, Sokhwan Choi 2, Byung-Suk Kim 3, Young-Jin Kim 4, Sung-Yong Park 5 1 Prof., Dept of Civil & Environmental

More information

Investigation of Mechanical Properties of CFRP/EVA Laminated Composites According to Tensile and Flexure Test

Investigation of Mechanical Properties of CFRP/EVA Laminated Composites According to Tensile and Flexure Test Investigation of Mechanical Properties of CFRP/EVA Laminated Composites According to and Flexure Test SUN-HO GO 1, SEONG-MIN YUN 1, MIN-SANG LEE 1, JANG-HO LEE 3, LEE-KU KWAC 4, # HONG-GUN KIM 4 1 Graduate

More information

Influence of the Stacking Sequence on the Tensile Properties of Hybrid Composite

Influence of the Stacking Sequence on the Tensile Properties of Hybrid Composite Influence of the Stacking Sequence on the Tensile Properties of Hybrid Composite Dr. Noori Hasoon Mohammed Al-Saadi Assistant Professor,. Dijlah University, building and Construction Engineering ABSTRACT

More information

Experimental Investigations of Mechanical Properties of Natural Hybrid Fiber, Reinforced Polymer Composite Materials

Experimental Investigations of Mechanical Properties of Natural Hybrid Fiber, Reinforced Polymer Composite Materials Journal for Research Volume 03 Issue 02 April 2017 ISSN: 2395-7549 Experimental Investigations of Mechanical Properties of Natural Hybrid Fiber, Reinforced Polymer Composite Materials S. Muralidharan R.

More information

THE DESIGN OF A THERMOPLASTIC CF COMPOSITE FOR LOW PRESSURE MOLDING

THE DESIGN OF A THERMOPLASTIC CF COMPOSITE FOR LOW PRESSURE MOLDING THE DESIGN OF A THERMOPLASTIC CF COMPOSITE FOR LOW PRESSURE MOLDING Takeshi Ishikawa, Masao Tomioka, Masahiro Osuka Advanced Composites Research Group, Toyohashi Research Laboratories, MITSUBISHI RAYON

More information

EXPERIMENTAL INVESTIGATION OF REINFORCED JUTE AND EUCALYPTUS FIBER

EXPERIMENTAL INVESTIGATION OF REINFORCED JUTE AND EUCALYPTUS FIBER EXPERIMENTAL INVESTIGATION OF REINFORCED JUTE AND EUCALYPTUS FIBER R.Jagadeshwaran 1, S. Hariharan 2, T.Surulivelrajan 3 1. R.Jagadeshwaran Mechanical engineering, PSVP ENGG COLLEGE, Tamil Nadu, India

More information

Mechanical Behaviour of Concrete Beams Reinforced with CFRP U- Channels

Mechanical Behaviour of Concrete Beams Reinforced with CFRP U- Channels Mechanical Behaviour of Concrete Beams Reinforced with CFRP U- Channels Mithila Achintha 1 *, Fikri Alami 1, Sian Harry 1, Alan Bloodworth 2 1 Faculty of Engineering and the Environment, University of

More information

CFRTP pipe molding process using high-frequency direct resistance heating

CFRTP pipe molding process using high-frequency direct resistance heating Materials Characterisation VII 217 CFRTP pipe molding process using high-frequency direct resistance heating K. Tanaka, J. Nakatsuka, Y. Matsuura, T. Ueda & T. Katayama Department of Biomedical Engineering,

More information

A Study on Mechanical and Vibration Characteristics of Mother of Pearl Filled Fibre Reinforced Epoxy Composite

A Study on Mechanical and Vibration Characteristics of Mother of Pearl Filled Fibre Reinforced Epoxy Composite Journal of Mechanical Engineering and Automation 217, 7(3): 72-76 DOI: 1.5923/j.jmea.21773.2 A Study on Mechanical and Vibration Characteristics of Mother of Pearl Filled Fibre Reinforced Epoxy Composite

More information

Healable, Shape Memory Polymers for Reflexive Composites

Healable, Shape Memory Polymers for Reflexive Composites Healable, Shape Memory Polymers for Reflexive Composites Thomas Barnell Research Engineer This work was funded under a NASA SBIR, Contract number NNL06AA07C from NASA Langley. barnelltj@crgrp.com (937)

More information

Influence of Fabric Weave Pattern on Buckling Behavior of Fabric Reinforced Composite Plates with Through the Width Delamination

Influence of Fabric Weave Pattern on Buckling Behavior of Fabric Reinforced Composite Plates with Through the Width Delamination Influence of Fabric Weave Pattern on Buckling Behavior of Fabric Reinforced Composite Plates with Through the Width Delamination Ezatollah Amini a,*, Ali Asghar Asgharian Jeddi a, Hamid Reza Ovesy b, Hadi

More information

Fabrication and Analysis of Single lap joint Glass Fiber Reinforced Polymer Composite Materials

Fabrication and Analysis of Single lap joint Glass Fiber Reinforced Polymer Composite Materials International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 4 Issue: 1 Oct -217 www.irjet.net p-issn: 2395-72 Fabrication and Analysis of Single lap joint Glass Fiber Reinforced

More information

Acceptance Letter http://medwelljournals.com/ams/acceptance.php?id=35301 1 of 1 06/1/017, 9:11 AM Medwell Journals Tel: +9-41-5003000 Fax: +9-41-8815599 http://medwelljournals.com December 05, 017 Dear

More information

UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP

UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP Georges El-Saikaly 1 and Omar Chaallal 2 1 PhD candidate, Department of Construction Engineering, University of Quebec, École

More information

Fracture studies on Basalt Fiber

Fracture studies on Basalt Fiber Fracture studies on Basalt Fiber T. Uma Sankari 1, M.P.Tamizhmani 2, N.Ramanathan 3 1,2 Assistant Professor, Mechanical Engineering, M.A.M School of Engineering, Trichy, India 3 Associate Professor, Mechanical

More information

LONG-TERM EXPOSURE OF POLYCYANATE COMPOSITES TO HIGH TEMPERATURE ATMOSPHERE

LONG-TERM EXPOSURE OF POLYCYANATE COMPOSITES TO HIGH TEMPERATURE ATMOSPHERE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS LONG-TERM EXPOSURE OF POLYCYANATE COMPOSITES TO HIGH TEMPERATURE ATMOSPHERE Y. Kobayashi* 1, 2, S. Kobayashi 3 1 Graduate Student, Department of

More information

HOLLOW STRUCTUAL PRODUCT OF CONTINUOUS FIBER REINFORCED THERMOPLASTIC COMPOSITES BY HIGH CYCLE MOLDING

HOLLOW STRUCTUAL PRODUCT OF CONTINUOUS FIBER REINFORCED THERMOPLASTIC COMPOSITES BY HIGH CYCLE MOLDING THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS HOLLOW STRUCTUAL PRODUCT OF CONTINUOUS FIBER REINFORCED THERMOPLASTIC COMPOSITES BY HIGH CYCLE MOLDING K. Bun 1 *, T. Motochika 1, A. Nakai 2,

More information

ACOUSTIC EMISSION COMPARATIVE STUDY OF CARBON/EPOXY COMPOSITES UNDER LOAD

ACOUSTIC EMISSION COMPARATIVE STUDY OF CARBON/EPOXY COMPOSITES UNDER LOAD More info about this article: h Czech Society for Nondestructive Testing 32 nd European Conference on Acoustic Emission Testing Prague, Czech Republic, September 07-09, 2016 ACOUSTIC EMISSION COMPARATIVE

More information

Annette Harte (NUI Galway) Kay Uwe Schober (is Mainz) COST Action FP1101, WG2 Workshop Telč

Annette Harte (NUI Galway) Kay Uwe Schober (is Mainz) COST Action FP1101, WG2 Workshop Telč Annette Harte (NUI Galway) Kay Uwe Schober (is Mainz) COST Action FP1101, WG2 Workshop Telč Need for structural reinforcement Change of use Deterioration Exceptional damage Changes in regulations Increase

More information

EFFECTS OF MATRIX TYPES AND LOADING SPEED ON THE FAILURE BEHAVIOUR OF FRP COMPOSITES

EFFECTS OF MATRIX TYPES AND LOADING SPEED ON THE FAILURE BEHAVIOUR OF FRP COMPOSITES For consideration of award of prizes EFFECTS OF MATRIX TYPES AND LOADING SPEED ON THE FAILURE BEHAVIOUR OF FRP COMPOSITES B. Das *, Dr. S. K. Sahu #, Dr. B. C. Ray $ * M.Tech. Student, # Asst. Prof., Deptt.

More information

MAE 171A MECHANICAL ENGINEERING LABORATORY Materials Testing Laboratory Week 1 - LINEAR ELASTIC FRACTURE MECHANICS

MAE 171A MECHANICAL ENGINEERING LABORATORY Materials Testing Laboratory Week 1 - LINEAR ELASTIC FRACTURE MECHANICS MAE 171A MECHANICAL ENGINEERING LABORATORY Materials Testing Laboratory Week 1 - LINEAR ELASTIC FRACTURE MECHANICS Objective: To gain an appreciation and understanding of the basic principles of fracture

More information

EFFECT OF DAMAGE DUE TO THERMAL SHOCK CYCLING AND HYGROTHERMAL AGEING ON THE MECHANICAL BEHAVIOUR OF GFRP-Al SANDWICH STRUCTURES

EFFECT OF DAMAGE DUE TO THERMAL SHOCK CYCLING AND HYGROTHERMAL AGEING ON THE MECHANICAL BEHAVIOUR OF GFRP-Al SANDWICH STRUCTURES EFFECT OF DAMAGE DUE TO THERMAL SHOCK CYCLING AND HYGROTHERMAL AGEING ON THE MECHANICAL BEHAVIOUR OF GFRP-Al SANDWICH STRUCTURES G.C.Papanicolaou*, A.G.Xepapadaki, Th.K.Bakopoulos Composite Materials Group,

More information

AN INVESTIGATION OF THE MECHANICAL PERFORMANCE OF Z-PIN REINFORCED COMPOSITES

AN INVESTIGATION OF THE MECHANICAL PERFORMANCE OF Z-PIN REINFORCED COMPOSITES IMPERIAL COLLEGE LONDON Department Of Aeronautics PhD Thesis AN INVESTIGATION OF THE MECHANICAL PERFORMANCE OF Z-PIN REINFORCED COMPOSITES Author: MARCIN MACIEJ FERT Supervisor: Dr PAUL ROBINSON Degree:

More information

Srinivasan Lakshmanan Research Scholar, Noorul Islam University, Kanyakumari District, Tamil Nadu, India.

Srinivasan Lakshmanan Research Scholar, Noorul Islam University, Kanyakumari District, Tamil Nadu, India. An Experimental Analysis of Delamination Factor of a GFRP Composite Material on Radial Drilling Machine Nageswara Rao Manchi M.Tech, Department of Mechanical Engineering, NRI Institute of Technology, Hyderabad,

More information

Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications

Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications The MIT Faculty has made this article openly available. Please

More information

FATIGUE BEHAVIOR OF A 3D BRAIDED CARBON/EPOXY COMPOSITE

FATIGUE BEHAVIOR OF A 3D BRAIDED CARBON/EPOXY COMPOSITE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 Introduction FATIGUE BEHAVIOR OF A 3D BRAIDED CARBON/EPOXY COMPOSITE V. Carvelli 1 *, J. Pazmino 1, S.V. Lomov 2, A.E. Bogdanovich 3, D.D. Mungalov

More information

The Joining Method for Permanent Formwork

The Joining Method for Permanent Formwork The Joining Method for Permanent Formwork Q. JIN 1, C.K.Y. Leung 2, and W.L. Chung 3 1,2,3 Department of Civil and Environmental Engineering of HKUST, HKSAR, China ABSTRACT: In this paper, the combined

More information

Seismic response of a novel composite structure

Seismic response of a novel composite structure Seismic response of a novel composite structure L. Yan, F. Dong & N. Chouw Department of Civil and Environmental Engineering, The University of Auckland, Auckland. K. Jayaraman Department of Mechanical

More information

Characterization and Testing of Fiber Reinforced Concrete (American Standards)

Characterization and Testing of Fiber Reinforced Concrete (American Standards) Workshop on FIBER REINFORCED CONCRETE (FRC): MATERIALS, APPLICATIONS AND DESIGN ASPECTS UNIVERSITY OF SHARJAH, UNITED ARAB EMIRATES 22-23 APRIL 2018 Characterization and Testing of Fiber Reinforced Concrete

More information

Key words: Weight fractions, Filler, Fiber, Flexural strength, Hand lay-up

Key words: Weight fractions, Filler, Fiber, Flexural strength, Hand lay-up Influence Of Fiber/Filler Particles Reinforcement On Epoxy Composites B.H.Manjunath, Dr. K Prahlada Rao Department of Mechanical Engineering, Proudhadevaraya Institute of Technology. Hospet-583203, India

More information

Shelf life at -18 C. Tack life at +23 C

Shelf life at -18 C. Tack life at +23 C 1 3 Shelf life at -18 C Tack life at +23 C 4 5 6 Indicator name Value Reinforcing filler UD Twill 2x2 Twill 2x2 Fiber type T700-12К Т300-3К T700-12К Areal weight, g/m² 200 200 600 Resin content, % 36

More information

STUDY OF COMPRESSIVE FAILURE IN MULTIDIRECTIONAL FIBRE-REINFORCED COMPOSITES

STUDY OF COMPRESSIVE FAILURE IN MULTIDIRECTIONAL FIBRE-REINFORCED COMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STUDY OF COMPRESSIVE FAILURE IN MULTIDIRECTIONAL FIBRE-REINFORCED COMPOSITES S. A. Tsampas 1 *, E. S. Greenhalgh 1, J. Ankersen 1, P. T. Curtis 2 1

More information

Fatigue Flexural Properties of Glass Fiber Reinforced Plastic Composites Subjected to Low Cyclic Impact

Fatigue Flexural Properties of Glass Fiber Reinforced Plastic Composites Subjected to Low Cyclic Impact Fatigue Flexural Properties of Glass Fiber Reinforced Plastic Composites Subjected to Low Cyclic Impact K.Poyyathappan, K.Pazhanivel, G.B.Bhaskar, S.Arunachalam, M.C.Leninbabu, A.Elayaperumal Abstract-Fiber-reinforced

More information

COMPRESSIVE STRENGTH AND DAMAGE MECHANISMS IN STITCHED CARBON/EPOXY COMPOSITES

COMPRESSIVE STRENGTH AND DAMAGE MECHANISMS IN STITCHED CARBON/EPOXY COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 Introduction Impact properties as well as tensile strength of carbon/epoxy composites were found to be improved by through-thickness reinforcement

More information

STRESS AND LOAD-DISPLACEMENT ANALYSIS OF FIBER- REINFORCED COMPOSITE LAMINATES WITH A CIRCULAR HOLE UNDER COMPRESSIVE LOAD

STRESS AND LOAD-DISPLACEMENT ANALYSIS OF FIBER- REINFORCED COMPOSITE LAMINATES WITH A CIRCULAR HOLE UNDER COMPRESSIVE LOAD STRESS AND LOAD-DISPLACEMENT ANALYSIS OF FIBER- REINFORCED COMPOSITE LAMINATES WITH A CIRCULAR HOLE UNDER COMPRESSIVE LOAD Manoharan R. and Jeevanantham A. K. School of Mechanical and Building Sciences,

More information

G. Promis 1, A. Gabor 1 and P. Hamelin 1 1

G. Promis 1, A. Gabor 1 and P. Hamelin 1 1 INVESTIGATION OF PULTRUDED FIBRE REINFORCED MINERAL POLYMER BASED COMPOSITE STRUCTURAL ELEMENTS AND CONFINED BY 3D WEAVING TECHNOLOGY FOR STRUCTURAL APPLICATIONS G. Promis 1, A. Gabor 1 and P. Hamelin

More information

Introduction to Composite Materials

Introduction to Composite Materials Structural Composite Materials Copyright 2010, ASM International F.C. Campbell All rights reserved. (#05287G) www.asminternational.org Chapter 1 Introduction to Composite Materials A composite material

More information

Preliminary Assessment of the Influence of the Type of a Curing Agent Upon Impact Loading of a Multi-Layered Composite

Preliminary Assessment of the Influence of the Type of a Curing Agent Upon Impact Loading of a Multi-Layered Composite Solid State Phenomena Submitted: 2014-08-19 ISSN: 1662-9779, Vol. 223, pp 19-26 Accepted: 2014-09-25 doi:10.4028/www.scientific.net/ssp.223.19 Online: 2014-11-20 2015 Trans Tech Publications, Switzerland

More information

Mechanical Properties of CFRP/EVA Composites According to Lamination Ratio

Mechanical Properties of CFRP/EVA Composites According to Lamination Ratio Mechanical Properties of CFRP/EVA Composites According to Lamination Ratio SUN-HO GO 1, SEONG-MIN YUN 1, HEE-JAE SHIN 2, JANG-HO LEE 3, LEE-KU KWAC 4 # HONG-GUN KIM 4 1 Graduate School, Department of Mechanical

More information

Studies on the influence of fibre parameters on the flexural properties of polymer fibre composites

Studies on the influence of fibre parameters on the flexural properties of polymer fibre composites Studies on the influence of fibre parameters on the flexural properties of polymer fibre composites 1 M.Jayavelu, 2 I.Sureshkumar, 3 E.Hemameeakshi, 4 G.Kaliraj 1 Lecturer, Plastic Technology,VSVN Polytechnic

More information

HexPly M79. Low Temperature Curing Epoxy Matrix Product Datasheet

HexPly M79. Low Temperature Curing Epoxy Matrix Product Datasheet Low Temperature Curing Epoxy Matrix Product Datasheet Description M79 is a formulated epoxy resin matrix, specially designed for prepreg applications where a cure temperature below 100 C is required. The

More information

Study of Effect of Various Fillers on Mechanical Properties of Carbon-Epoxy Composites

Study of Effect of Various Fillers on Mechanical Properties of Carbon-Epoxy Composites Volume: 2 Issue: 3 June-215 www.irjet.net p-issn: 2395-72 Study of Effect of Various Fillers on Mechanical Properties of Carbon-Epoxy Composites Mr. Nikhil B. Anigol 1 Prof. Anil S. Pol 2 1M.Tech Research

More information

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Natural Filler and Fibre Composites: Development and Characterisation 95 Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Y. Ohnishi, T. Fujii & K.

More information

Carbon Fiber Epoxy Composites and Its Mechanical Properties. Hitesh Pingle 1

Carbon Fiber Epoxy Composites and Its Mechanical Properties. Hitesh Pingle 1 ISSN UA Volume 01 Issue 01 June-2018 Carbon Fiber Epoxy Composites and Its Mechanical Properties Hitesh Pingle 1 Available online at: www.xournals.com Received 15 th December 2017 Revised 19 th February

More information

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Mohamad J. Terro Associate Professor. Civil Engineering Department, Kuwait University. Sameer

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

SHORT FIBER INTERFACIAL TOUGHENING FOR COMPOSITE-FOAM SANDWICH Z. Sun 1,2, S.Y. Sun 1,2, S.S. Shi 1,2, H.R. Chen 1*, X.Z. Hu 2*

SHORT FIBER INTERFACIAL TOUGHENING FOR COMPOSITE-FOAM SANDWICH Z. Sun 1,2, S.Y. Sun 1,2, S.S. Shi 1,2, H.R. Chen 1*, X.Z. Hu 2* SHORT FIBER INTERFACIAL TOUGHENING FOR COMPOSITE-FOAM SANDWICH Z. Sun 1,2, S.Y. Sun 1,2, S.S. Shi 1,2, H.R. Chen 1*, X.Z. Hu 2* 1 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian

More information

Mechanical Properties of Lab Joint Composite Structure of Glass Fiber Reinforced Polymers

Mechanical Properties of Lab Joint Composite Structure of Glass Fiber Reinforced Polymers Materials Sciences and Applications, 2017, 8, 553-565 http://www.scirp.org/journal/msa ISSN Online: 2153-1188 ISSN Print: 2153-117X Mechanical Properties of Lab Joint Composite Structure of Glass Fiber

More information